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ABSTRACT

Motivation: Estimation of bacterial community composition from

a high-throughput sequenced sample is an important task in

metagenomics applications. Since the sample sequence data

typically harbors reads of variable lengths and different levels of

biological and technical noise, accurate statistical analysis of such

data is challenging. Currently popular estimation methods are

typically very time consuming in a desktop computing environment.

Results: Using sparsity enforcing methods from the general sparse

signal processing field (such as compressed sensing), we derive

a solution to the community composition estimation problem by a

simultaneous assignment of all sample reads to a pre-processed

reference database. A general statistical model based on kernel

density estimation techniques is introduced for the assignment task

and the model solution is obtained using convex optimization tools.

Further, we design a greedy algorithm solution for a fast solution. Our

approach offers a reasonably fast community composition estimation

method which is shown to be more robust to input data variation than

a recently introduced related method.

Availability: A platform-independent Matlab implementation of the

method is freely available at http://www.ee.kth.se/ctsoftware; source

code that does not require access to Matlab is currently being tested

and will be made available later through the above website.

1 INTRODUCTION

High-throughput sequencing technologies have recently enabled

detection of bacterial community composition at an unprecedented

level of detail. The high-throughput approach focuses on producing

for each sample a large number of reads covering certain variable

∗To whom correspondence should be addressed. Email: sach@kth.se

part of the 16S rRNA gene, which enables an identification and

comparison of the relative frequencies of different taxonomic units

present across samples. Depending on the characteristics of the

samples, the bacteria involved and the quality of the acquired

sequences, the taxonomic units may correspond to species, genera

or even higher levels of hierarchical classification of the variation

existing in the bacterial kingdom. However, at the same time, the

rapidly increasing sizes of read sets produced per sample in a typical

project call for fast inference methods to assign meaningful labels

to the sequence data, a problem which has attracted considerable

attention [25, 19, 18, 21].

Many approaches to the bacterial community composition

estimation problem use 16S rRNA amplicon sequencing where

thousands to hundreds of thousands of moderate length (around

250-500 bp) reads are produced from each sample and then either

clustered or classified to obtain estimates of the prevalence of

any particular taxonomic unit. In the clustering approach the

reads are grouped into taxonomic units by either distance-based or

probabilistic methods [8, 13, 12], such that the actual taxonomic

labels are assigned to the clusters afterwards by matching their

consensus sequences to a reference database. Recently, the Bayesian

BeBAC method [12] was shown to provide high biological fidelity

in clustering. However, this accuracy comes with a substantial

computational cost such that a running time of several days in a

computing-cluster environment may be required for large read sets.

In contrast to the clustering methods, the classification approach

is based on using a reference database directly to assign reads to

meaningful units representing biological variations. Methods for

the classification of reads have been based either on homology

using sequence similarity or on genomic signatures in terms

of oligonucleotide composition. Examples of homology-based

methods include MEGAN [17, 20] and phylogenetic analysis [24].

A popular approach is the Ribosomal Database Project’s (RDP)

© Oxford University Press 2005. 1
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classifier which is based on a naı̈ve Bayesian classifier (NBC) that

assigns a label explicitly to each read produced for a particular

sample [25]. Despite the computational simplicity of NBC, the

RDP classifier may still require several days to process a data

set in a desktop environment. Given this challenge, considerably

faster methods based on different convex optimization strategies

have been recently proposed [19, 18]. In particular, sparsity-based

techniques, mainly compressive sensing based algorithms [9], are

used for estimation of bacterial community composition in [3, 18,

27]. However, [3] used sparsity-promoting algorithms to analyze

mixtures of dye-terminator reads resulting from Sanger sequencing,

with the sparsity assumption that each bacterial community is

comprised of a small subset of known bacterial species, the scope

of the work thus being different from methods intended for high-

throughput sequence data. The Quikr method of [18] uses a k-mer-

based approach on 16S rRNA sequence reads and has a considerable

similarity to the method (SEK: Sparsity Exploiting K-mers-based

algorithm) introduced here. Explained briefly, the Quikr setup

is based on the following core theoretical formulation: given a

reference database D = {d1, . . . , dM} of sequences and a set

S = {s1, . . . , st} of sample sequences (the reads to be classified),

it is assumed that there exists a unique dj for each sl, such that

sl = dj . In general, all reference databases and sample sets

consist of sequences with highly variable lengths. In particular the

lengths of reference sequences and samples reads are often quite

different. Violation of the assumption leads to sensitivity in Quikr

performance according to our experiments. Another example of fast

estimation is called Taxy [19] that addresses the effect of varying

sequence lengths [26]. Taxy uses a mixture model for the system

setting and convex optimization for a solution. The method referred

to as COMPASS [2] is another convex optimization approach, very

similar to the Quikr method, that uses large k-mers and a divide-and-

conquer technique to handle very large resulting training matrices.

