
Vol. 30 ECCB 2014, pages i549–i555
BIOINFORMATICS doi:10.1093/bioinformatics/btu467

OncodriveROLE classifies cancer driver genes in loss of function

and activating mode of action
Michael P. Schroeder1, Carlota Rubio-Perez1, David Tamborero1, Abel Gonzalez-Perez1,*
and Nuria Lopez-Bigas1,2,*
1Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra,
E08003 Barcelona and 2Instituci �o Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain

ABSTRACT

Motivation: Several computational methods have been developed to

identify cancer drivers genes—genes responsible for cancer develop-

ment upon specific alterations. These alterations can cause the loss of

function (LoF) of the gene product, for instance, in tumor suppressors,

or increase or change its activity or function, if it is an oncogene.

Distinguishing between these two classes is important to understand

tumorigenesis in patients and has implications for therapy decision

making. Here, we assess the capacity of multiple gene features related

to the pattern of genomic alterations across tumors to distinguish be-

tween activating and LoF cancer genes, and we present an automated

approach to aid the classification of novel cancer drivers according to

their role.

Result: OncodriveROLE is a machine learning-based approach that

classifies driver genes according to their role, using several properties

related to the pattern of alterations across tumors. The method shows

an accuracy of 0.93 and Matthew’s correlation coefficient of 0.84 clas-

sifying genes in the Cancer Gene Census. The OncodriveROLE clas-

sifier, its results when applied to two lists of predicted cancer drivers

and TCGA-derived mutation and copy number features used by the

classifier are available at http://bg.upf.edu/oncodrive-role.

Availability and implementation: The R implementation of the

OncodriveROLE classifier is available at http://bg.upf.edu/oncodrive-

role.

Contact: abel.gonzalez@upf.edu or nuria.lopez@upf.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Research in cancer genomics has identified hundreds of genes

involved in different stages of tumorigenesis due to specific som-

atic events. Single nucleotide variants, and large-scale amplifica-

tions and deletions of chromosomal regions have been identified

as two of the main driver alterations in human tumors. The genes

suffering these alterations are traditionally classified as oncogenes

and tumor suppressors, depending on their role in cancer devel-

opment. When the product of tumor suppressors lose their func-

tion, tumor cells tend to proliferate faster. Driver alterations in

these genes frequently exhibit a recessive behavior. The loss of

function (LoF) can be achieved through truncating or missense

mutations, DNA deletions or hypermethylation of their pro-

moters. Some known LoF genes, most notably BRCA1 and

BRCA2, carry germline variants that increase the susceptibility

to develop a tumor because only one hit is required to inactivate

their function. Oncogenes, on the other hand, increase or change

their function upon somatic variants in tumorigenesis. Therefore,

theirmode of action follow a dominant pattern, as one faulty copy

of the gene is frequently enough to provide the required pheno-

type. A copy number gain may exponentiate the oncogenic func-

tion of the gene; a point mutation may achieve the same result by

changing key amino acid residues, which results in constitutive

activation of the protein, or produce a new biochemical function.

These special cases are also regarded as activating driver muta-

tions, as the new function is gained much like in the case of classic

oncogenes. TheCancerGeneCensus (CGC;Futreal et al., 2004) is

a regularly updated compilation of well-studied cancer genes,

which classifies their mode of action as dominant or recessive,

following the oncogene/tumor suppressor paradigm, LoF and

Act (activated), hereafter. The CGC contains some 500 genes

implicated in cancer (November 2013). This is a rather small frac-

tion of the 20 000 genomes in the human genome (International

HumanGenome Sequencing Consortium, 2004), but recent large-

scale re-sequencing projects of tumor genomes (Hudson et al.,

2010) suggest many additional genes may be involved in tumori-

genesis. One important first step in the analysis of datasets of

cancer genomics alterations is the identification of the genes that

drive tumorigenesis. This is a non-trivial problem because tumor

samples contain up to thousands of somatic alterations. The list of

genes altered in tumors is heterogeneous, even within the same

cancer type. Therefore, the difficult task is to distinguish between

driver and passenger alterations.
The most intuitive way to identify driver genes is to detect sig-

nals of positive selection across tumor samples because cancer cell

populations undergo a selection process during the progression of

the disease. Different methods that aim to identify driver genes

tackle different evidences to achieve their goal (Gonzalez-Perez

et al., 2013a). Two recent efforts to comprehensively identify

driver genes across large cohorts carried out by Lawrence et al.