The currently available version of the Matlab-based COMPASS

software does not allow for training with custom databases, so a

direct comparison to SEK is not yet possible.

To enable fast estimation, we adopt an approach where the

estimation of the bacterial community composition is performed

jointly, in contrast to the read-by-read analysis used in the RDP

classifier. Our model is based on kernel density estimators and

mixture density models [6], and it leads to solving an under-

determined system of linear equations under a particular sparsity

assumption. In summary, the SEK approach is implemented in three

separate steps: off-line computation of k-mers using a reference

database of 16S rRNA genes with known taxonomic classification,

on-line computation of k-mers for a given sample, and then final on-

line estimation of the relative frequencies of taxonomic units in the

sample by solving an under-determined system of linear equations.

2 METHODS

2.1 General notation and computational resources used

We denote the non-negative real line by R+. The ℓp norm is denoted

by ‖.‖p, and E[.] denotes the expectation operator. Transpose

of a vector/matrix is denoted by (.)t. We denote cardinality

and complement of a set S by |S| and S, respectively. In the

computations reported in the remainder of the paper we used

standard Matlab software with some instances of C code. For

experiments on mock community data, we used a Dell Latitude

E6400 laptop computer with a 3 GHz processor and 8 GB memory.

We also used the cvx [7] convex optimization toolbox and the

Matlab function lsqnonneg() for a least-squares solution with

non-negativity constraint. For experiments on simulated data, we

used standard computers with an Intel Xeon x5650 processor and

an Intel i7-4930K processor.

2.2 k-mer training matrix from reference data

The training step of SEK consists of converting an input labeled

database of 16S rRNA sequences into a k-mer training matrix. For

a fixed k, we calculate k-mers feature vectors for a window of fixed

length, such that the window is shifted (or slid) by a fixed number

of positions over a database sequence. This procedure captures

variability of localized k-mer statistics along 16S rRNA sequences.

Using bp as the length unit and denoting the length of a reference

database sequence d by Ld, and further a fixed window length by

Lw ≤ Ld and the fixed position shift by Lp, the total number of sub-

sequences processed to k-mers is close to ⌊Ld−Lw

Lp
⌋. The choice of

Lw may be decided by the shortest sample sequence length that

is used in the estimation assuming the reads in a sample set are

always shorter than the reference training sequences. In practice,

for example, we used Lw = 450 bp in experiments using mock

communities data. The choice of Lp is decided by the trade-off

between computational complexity and estimation performance.

Given a database of reference training sequences D =
{d1, . . . , dM} where dm is the sequence of the mth taxonomic

unit, each sequence dm is treated independently. For dm, the k-mer

feature vectors are stored column-wise in a matrix Xm ∈ R
4k×Nm
+ ,

where Nm ≈ ⌊
Ldm

−Lw

Lp
⌋. From the training database D, we obtain

the full training matrix

X = [X1 X2 . . . ,XM ] ∈ R
4k×N
+ ,

≡ [x1 x2 . . .xN ] ,

where
∑M

m=1 Nm = N , and xn ∈ R
4k×1
+ denotes the nth k-mers

feature vector in the full set of training feature vectors X.

2.3 SEK model

For the mth taxonomic unit, we have the training set

Xm = [xm1 xm2 . . .xmNm ] ∈ R
4k×Nm
+ ,

where we used an alternative indexing to denote the lth k-mer

feature vector by xml. Letting x and Cm denote random k-mer

feature vectors and mth taxonomic unit respectively, and using Xm,

we first model the conditional density p(x|Cm) corresponding to

mth unit by a mixture density as

p(x|Cm) =

Nm∑

l=1

αml pml(x|xml,Θml), (1)

where αml ≥ 0,
∑Nm

l=1 αml = 1, xml is assumed to be the mean

of distribution pml and Θml denotes the other parameters/properties

apart from the mean. In general, pml could be chosen according to

any convenient parametric or non-parametric family of distributions.

In biological terms, αml reflects the amplification of a variable
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sequence region and how probable that is in a given dataset with

a sufficient level of coverage. The approach of using training data

xml as the mean of pml stems from a standard approach of using

kernel density estimators (see section 2.5.1 of [6]).

Given a test set of k-mers (computed from reads), the distribution

of the test set is modeled as

p(x) =

M∑

m=1

p(Cm) p(x|Cm),

where we denote probability for taxonomic unit m (or class weight)

by p(Cm), satisfying
∑M

m=1 p(Cm) = 1. Note that {p(Cm)}Mm=1

is the composition of taxonomic units. The inference task is to

estimate p(Cm) as accurately and fast as possible, for which a first

order moment matching approach is developed. We first evaluate the

mean of x under p(x) as follows

E[x]

=
∫
x p(x) dx ∈ R

4k×1
+

=
∑M

m=1 p(Cm)
∫
x p(x|Cm) dx

=
∑M

m=1 p(Cm)
∫
x

∑Nm

l=1 αml pml(x|xml,Θml) dx

=
∑M

m=1 p(Cm)
∑Nm

l=1 αml

∫
x pml(x|xml,Θml) dx

=
∑M

m=1 p(Cm)
∑Nm

l=1 αml xml.