(2014) and Tamborero et al. (2013b), combining several signals of

positive selection (Dees et al., 2012; Gonzalez-Perez and Lopez-

Bigas, 2012; Lawrence et al., 2013; Reimand et al., 2013) detected,

respectively, 291 and 260 likely driver genes.
Although years of experimental work have revealed the role of

most well-known cancer genes, now our capability of detecting

drivers has surpassed our capacity to probe their mode of action.

Thus, revealing the mode of action of driver genes in tumorigen-

esis is becoming crucial to fully understand the mechanisms of

tumorigenesis. This is essential for the development of new tar-

geted cancer therapies because as a general rule only Act drivers

are in principle susceptible to targeted drugs. Although excep-

tionally, some mutated tumor suppressors may be targeted (e.g.*To whom correspondence should be addressed.
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Lambert et al., 2009), other strategies, such as synthetic lethality,

are needed to compensate for their LoF. This is the reason why

we need to develop bioinformatics approaches to make this clas-

sification as accurately as possible. Vogelstein et al. recently

described the so-called ‘20/20 rule’ to detect tumor suppressor

genes and oncogenes based on their mutational pattern across

tumor samples (Vogelstein et al., 2013). It states that genes with

�20% truncating mutations are tumor suppressors, whereas

genes with420% of missense mutations in recurrent positions

are oncogenes. While it correctly detects and classifies most of

the well-known cancer genes, the rule fails to identify drivers

included in newer catalogs (Tamborero et al., 2013b), mostly

the lowly recurrent ones.

Building upon the same idea, Davoli et al. developed a ma-

chine learning approach to directly identify tumor suppressor

genes and oncogenes from the somatic alterations observed

across cohorts of tumor samples through their mutational and

copy number patterns. Many cancer drivers are recognized cor-

rectly by carefully selected features (Davoli et al., 2013).
We recently proposed a strategy to obtain a comprehensive list

of drivers minimizing the probability of detecting false-positive

findings by combining complementary methods that detected

different signals of positive selection (Tamborero et al., 2013b).
Once a list of high-confidence drivers (HCDs) is obtained, it is

important to classify those in their mode of action. To this aim, we

first carefully assessed the capability of 30 features to differentiate

between these two groups of cancer genes. Then, we combined dif-

ferent sets of features with various classification algorithms to

create several automated classifiers. We trained these classifiers

with CGC genes, and after careful check of their performance, we

selected a random forest algorithm that achieves an accuracy

(ACC) of 93%, which we call OncodriveROLE. It is the first

freely available automatic classifier that undertakes the task of as-

sessing the mode of action of driver genes. Used in this setting, it

may shed light upon the mechanisms of tumorigenesis in major

cancer types. We have used it to classify the two previously men-

tioned lists of mutational drivers that have been recently published,

namely, HCDs (Tamborero et al., 2013b) and Cancer5000

(Lawrence et al., 2014), and describe the results of this analysis.

2 METHODS

2.1 Mutation data, copy number alteration data and

cancer driver lists

We retrieved data for the 17 TCGA (The Cancer Gene Census) projects

currently available without restriction: BLCA, BRCA, COAD/READ,

GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD,

SKCM, STAD, THCA and UCEC. We designed and computed several

features that we hypothesized might be useful to classify driver genes

according to the role using mutation and copy number data. These fea-

tures are based on the patterns of mutations and copy number alterations

(CNAs) across tumor samples. Tumors with at least one mutation in the

TCGA pan-cancer 17 dataset available at Synapse (syn1729383.2) were

retrieved after excluding those considered as hypermutators (Kandoth,

2014; Kandoth et al., 2013). Hypermutators of a tumor type contained

more than (Q3+4.5� IQR) somatic mutations, where Q3 and IQR are

the third quartile and the interquartile range of the distribution of muta-

tions across all samples of the tumor type, respectively. After filtering, the

pan-cancer 17 dataset was composed of 4327 samples. These mutations

were mapped to protein positions, and their consequence types were as-

sessed using the IntOGen-mutations pipeline (Gonzalez-Perez et al.,

2013b), which makes use of the Ensembl Variant Effect Predictor (v70;

Chen et al., 2010). The CNA status for all probed genes was downloaded

from the January run of the TCGA FIREHOSE pipeline at the Broad

Institute (http://gdac.broadinstitute.org/).