Introducing a new indexing n , n(m, l) =
∑m−1

j=1 Nj + l, we can

write

E[x] =
N∑

n=1

γn xn = Xγ,

where

γ = [γ1 γ2 . . . , γN ]T ∈ R
N×1
+ ,

γn , γn(m,l) = p(Cm)αml,
(2)

with the following properties

n(m,Nm)∑

n(m,1)

γn = p(Cm)

Nm∑

l=1

αml = p(Cm),

∑N

n=1 γn = ‖γ‖1 = 1.

In our approach we use the sample mean of the test set. The

test set consists of k-mers feature vectors computed from reads.

Each read is processed individually to generate k-mers in the same

manner used for the reference data. We compute sample mean of

the k-mer feature vectors for test dataset reads. Let us denote the

sample mean of the test dataset by µ ∈ R
4k×1
+ , and assume that the

number of reads is reasonably high such that µ ≈ E[x]. Then we

can write

µ ≈ Xγ.

Considering that model irregularities are absorbed in an additive

noise term n, we use the following system model

µ = Xγ + n ∈ R
4k×1
+ . (3)

Using the sample mean µ and knowing X, we estimate γ from (3)

as γ̂ , [γ̂1 γ̂2 . . . , γ̂N ]T ∈ R
N×1
+ followed by estimation of p(Cm)

as

p̂(Cm) =

n(m,Nm)∑

n(m,1)

γ̂n.

Note that the estimation γ̂ ∈ R
N×1
+ must satisfy the following

constraints

γ̂ ≥ 0,

‖γ̂‖1 =
∑N

n=1 γ̂n =
∑M

m=1 p̂(Cm) = 1.
(4)

In (4), γ̂ ≥ 0 means ∀n, γ̂n ≥ 0. We note that the linear setup

(3) is under-determined as 4k < N (in practice 4k ≪ N ) and

hence, in general, solving (3) without any constraint will lead to

infinitely many solutions. The constraints (4) result in a feasible set

of solutions that is convex and can be used for finding a unique and

meaningful solution.

We recall that the main interest is to estimate p(Cm), which is

achieved in our approach by first estimating γ and then p(Cm).
Hence γ represents an auxiliary variable in our system.

2.4 Optimization problem and sparsity aspect

The solution of (3), denoted by γ̂, must satisfy the constraints in

(4). Hence, for SEK, we pose the optimization problem to solve as

follows

P+,1
sek : γ̂ = argmin

γ
‖µ−Xγ‖2 ,γ ≥ 0, ‖γ‖1 = 1, (5)

where ‘+’ and ‘1’ notations in P+,1
sek refer to the constraints γ̂ ∈ R

N
+

and ‖γ̂‖1 = 1, respectively. The problem P+,1
sek is a constrained least

squares problem and a quadratic program (QP) solvable by convex

optimization tools, such as cvx [1]. In our assumption 4k < N , and

hence the required computation complexity is O(N3) [7].

The form of P+,1
sek bears resembance to the widely used LASSO-

method from general sparse signal processing, mainly used for

solving under-determined problems in compressive sensing [9, 11].

LASSO deals with the following optimization problem (see (1.5) of

[14])

LASSO : γ̂lasso = argmin
γ

‖µ−Xγ‖2 , ‖γ‖1 ≤ τ,

where τ ∈ R+ is a user choice that decides the level of sparsity in

γ̂lasso; for example τ = 1 will lead to a certain level of sparsity.

A decreasing τ leads to an increasing level of sparsity in LASSO

solution. LASSO is often presented in an unconstrained Lagrangian

form that minimizes {‖µ−Xγ‖22 + λ‖γ‖1}, where λ decides the

level of sparsity. P+,1
sek is not theoretically bound to provide a sparse

solution with a similar level of sparsity achieved by LASSO when a

small τ < 1 is used.

For the community composition estimation problem, the auxiliary

variable γ defined in (2) is inherently sparse. Two particularly

natural motivations concerning the sparsity can be brought forward.

Firstly, consider the conditional densities for taxonomic units as

shown in (1). Regarding the conditional density model for a single

unit, a natural hypothesis for the generating model is that the

conditional densities for several other units will induce only few

feature vectors, and hence αml will be negligible or effectively zero

for certain patterns in the feature space, leading to sparsity in the

auxiliary variable γ (unstructured sparsity in γ). Secondly, in most

3



Chatterjee et. al.

samples only a small fraction of the possible taxonomic units is

expected to be present, and consequently, many p(Cm) will turn

out to be zero, which again corresponds to sparsity in γ (structured

block-wise sparsity in γ) [22]. In practice, for a highly under-

determined system (3) in the community composition estimation

problem with the fact that γ is inherently sparse, the solution of

P+,1
sek turns out to be effectively sparse due to the constraint ‖γ‖1 =

1.

2.5 A greedy estimation algorithm

For SEK we solve P+,1
sek using convex optimization tools requiring

computational complexity O(N3). To reduce the complexity

without a significant loss in estimation performance we also develop

a new greedy algorithm based on orthogonal matching pursuit

(OMP) [23], for a short discussion of OMP with pseudo-code,

see also [11]. In the recent literature several algorithms have been

designed by extending OMP, such as, for example, the backtracking

based OMP [16], and, by a subset of the current authors, the look-

ahead OMP [10]. Since the standard OMP uses a least-squares

approach and does not provide solutions satisfying constraints in

(4), it is necessary to design a new greedy algorithm for the problem

addressed here.

The new algorithm introduced here is referred to as OMP+,1
sek , and

its pseudo-code is shown in Algorithm 1. In the stopping condition

(step 7), the parameter ν is a positive real number that is used as

a threshold and the parameter I is a positive integer that is used

to limit the number of iterations. The choice of ν and I is ad-hoc,

depending mainly on user experience.

Algorithm 1 : OMP+,1
sek

Input:

1: X, µ, ν, I;

Initialization:

1: r0 ← µ, S0 ← ∅, i← 0;

Iterations:

1: repeat

2: i← i+ 1; (Iteration counter)

3: τi ← index of the highest positive element of Xtri−1;

4: Si ← Si−1 ∪ τi; (|Si| = i)

5: γ̃i ← argmin
β

i

‖µ−XSi
βi‖2, βi ≥ 0; (XSi

∈ R
4k×i
+ )

6: ri ← µ−XSi
γ̃i; (Residual)

7: until ((|‖γ̃‖1 − 1| ≤ ν) or (i ≥ I))

Output:

1: γ̂ ∈ R
N
+ , satisfying γ̂Si

= γ̃i and γ̂Si
= 0.

2: γ̂ ← γ̂
‖γ̂‖1

(Enforcing ‖γ̂‖1 = 1)

Compared to the standard OMP, the new aspects in OMP+,1
sek are

as follows:

• In step 3 of Iterations, we only search within positive inner

product coefficients.

• In step 5 of Iterations, a least-squares solution γ̃i with non-

negativity constraint is found for ith iteration via the use of

intermediate variable βi ∈ R
i×1
+ . In this step, XSi

is the sub-

matrix formed by columns of X indexed in Si. The concerned

optimization problem is convex. We used the Matlab function

lsqnonneg() for this purpose.

• In step 6 of Iterations, we find the least squares residual ri.

• In step 7 of Iterations, the stopping condition provides for a

solution that has an ℓ1 norm close to one, with an error decided

by the threshold ν. An unconditional stopping condition is

provided by the maximum number of iterations I .

• In step 2 of Output, the ℓ1 norm of the solution is set to one by

a rescaling.

The computational complexity of the OMP+,1
sek algorithm is as

follows. The main cost is incurred at step 5 where we need to solve

a linearly constrained quadratic program using convex optimization

tools; here we assume that the costs of the other steps are negligible.

In the ith iteration XSi
∈ R

4k×i
+ and i ≪ 4k, and the complexity

required to solve step 5 is O(4ki2) [7]. As we have a stopping

condition i ≤ I , the total complexity of the OMP+,1
sek algorithm

is within O(I × 4kI2) = O(4kI3). We know that optimal solution

of P+,1
sek using convex optimization tools requires a complexity of

O(N3). For a setup with I < 4k ≪ N , we can have O(4kI3) ≪
O(N3), and hence the OMP+,1

sek algorithm is typically much more

efficient than using convex optimization tools directly in a high-

dimensional setting. It is clear that the OMP+,1
sek algorithm is not

allowed to iterate beyond the limit of I; in practice this works as a

forced convergence. For both OMP+,1
sek and P+,1

sek , we do not have

a theoretical proof on robust reconstruction of solutions. Further a

natural question remains on how to set the input parameters ν and

I . The choice of parameters is discussed later in section 3.4.

2.6 Overall system flow-chart

Finally we depict the full SEK system by using a flow-chart shown

in Figure 1. The flow-chart shows main parts of the overall system,

and associated off-line and on-line computations.

2.7 Mock communities data

For our experiments on real biological data, we used the mock

microbial communities database developed in [15]. The database

is called even composition Mock Communities (eMC) for chimeric

sequence detection where the involved bacterial species are known

in advance. Three regions (V1-V3, V3-V5, V6-V9) of the 16S

rRNA gene of the composition eMC were sequenced using 454

sequencing technology in four different sequencing centers. In our

experiments we focused on the V3-V5 region datasets, since these

have been earlier used for evaluation of the BeBAC method (see

Experiment 2 of [12]).