To apply the OncodriveROLE classifier, we gathered two lists of likely

cancer drivers from the Supplementary Material of two independent

papers (Lawrence et al., 2014; Tamborero et al., 2013b). From the

Tamborero et al. (2013b), we selected the list of 291 genes annotated as

HCDs, discarding one non-coding gene. From Lawrence et al. (2013), we

obtained a list of 260 genes from the spreadsheet ‘Individual q-values’.

For comparison purposes, we retrieved the classifications of genes

carried out by the previous work by Davoli et al. from the

Supplementary Material of their paper, applying the same cutoffs

described in the manuscript (Davoli et al., 2013). We also obtained the

classification carried out by applying the 20/20 rule (Vogelstein et al.,

2013) to the mutational dataset of 17 tumors types.

Whenever possible, data were obtained associated to Ensembl gene

identifiers (Flicek et al., 2013). Other identifiers have been mapped to

Ensembl gene identifiers with a dataset obtained from Ensembl v70.

2.2 Classifiers

We chose six different classifiers to test: cforest.party (cforest method in R),

conditionalTree (ctree), logisticRegression (glm), naiveBayes (train),

simpleTree (rpart) and randomForest (Breiman, 2001; Hothorn et al.,

2006; Kuhn, 2008; Olshen et al., 1984; R Core Team, 2013). Some classifiers

either do not accept missing values or perform variable imputation for those.

Therefore, we opted to remove genes if they had missing values in one or

more of the features and leave them unclassified. From each classifier we

obtained a score of the certainty that each gene belongs to the Act class.

2.3 Training set

To use cancer genes with well-established roles as training set, we down-

loaded the material available at the CGC in November 2013 (Futreal

et al., 2004). See below details on the curation of this dataset for training

the classifier.

The CGC contains extensive and manually annotated information on

well-known cancer genes and classifies the cancer genes into dominant

(Dom) and recessive (Rec) influence on tumorigenesis. We have used the

CGC classification into Rec and Dom classes as proxy for LoF and Act

genes. Genes with ambiguous annotation, such as ‘Rec?’ or ‘Dom?’ or not

citing observed somatic mutations were discarded, leaving 381 entries (see

Supplementary Table S7 for their classification). To only include CGC

driver genes, which are likely to act across the TCGA pan-cancer 17

cohort, we used a one-signal filter: we discarded genes not detected as

significant by MutSigCV (recurrence signal), OncodriveFM (mutations

impact signal) or OncodriveCLUST (mutations clustering signal). We

also rejected genes with512 protein affecting mutations (PAMs;

Gonzalez-Perez and Lopez-Bigas, 2012; Lawrence et al., 2013;

Tamborero et al., 2013a). Only 115 CGC genes passed this filter.

Equally, all CGC genes that were solely associated to translocation

events—all labeled with Dom—were not allowed in the training set, fi-

nally leaving 76 entries in the training set.

2.4 Computing features

All features we computed are listed in Table 1 along with a brief explanation

of their computation: some of them are similar to the ones used previously

(Davoli et al., 2013; Vogelstein et al., 2013). Truncating mutations include

mutations causing a frameshift, a gained or lost stop codon as well as mu-

tations in splice donor or acceptor sites. PAMs include truncating mutations

and missense mutations. Benign missense refers to missense mutations that
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are categorized as low or unknown functional impact by TransFIC

(Gonzalez-Perez et al., 2012). OncodriveFM P-values (Gonzalez-Perez and

Lopez-Bigas, 2012) and the location of OncodriveCLUST clusters of muta-

tions (Tamborero et al., 2013a) for all driver genes were obtained by running

the IntOGen-mutations pipeline on the TCGA pan-cancer 17 dataset.

The R implementation of Wilcoxon’s signed rank (R Core Team,

2013) was used to compare the distribution of each feature between the

CGC Rec and CGC Dom genes. We also used the variable importance

function from the party library (Hothorn et al., 2006; Strobl et al., 2008)

to rank features for their selection to be taken into account by the

classifiers.

2.5 Training and prediction

The selected CGC genes were therefore used as training set of the classifiers.

With all different classification settings, we performed a leave-one-out cross-

validation: each item in the training set is classified with amodel built with the

rest of the training set items. We found three genes whose initial classification

extremely contradicted their CGC category: NOTCH1, NPM1 and CEBPA

genes,which have evidence in the literature for a dual role (Halmos et al., 2002;

Sportoletti et al., 2008; Vogelstein et al., 2013). Therefore, we decided to dis-

card them from the training set. Thus, the final, trimmed CGC training set

included 28 Dom and 45 Rec genes.

For the classification of HCD and Cancer5000 genes, we considered

that values between 0.7 and 1 as Act and those with values between 0 and

0.3 as LoF. We computed the ACC and MCC (Matthew’s correlation

coefficient) of each classifier at the leave-one-out cross-validation of the

training set. Furthermore, we calculated the coverage (COV) of the clas-

sifier, which reflects the percentage of the entire training set for which a

prediction could be made.

3 RESULTS

3.1 Identifying features that differentiate Act from LoF

driver genes

We tested 30 features that we initially hypothesized could be used
to characterize and discriminate between LoF and Act drivers

Table 1. List of mutational and CNA features for cancer driver genes

Attribute name Description

CNA_cbs_countGain # samples in cohort with CBS value41.1

CNA_cbs_countLoss # samples in cohort with CBS value51.1

CNA_cbs_logratio_GvL Log10-ratio of countGain VS countLoss

CNA_gain_freq # samples in cohort with CBS value41.1 / cohort size

CNA_loss_freq # samples in cohort with CBS value51.1 / cohort size

MUTS_clusters_miss_VS_pam Log10-ratio of missense VS PAM within OncodriveCLUST peaks

MUTS_freq_clustered # of mutations in OncodriveCLUST peaks / # of samples with gene mutated

MUTS_freq_disruptive # of samples with truncating mutations or high impact missense / # of samples having gene mutations

MUTS_freq_missH # of high impact missense mutations not in OncodriveCLUST peaks / # samples with gene mutated

MUTS_freq_missHM # of high and medium impact missense mutations not in OncodriveCLUST peaks / # samples with gene

mutated

MUTS_freq_truncating # of samples with truncating mutations / # of samples with at least one mutation

MUTS_missense_clustercov # missense mutations in OncodriveCLUST peaks / # missense mutations / # amino acids covered by peaks

MUTS_missense_mutrec # recurrent missense mutations / # high and medium impact missense mutations

MUTS_missense_rec_freq # recurrent missense mutations / # mutations (as in Vogelstein et al.)

MUTS_missense_recHM # samples with high and medium impact recurrent missense mutations / # samples with missense mutations

MUTS_OncoFM_pvalue OncodriveFM P-value

MUTS_pams_count # samples with PAM

MUTS_pams_freq # samples with PAM / # samples with gene mutations

MUTS_pams_ratio # samples with PAM VS # samples with no PAM

MUTS_pamsrec_freq # samples with PAM VS # of samples with gene mutation

MUTS_trunc_count # samples with truncating mutations

MUTS_trunc_freq_cohort # of truncating mutations / # of samples with gene mutations

MUTS_trunc_mutfreq # truncating mutations / # mutations (as in Vogelstein et al.)

MUTS_trunc_vs_missbenign_ratio # samples with truncating mutations VS # samples with benign missense mutations

MUTS_trunc_vs_missense_ratio # samples with truncating mutations VS # samples with missense mutations

MUTS_trunc_vs_notrunc_ratio # samples with truncating mutations VS # samples without truncating mutations

MUTS_tuson_missHM_missbenign_ratio # samples with high and medium impact mutations VS # samples with benign missense mutations (as

described in Davoli et al.)