2.7.1 Test dataset (Reads): Our basic test dataset used under

a variety of different in silico experimental conditions is the one

used in Experiment 2 of BeBAC [12]. The test dataset consists of

91240 short length reads from 21 different species. The length of

reads has a range between 450-550 bp and the bacterial community

composition is known at the species level, by the following

computation performed in [12]. Each individual sequence of the

91240 read sequences was aligned (local alignment) to all the

reference sequences of reference database Dmock
known described in the
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Fig. 1. A flow-chart of full SEK system.

section 2.7.2 and then each read sequence is labelled by the species

of the highest scoring reference sequence, followed by computation

of the community composition referred to as ground truth.

2.7.2 Training datasets (Reference): We used two different

databases (known and mixed) generated from the mock microbial

community database [15]. The first database is denoted by Dmock
known

and it consists of the same M = 21 species present among

the reads described in section 2.7.1. The details of the Dmock
known

database can be found in Experiment 2 of [12]. The database

consists of 113 reference sequences for a total of 21 bacterial

species, such that each reference sequence represents a distinct 16S

rRNA gene. Thus there is a varying number of reference sequences

for each of the considered species. Each reference sequence has

an approximate length of 1500 bp, and for each species, the

corresponding reference sequences are concatenated to a single

sequence. The final reference database Dmock
known then consists of 21

sequences where each sequence has an approximate length 5000 bp.

To evaluate influence of new species in reference data on

the performance of SEK, we created new databases denoted by

Dmock
mixed(E). Here E represents the number of additional species

included to a partial database created from Dmock
known, by downloading

additional reference data from the RDP database. Each partial

database includes only one randomly chosen reference sequence

for each species in Dmock
known and hence consists of 21 reference

sequences of approximate length 1500 bp. For example, with E =
10, 10 additional species were included in the reference database

and consequently Dmock
mixed(10) contains 16S rRNA sequences of

M = 21 + 10 = 31 species. Several instances of Dmock
mixed(E)

were made for each fixed value of E by choosing a varying set

of additional species and we also increased E from zero to 100 in

steps of 10. Note that, in Dmock
mixed(E), the inclusion of only single

reference sequence results in reduction of biological variability for

each of the original 21 species compared to Dmock
known.

2.8 Simulated data

To evaluate how SEK performs for much larger data than the mock

communities data, we performed experiments for simulated data

described below.

2.8.1 Test datasets (Reads): Two sets of simulated data were

used to test the performance of the SEK method. First, the 216

different simulated datasets produced in [18] were used for a direct

comparison to the Quikr method and the Ribosomal Database

Project’s (RDP) Naı̈ve Bayesian Classifier (NBC). See [18, §2.5]

for the design of these simulations.

The second set of simulated data consists of 486 different

pyrosequencing datasets constituting over 179M reads generated

using the shotgun/amplicon read simulator Grinder [4]. Read-length

distributions were set to be one of the following: fixed at 100bp,

normally distributed at 450bp ± 50bp, or normally distributed

at 800bp ± 100bp. Read depth was fixed to be one of 10K,

100K, or 1M total reads. Primers were chosen to target either

only the V1-V3 regions, only the V6-V9 regions, or else the

multiple variable regions V1-V9. Three different diversity values

were chosen (10, 100, and 500) at the species level, and abundance

was modeled by one of the following three distributions: uniform,

linear, or power-law with parameter 0.705. Homopolymer errors

were modeled using Balzer’s model [5], and chimera percentages

were set to either 5% or 35%. Since only amplicon sequencing is

considered, copy bias was employed, but not length bias.

2.8.2 Training datasets (Reference): To analyze the simulated

data, two different training matrices were used corresponding to

the databases Dsmall and Dlarge from [18]. The database Dsmall

is identical to RDP’s NBC training set 7 and consists of 10,046

sequences covering 1,813 genera. Database Dlarge consists of a

275,727 sequence subset of RDP’s 16S rRNA database covering

2,226 genera. Taxonomic information was obtained from NCBI.

3 RESULTS

3.1 Performance measure and competing methods

As a quantitative performance measure, we use variational distance

(VD) to compare between known proportions of taxonomic units

p = [p(C1), p(C2), . . . , p(CK)]T and the estimated proportions

p̂ = [p̂(C1), p̂(C2), . . . , p̂(CK)]T . The VD is defined as

VD = 0.5× ‖p− p̂‖1 ∈ [0, 1].

A low VD indicates more satisfactory performance.

We compare performances between SEK, Quikr, Taxy and RDP’s

NBC, for real biological data (mock communities data) and large

size simulated data.

3.2 Results for Mock Communities data

Using mock communities data, we carried out experiments where

the community composition problem is addressed at the species

level. Here we investigated how the SEK performs for real

biological data, also vis-a-vis relevant competing methods.