MUTS_tuson_splicing_missbenign_ratio # samples splicing variants mutations VS # samples with benign missense mutations (as described in Davoli

et al.)

MUTS_tuson_trunc_missbenign_ratio # samples with truncating (excluding splicing variants) mutations VS # samples with benign missense mu-

tations (as described in Davoli et al.)

Note: List of features initially created for characterizing LoF and Act genes. The description reflects the formula applied for the calculation of the features. All features

elaborated describe either mutation or CNA characteristics. Abbreviations used in the descriptions are: # (number sign): Count/number of, / (slash): divided by, CBS : circular

binary segmentation, truncating mutations: frameshift, stop gained and lost, splice donor and acceptor, missense: all missense mutations and insertions and deletions not

altering the reading frame, high and medium impact mutations: all missense mutations with and TransFIC impact of 1 and 2 , benign missense: all missense with low or unknown

TransFIC impact, PAM : protein affecting: frameshift, stop gained and lost, splice donor and acceptor, missense, (gene) mutations: all mutations-affecting coding sequence,

VS : versus—a ratio has been obtained.
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(see Table 1 for detailed description of each). All features elab-

orate on somatic mutation and CNA patterns across data from

the pan-cancer 17 cohort. We expected LoF genes to be affected

more frequently by deleterious events such as CNA loss and

truncating mutations. Act genes should be more frequently

amplified and receive protein-affecting non-truncating muta-

tions, which may increase and/or alter the protein function.
To select the most informative features for the task of

distinguishing between Act and LoF genes, we compared the

distribution of the features in both categories of CGC genes

(Fig. 1). The features we considered can be divided into four

broad categories (Fig. 1A): (i) features that measure the relative

abundance of truncating mutations, (ii) features that reflect the

CNA status of the gene across tumors, (iii) features that account

for the relative abundance of PAMs and (iv) features that meas-

ure the degree of clustering of missense mutations along the pro-

tein sequence.

Features in Group iii show the poorest performance to dis-

criminate between CGC Dom and CGC Rec genes (light blue in

Fig. 1A). On the other hand, all the features in Group i (green in

Fig. 1A) rank at the top of performance of all features analyzed.

As expected, this reflects that Act genes (or proto-oncogenes) are

intolerant to truncating mutations because an active protein

product is required for tumorigenesis. In LoF (or tumor suppres-

sor) genes the truncation of the protein product gene is positively

selected, which facilitates the identification of LoF candidates.

The best performing feature in this group was the ratio of trun-

cating mutations to the total number of coding mutations in the

protein (Fig. 1B).
The distribution of mutations within the gene (Group iv, dark

blue in Fig. 1A) differs significantly between CGC Dom and

CGC Rec genes. The CGC Dom genes have fewer mutational

hotspots, detected as clusters by OncodriveCLUST, than CGC

Rec genes, whose mutations tend to be more evenly distributed

(Supplementary Fig. S1) along the protein sequence. This is

probably because Act driver genes receive mutations that po-

tentiate their function, e.g. by constitutively activating a regula-

tory site, or cause a switch of the protein function. To achieve

such behavior through mutations, these must occur at specific

places in the sequence, which results in fewer numbers of recur-

rent sites (clusters) than in CGC Rec genes (Supplementary Fig.

S1). We elaborated a series of features based on impact, fre-

quency and clustering of missense mutations. Many did not

show any power of discrimination of CGC Rec and Dom. The

features that perform reasonably well are based on the recurrence

of missense mutations. The best-performing feature in this group

compares the ratio of missense mutations with total number of

PAMs within OncodriveCLUST peaks (MUTS_

clusters_miss_VS_PAM; Fig. 1). Another feature in this group

that performs relatively well is the ratio recurrent missense mu-

tations (MUTS_missense_rec_freq).
All features in Group ii are designed to capture the known fact

that LoF genes have a tendency to be deleted, whereas Act genes

are more frequently affected by amplifications (Davoli et al.,

2013). In this case, we found that the ratio of amplifications to

deletions across all tumors in the cohort achieved the best sep-

aration of the two groups of genes.