3.2.1 k-mers from test dataset: In the test dataset, described in

section 2.7.1, the shortest read is of length 450 bp. We used a
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window length Lw = 450 bp and refrained from the sliding-the-

window approach in the generation of k-mers feature vectors. For

k = 4 and k = 6, the k-mers generation took 21 minutes and 48

minutes, respectively.

3.2.2 Results using small training dataset: In this experiment,

we used SEK for estimation of the proportions of species in the test

set described in Section 2.7.1. Here we used the smaller training

reference set Dmock
known described in Section 2.2. The experimental

setup is the same as shown in Experiment 2 of BeBAC [12].

Therefore we can directly compare with the BeBAC results reported

in [12]. SEK estimates were based on 4-mers computed with

the setup Lw = 450 bp and Lp = 1 bp. The choice of

Lp = 1 bp corresponds to the best case of generating training

matrix X, with the highest amount of variability in reference

k-mers. Using Dmock
known, the k-mers training matrix X has the

dimension 44 × 121412. For the use of SEK in such a high

dimension, the QP P+,1
sek using cvx suffered of numerical instability,

but OMP+,1
sek provided results in 3.17 seconds, leading to a VD

= 0.0305. For OMP+,1
sek , ν and I in algorithm 1 were set to

10−5 and 100 respectively; the values of these two parameters

remained unchanged for other experiments on mock communities

data presented later. The performance of SEK using OMP+,1
sek

is shown in Figure 2, and compared against the estimates from

BeBAC, Quikr and Taxy. The Quikr method used 6-mers and

provided a VD = 0.4044, whereas the Taxy method used 7-mers

and provided a VD = 0.2817. The use of k = 6 and k = 7 for

Quikr and Taxy, respectively, is chosen according to the experiments

described in [18] and [19]. Here Quikr is found to provide the least

satisfactory performance in terms of VD. BeBAC results are highly

accurate with VD = 0.0038, but come with the requirement of a

computation time in the order of more than thirty hours. On the

other hand OMP+,1
sek had a total online computation time around

21 minutes that is mainly dominated by k-mers computation from

sample reads for evaluating µ; given pre-computed X and µ, the

central inferenece (or estimation) task of OMP+,1
sek took only 3.17

seconds. Considering that Quikr and Taxy also have similar online

complexity requirement to compute k-mers from sample reads,

OMP+,1
sek can be concluded to provide a good trade-off between

performance and computational demands.

3.2.3 Results for dimension reduction by higher shifts: The

Lp = 1 bp leads to a relatively high dimension of X, which is

directly related to an increase in computational complexity. Clearly,

the Lp = 1 bp shift produces highly correlated columns in X

and consequently it might be sufficient to utilize k-mers feature

vectors with a higher shift without a considerable loss in variability

information. To investigate this, we performed an experiment with

a gradual increase in Lp. We found that selecting Lp = 15 bp

results in an input X ∈ R
44×8052
+ which the cvx based P+,1

sek was

able to process successfully. At Lp = 15 bp, the P+,1
sek provided

a performance of VD = 0.033260, while the execution time was

25.25 seconds. The OMP+,1
sek took 1.86 seconds and provided VD

= 0.03355l, indicating almost no performance loss compared to the

optimal P+,1
sek . A shift Lp > 25 did result in a performance drop, for

example, Lp = 30, 50, 100 resulted in VD values 0.0527, 0.0879,

0.1197, respectively. Therefore, shifts around Lp = 15 bp appear

to be sufficient to reduce the dimension of X, while maintaining

sufficient biological variability. Hence the next experiment (in

section 3.2.4) was conducted using Lp = 15 bp.

3.2.4 Results for mixed training dataset: In this experiment, we

investigated how the performance of SEK varies with an increase in

the number of additional species in the reference training database

which are not present in the sample test data. We used reference

training datasets Dmock
mixed(E) described in Section 2.2, where E =

0, 10, 20, . . . , 100. For each non-zero E, we created 10 reference

datasets to evaluate variability of the performance. The performance

with one-sigma error bars is shown in Figure 3. The trend in

the performance curves confirms that the SEK is subjected to

gradual decrease in performance with the increase in the number

of additional species; the trend holds for both P+,1
sek and OMP+,1

sek .

Also, being optimal the performance of QP P+,1
sek is found to be more

consistent than the greedy OMP+,1
sek .

3.3 Results for Simulated Data

The simulated data experiments deal with community composition

problem at different taxonomic ranks and also with very large size

of X in (3). Due to the massive size of X, a direct application of

QP P+,1
sek is not feasible, and hence we used only OMP+,1

sek . For all

results described, ν and I in algorithm 1 were set to 10−5 and 409
respectively.