3.2 Developing a classifier to differentiate between LoF

drivers and Act drivers

Thereafter, we created a feature set that contained non-redun-

dant best-performing features from Groups i, ii and iv, disregard-

ing those of Group iii because of their poor performance

resulting in three features: MUTS_trunc_mutfreq,

MUTS_clusters_miss_VS_PAM and CNA_cbs_logratio_GvL.

We tested six machine learning approaches trained with the

trimmed version of the CGC (see Section 2). For each gene,

the classifiers produced a score of the likelihood that it belonged

to the CGC Dom class. A score of value 0 means that the clas-

sifier regards the gene as an LoF beyond all doubt, whereas a

score of value 1 means it exactly resembles the model of an Act

gene. We assessed the performance of each classifier through the

ACC, the MCC and the COV of the driver set (all listed in

Supplementary Table S1). ACC and MCC validate the perform-

ance of the classifiers on the 76 CGC driver genes by means of a

leave-one-out cross-validation approach. We computed these

values for different classification probabilities thresholds to

select the cutoff that maximize the ACC and MCC, even at the

cost of reducing the COV. Then, we used these sets of values to

choose the classifier with the best performance and a reasonable

COV. Overall, randomForest produced the best results

Fig. 1. A) The list of features ordered by Mann–Whitney–Wilcoxon rank

sum test P-value significance. Features dependant on truncating muta-

tions are the best discriminators for LoF and Act genes. Features

described in (B) are marked with asterisk. A detailed explanation of

each feature can be found in Table 1. (B) Box plots comparing the dis-

tribution of the three non-redundant top-ranking features that have been

selected for the OncodriveROLE classifier in CGC genes annotated as

Dom and Rec
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(Supplementary Table S1). We also trained classifiers with dif-

ferent combinations of the three selected features and included

MUTS_missense_rec_freq feature for testing purposes. We

found that multiple combinations of these features perform simi-

larly (Supplementary Table S2 and Supplemental Text). We

decided to use the randomForest classifier trained with the

three non-redundant features shown in Figure 1B to create

OncodriveROLE, under the rationale that features representing

the three independent groups could provide more information to

classify novel drivers. The method shows an ACC of 0.94, MCC

of 0.84 and COV of 88% in the leave-one-out cross-validation.

We further tested OncodriveROLE in an independent set of

tumor suppressor genes (Zhao et al., 2013) that are not present

in the CGC. OncodriveROLE accurately classified 91.7% of

those genes as LoF drivers (Supplemental Text).

3.3 Applying OncodriveROLE to lists of cancer

driver genes

We identified two recent studies in which identified novel cancer

driver genes could be classified with OncodriveROLE. The first

study detected cancer drivers by integrating four methods that

assess different signals of positive selection across samples of the

pan-cancer 12 dataset. This analysis resulted in 291 high-confi-

dence cancer drivers (Tamborero et al., 2013b). In the second

study, MutsigCV was applied in a cohort of about 5000 tumor

samples to obtain a cancer driver list composed of 260 genes

(Lawrence et al., 2013, 2014). The two lists will be referred to

as HCD and Cancer5000 further on. Even though both lists have

similar sizes, their overlap is only 50%, making the two gene sets

different as can be seen in Figure 2. As for the training set, we

applied the one-signal filter to only predict the role of genes

possibly acting as drivers in the dataset under evaluation result-

ing in 200 HCD and 144 Cancer5000 genes.
The overall distribution of probabilities of these two groups of

genes is roughly bimodal in both driver lists, which allowed us to

choose these symmetric cutoff values (Fig. 2 and Supplementary

Fig. S2) such as 0.3 and 0.7 for LoF and Act genes, respectively.

Other cutoffs may be used for the datasets under analysis depend-

ing on how strict a classification the user wants for their list of

cancer drivers. Interestingly, we classified three CGC Dom genes

as LoF (‘Dom?’ in Fig. 2). The genes in question are NOTCH1,

NPM1 and CEBPA. All three have been implicated in leukemia

(Cancer Genome Atlas Research Network, 2013; Liu et al., 2013;

Ohlsson et al., 2014) and both NOTCH1 and NPM1 are anno-

tated in the CGC as partners of translocation events in leukemia.