3.3.1 Training matrix construction: In forming the training

matrix for Dsmall, the k-mer size was fixed at k = 6, and the

window length and position shifts were set to Lw = 400 and

Lp = 100 respectively. This resulted in a matrix X with dimensions

46 × 109, 773. For the database Dlarge, a training matrix X with

dimensions 46 × 500, 734 was formed by fixing k = 6, Lw =
400, and Lp = 400. Calculating the matrices took ∼ 2.5 and

∼ 11 minutes respectively using an Intel i7-4930K processor and a

custom C program. Slightly varying Lp and Lw did not significantly

change the results contained in sections 3.3.2 and 3.3.3 below, but

generally decreasing Lp and Lw results in lower reconstruction

error at the expense of increased execution time and memory usage.

The values of Lp and Lw were chosen to provide an acceptable

balance between execution time, memory usage, and reconstruction

error.

3.3.2 Results for first set of simulated data: For test data, k-mers

were computed in the same manner as described in section 3.3.1. On

average, 4.0 seconds were required to form the 6-mer feature vector

for each sample. Figure 4 compares the mean variational distance

(VD) error at various taxonomic ranks as well as the algorithm

execution time between SEK (OMP+,1
sek ), Quikr and RDP’s NBC.

As shown in figure 4, using the database Dlarge, SEK outperforms

both Quikr and RDP’s NBC in terms of reconstruction error and

has comparable execution time as Quikr. Both Quikr and SEK

have significantly lower execution time than RDP’s NBC. Using

the database Dsmall (not shown here), SEK continues to outperform

both Quikr and RDP’s NBC in terms of reconstruction error, but

only RDP’s NBC in terms of execution time, as SEK had a median

execution time of 15.2 minutes versus Quikr’s 25 seconds. All three

methods have increasing error for lower taxonomic ranks, but the

improvement of SEK over Quikr is emphasized for lower taxonomic

ranks.
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Fig. 2. For mock communities data: Performance of OMP+,1
sek using reference training database Dmock

known. Community composition problem is addressed

at the species level. The OMP+,1
sek performance is shown against the ground truth and performances of BeBAC, Quikr and Taxy. The OMP+,1

sek provides

better match to the ground truth than the competing faster methods Quikr and Taxy. The corresponding variational distance (VD) performances of BeBAC,

OMP+,1
sek , Taxy and Quikr are 0.0038, 0.0305, 0.2817 and 0.4044, respectively.

Fig. 3. For mock communities data: Variational distance (VD) performance of SEK against increasing reference database Dmock
mixed(E), where E =

0, 10, 20, . . . , 100. The left figure is for P+,1
sek and the right figure is for OMP+,1

sek . The results show that both SEK implementations are subjected to a

gradual decrease in performance with the increase in the number of additional species.
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(a)

(b)

Fig. 4. For simulated data: Comparison of SEK (OMP+,1
sek ) to Quikr and

RDP’s NBC on the first set of simulated data. Throughout, RDP’s NBC

version 10.28 with training set 7 was utilized. (a) Variational distance error

averaged over all 216 simulated datasets versus taxonomic rank for RDP’s

NBC, with SEK and Quikr trained using Dlarge. (b) Algorithm execution

time for RDP’s NBC, with SEK and Quikr trained using Dlarge. Whiskers

denote range of the data, vertical black bars designate the median, and the

boxes demarcate quantiles.

3.3.3 Results for second set of simulated data: Figure 5

summarizes the mean VD and algorithm execution time over the

second set of simulated data described in section 2.8 for Quikr and

SEK both trained on Dsmall.

Part (a) of Figure 5 demonstrates that SEK shows much lower VD

error in comparison to Quikr at every taxonomic rank. However, part

(b) of Figure 5 shows that this improvement comes at the expense

of moderately increased mean execution time.

When focusing on the simulated datasets of length 100bp,

450bp±50bp, and 800bp±100bp, SEK had a mean VD of 0.803,

0.410, and 0.436 respectively. As Lw was set to 400, this indicates

the importance of choosing Lw to roughly match the sequence

length of a given sample when forming the k-mer training matrix

if sequence length is reasonably short (around 400 bp).

SEK somewhat experienced decreasing performance as a function

of diversity: at the genus level, SEK gave a mean VD of 0.467,

0.579, and 0.603 for the simulated datasets with diversity 10, 100,

and 500 respectively.

(a)

(b)

Fig. 5. For simulated data: Comparison of SEK (OMP+,1
sek ) to Quikr on the

second set of simulated data. (a) Variational distance error averaged over

all 486 simulated datasets versus taxonomic rank for SEK and Quikr trained

using Dsmall. (b) Algorithm execution time for SEK and Quikr trained using

Dsmall. Whiskers denote range of the data, vertical black bars designate the

median, and the boxes demarcate quantiles.