NOTCH1 has been described as an oncogene as well as a tumor

suppressor. Its actual rolemay dependon the tumor type (Licciulli

et al., 2013; Liu et al., 2013; Vogelstein et al., 2013). Equally,

CEBPAandNPM1have been characterized as tumor suppressors

in the literature (Halmos et al., 2002; Sportoletti et al., 2008). We

cannot be certain of the functional impact of the translocation on

the function of the product of the fused gene. It may associate to a

new promoter and change its expression accordingly, or it may be

truncated as a result of the fusion and thus function as an LoF.

For this reason, we had previously excluded all CGC Dom genes

that are solely associated to translocation events in the Census.

The plot inFigure 2 shows those genes labeled asDomT, and their

classification shows no clear resemblance to LoF or Act, which
supports our decision to remove them from the training set.

3.4 Comparison of OncodriveROLE with other

bioinformatics approaches

The 20-20 rule was created to identify mutational driver genes,
both oncogenes and tumor suppressor genes (Vogelstein et al.,
2013). Therefore, it differs from OncodriveROLE, designed to

classify previously identified driver genes into their most probable
roles. The simple 20-20 rule reaches a high ACC (Table 2) when

applied to the trimmed CGC list. However, it is unable to reach a
decision on many drivers where none of its two estimators (see
Section 2) surpasses the threshold of 20% (Tables 2 and 3).

We also compared the results obtained by the approach de-
signed by Davoli et al. (2013), implemented in a classifier named
Tuson. As with the 20-20 rule, Tuson was created to distinguish

oncogenes and tumor suppressor genes from genes with passen-
ger mutations, instead of classifying previously identified cancer
drivers as is the case of OncodriveROLE. We found

OncodriveROLE slightly outperforms Tuson in ACC and
MCC on the trimmed CGC dataset. Note that Tuson method
was trained with CGC genes, and the performance reported in

Table 2 does not remove genes in the training set, as it is done in
the leave-one-out cross-validation of OncodriveROLE. We can
conclude that well-known cancer genes are classified with a high

Fig. 2. Classification of 200 (HCD list) and 144 (Cancer5000 list) cancer

driver genes into the classes Act and LoF. The training set of

OncodriveROLE constitutes of all ‘Dom’ and ‘Rec’ labeled data points.

‘Dom?’ are CGC-annotated dominant genes excluded from the training

set because of strong resemblance to the ‘Rec’ genes and previous litera-

ture evidence of this role. ‘DomT’ genes are CGC-annotated dominant

genes only citing translocation events as prove and therefore not included

in the training set. All ‘-’ labeled data points are driver genes not anno-

tated in CGC, and whose prediction was the main goal of the study. The

thresholds are drawn at 0.3 (as top limit of the LoF class) and 0.7 (as

bottom limit of the Act class). Working with classification score thresh-

olds of 0.3 (as top limit of the LoF class) and 0.7 (as bottom limit of the

Act class), we classified 109 genes as LoF, 76 as Activating and left 15

genes as unclassified in the HCD list; meanwhile, we classified 97 genes as

LoF, 43 as Activating and left 4 genes as unclassified (Fig. 2) in the

Cancer5000 list. Genes for which we have observed 512 mutations

were directly classified as ‘No class’ and assigned NA values in the clas-

sifications results (see Supplementary Tables S4 and S6)
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ACC with all approaches. The main difference between the three

approaches lies in the COV that can be reached when predicting

the role of novel cancer drivers in tumorigenesis.

4 DISCUSSION

Two main rationales to detect LoF and Act driver genes acting

across tumor samples exist. The first approach consists in dir-

ectly detecting genes that exhibit known alterations patterns cor-

responding to these two classes from mutations and CNA data.