3.4 Remarks on parameter choice and errors

In SEK, we need to choose several parameters: k, Lw, Lp, ν and

I . Typically an increase in k leads to better performance with the

fact that a higher k always subsumes a lower k in the process

of generating k-mers feature vectors. The trend of improvement

in performance with increase of k was shown for Quikr [18] and

we believe that the same trend will also hold for SEK. For SEK,

the increase in k results in exponential increase in row dimension

of X matrix and hence the complexity and memory requirement

also increase exponentially. There is no standard approach to fix k,

except a brute force search. Let us now consider choice of Lw and

Lp. Our experimental results bring the following heuristic: choose

Lw to match the read length of sample data. On the other hand,

choose Lp as small as possible to accommodate a high variability

of k-mers information in X matrix. A reduction in Lp results to

a linear increase in column dimension of X. Overall users should

choose k, Lw and Lp such that the dimension of X remains

reasonable without considerable loss in estimation performance.

Finally we consider ν and I parameters in Algorithm 1 that enforce

sparsity, with the aspect that computational complexity isO(4kI3).
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In general there is no standard automatic approach to choose these

two parameters, even for any standard algorithm. For example, the

unconstrained Lagrangian form of LASSO mentioned in section 2.4

also needs to set the parameter λ by user. For Algorithm 1, 0 < ν <

1 should be chosen as a small positive number and I can be chosen

as a fraction of row dimension of X that is 4k, of-course with the

requirement that I is a positive integer. Let us choose I = ⌊η× 4k⌋
where 0 < η ≤ 1. In case of a lower k, the system is more under-

determined and naturally the enforcement of sparsity needs to be

slackened to achieve a reasonable estimation performance. Hence

for a lower k, we need to choose a higher η that can provide a good

trade-off between complexity and estimation performance. But, for

a higher k, the system is less under-determined and to keep the

complexity reasonable, we should choose a lower η. Note that, for

mock communities date, we used k = 4 and I = 100, and hence

η = 100
44
≈ 0.4, and for simulated data, we used k = 6 and

I = 409, and hence η = 409
46
≈ 0.1.

Further, it is interesting to ask what are the types of errors most

common in SEK reconstruction. In general, SEK reconstructs the

most abundant taxa with remarkable fidelity. The less abundant taxa

are typically more difficult to reconstruct and at times each behavior

can be observed: low frequency taxa missing, miss-assigned, or their

abundances miss-estimated.

4 DISCUSSION AND CONCLUSION

In this work we have shown that bacterial compositions of

metagenomic samples can be determined quickly and accurately

from what initially appears to be very incomplete data. Our method

SEK uses only k-mer statistics of fixed length (here k ∼ 4, 6)

of reads from high-throughput sequencing data from the bacterial

16S rRNA genes to find which set of tens of bacteria are present

out of a library of hundreds of species. For a reasonable size of

reference training data, the computational cost is dominated by

the pre-computing of the k-mer statistics in the data and in the

library; the computational cost of the central inference module is

negligible, and can be performed in seconds/minutes on a standard

laptop computer.

Our approach belongs to the general family of sparse signal

processing where data sparsity is exploited to solve under-

determined systems. In metagenomics sparsity is present on several

levels. We have utilized the fact that k-mer statistics computed in

windows of intermediate size vary substantially along the 16S rRNA

sequences. The number of variables representing the amount of

reads assumed to be present in the data from each genome and from

each window is thus far greater than the number of observations

which are the k-mer statistics of all the reads in the data taken

together. More generally, while many bacterial communities are

rich and diverse, the number of species present in, for example

the gut of one patient, will almost always be only a small fraction

of the number of species present at the same position across a

population, which in turn will only be a very small fraction of

all known bacteria for which the genomic sequences are available.

We therefore believe that sparsity is a rather common feature of

metagenomic data analysis which could have many applications

beyond the ones pursued here.

The major technical problem solved in the present paper stems

from the fact that the columns of the system matrix X linking

feature vectors are highly correlated. This effect arises both from

the construction of the feature vectors i.e. that the windows are

overlapping, and from biological similarity of DNA sequences

along the 16S rRNA genes across a set of species. An additional

technical complication is that the variables (species abundances)

are non-negative numbers and naturally normalized to unity,

while in most methods of sparse signal processing there are no

such constraints. We were able to overcome these problems by

constructing a new greedy algorithm based on orthogonal matching

pursuit (OMP) modified to handle the positivity constraint. The new

algorithm, dubbed OMP+,1
sek , integrates ideas borrowed from kernel

density estimators, mixture density models and sparsity-exploiting

algebraic solutions.

During the manuscript preparation, we became aware that a

similar methodology (Quikr) has been developed by Koslicki

et al in [18]. While there is a considerable similarity between

Quikr and SEK, we note that Quikr is based only on sparsity-

exploiting algebraic solutions while SEK further exploits the

additional sparsity assumption of non-uniform amplifications of

variable regions in 16S rRNA sequences. Indeed, we hypothesize

that the improvement of SEK over Quikr is mainly due to the

superior training method of SEK. The comparison between the two

methods reported above in Figures 2, 4 and 5 shows that SEK

performs generally better than Quikr. The development of two new

methodologies independently and roughly simultaneously reflect

the timeliness and general interest of sparse processing techniques

for bioinformatics applications.
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