This strategy was first conceptualized by Vogelstein et al. (2013)

to be implemented later on as a machine learning algorithm by

Davoli et al. (2013). In the second approach, first driver genes

acting in tumor samples are detected by combining the signals of

positive selection they exhibit (Lawrence et al., 2014; Tamborero

et al., 2013b). Then, in a second step, these drivers are classified

into the two aforementioned classes exploiting similar alteration

patterns as in the first approach. This second two-step approach

has two main advantages. First, genes that do not exhibit clear

alterations pattern that define them as LoF or Act can still be

detected as drivers if they show clear signals of positive selection.

Second, the combination of several signals controls the ratio of

false-positive drivers identified (Tamborero et al., 2013b), which

is unattainable to the direct classification of genes.

This is the reason why we have decided to develop

OncodriveROLE, a machine learning classifier, which takes a

list of pre-selected driver genes and sorts them according to

their mode of action. We first carefully compared and selected

a set of features that best captures the differences of alterations

patterns of these two groups of drivers. We then used those fea-

tures to train the classifier, on a carefully trimmed subset of the

CGC genes. When applied to two recent lists of drivers, we found

that, even under strict classification conditions, OncodriveROLE

was able to classify more drivers than the 20-20 rule and the

Tuson machine learning algorithm.

The OncodriveROLE validation procedure identified several

likely misclassified drivers in the CGC. The most salient ex-

amples of these are probably some genes that drive hematopoi-

etic malignancies upon translocation and fusion with other

genomic regions, all classified as Dom in the GCG. However,

when analyzed using mutational and CNAs data from the pan-

cancer 17 dataset, some of them appear as clear LoF drivers. For

instance, OncodriveROLE assigns MLL, RUNX1 and SUZ12

classification probabilities under 0.003 (see Supplementary

Tables S3–S6 for feature and classification values). These genes

could be Act drivers upon fusion to other genes, but LoF upon

mutations.

Even though OncodriveROLE is able to classify most of the

genes in the two drivers lists as LoF or Act, it still leaves few of

them unclassified. Some of these correspond to lowly recurrent

drivers whose mutational features are not correctly computed

because of the scarcity of their alterations. Sequencing more

tumors will certainly improve their classification. Others may

not have a clear enough pattern to be classified in one of the

two classes, as they could be exhibiting different roles in different

contexts. In some rare cases, the method misclassifies known

cancer genes. For example, KEAP1 is classified as an Act

driver, although it is reported to lose its function upon mutation

(Hayes and McMahon, 2009; Shibata et al., 2008). A close look

at its mutational pattern reveals missense mutations dominate

and accumulate in certain regions of the protein. As member

of a ubiquitin-mediated proteolysis complex, the function of

KEAP1 is probably essential to the cell, and its impairment is

likely lethal. Therefore, few truncating mutations may appear in

KEAP1, and it is ultimately misclassified by OncodriveROLE.

Future finer measurements of the impact of missense mutations

may help correcting this problem.
Summing up, in this article, we have described the develop-

ment and validation of OncodriveROLE, an approach to differ-

entiate between LoF and Act driver genes. The OncodriveROLE

classifier is freely available at http://bg.upf.edu/oncodrive-role as

an R object that researchers may use to classify the drivers they

have detected across a cohort of tumor samples. At the same

URL, the pre-computed TCGA pan-cancer 17 mutational and

copy number features used for the classification are available for

download.
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Table 3. List of approaches and their performance on the 290 drivers

from the HCD list and 260 drivers from the Cancer5000 list

Method Act/

Oncogene

LoF/

Tumour

suppressor

Unclassified Coverage

(%)

HCD

Oncodrive

ROLE 0.3/0.7

76 109 15 92

Oncodrive

ROLE 0.2/0.8

58 96 46 77

20-20 rule 23 96 81 60

Tuson 44 92 64 68

Cancer5000

Oncodrive

ROLE 0.3/0.7

43 97 4 97

Oncodrive

ROLE 0.2/0.8

40 91 13 91

20-20 rule 18 90 36 75

Tuson 32 90 22 85

Table 2. List of approaches and their performance on trimmed CGC

dataset

Method ACC MCC COV (%)

OncodriveROLEa 0.925 0.848 83

20-20 rule 0.895 0.769 75

Tuson 0.914 0.817 92

aResults of leave-one-out cross-validation.
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