
Vol. 31 no. 2 2015, pages 216–224
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu586

Gene expression Advance Access publication September 18, 2014

Translating bioinformatics in oncology: guilt-by-profiling analysis

and identification of KIF18B and CDCA3 as novel driver genes in

carcinogenesis
Timo Itzel1,y, Peter Scholz2,y, Thorsten Maass1, Markus Krupp2, Jens U. Marquardt2,
Susanne Strand2, Diana Becker2, Frank Staib2, Harald Binder3, Stephanie Roessler4,
Xin Wei Wang5, Snorri Thorgeirsson5, Martina M €uller1, Peter R. Galle2 and Andreas Teufel1,*
1Department of Medicine I, University of Regensburg, 93053, Regensburg, 2Department of Medicine I, 3Institute of
Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University,
55131, Mainz, 4Department of Pathology, University of Heidelberg, 69120, Germany and 5Laboratory of Experimental
Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD, USA

Associate Editor: Inanc Birol

ABSTRACT

Motivation: Co-regulated genes are not identified in traditional micro-

array analyses, but may theoretically be closely functionally linked

[guilt-by-association (GBA), guilt-by-profiling]. Thus, bioinformatics

procedures for guilt-by-profiling/association analysis have yet to be

applied to large-scale cancer biology.

We analyzed 2158 full cancer transcriptomes from 163 diverse cancer

entities in regard of their similarity of gene expression, using Pearson’s

correlation coefficient (CC). Subsequently, 428 highly co-regulated

genes (jCCj �0.8) were clustered unsupervised to obtain small

co-regulated networks. A major subnetwork containing 61 closely

co-regulated genes showed highly significant enrichment of cancer

bio-functions. All genes except kinesin family member 18B (KIF18B)

and cell division cycle associated 3 (CDCA3) were of confirmed rele-

vance for tumor biology. Therefore, we independently analyzed their

differential regulation in multiple tumors and found severe deregulation

in liver, breast, lung, ovarian and kidney cancers, thus proving our

GBA hypothesis. Overexpression of KIF18B and CDCA3 in hepatoma

cells and subsequent microarray analysis revealed significant deregu-

lation of central cell cycle regulatory genes. Consistently, RT-PCR and

proliferation assay confirmed the role of both genes in cell cycle

progression.

Finally, the prognostic significance of the identified KIF18B- and

CDCA3-dependent predictors (P= 0.01, P=0.04) was demonstrated

in three independent HCC cohorts and several other tumors.

In summary, we proved the efficacy of large-scale guilt-by-profiling/

association strategies in oncology. We identified two novel oncogenes

and functionally characterized them. The strong prognostic import-

ance of downstream predictors for HCC and many other tumors

indicates the clinical relevance of our findings.
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1 INTRODUCTION

Cancer is one of the leading causes of death (Jemal et al., 2009).

Despite evident improvements in diagnostic procedures and the

development of novel and effective therapies, the prognosis of

disease remains dismal for many patients. A thorough under-

standing of the molecular basis of cancer development is critical

to improve therapeutic options for a variety of cancers (Baehner

et al., 2011). However, the identification of genes causally asso-

ciated with complex diseases such as cancer remains challenging

and therefore constitutes a major barrier in advancing our lim-

ited mechanistic understanding of the disease (Ioannidis, 2010).

Simultaneously, increasing awareness of the fact that high-

throughput gene expression analysis may reveal valuable insights

into cancer biology led to the establishment of a variety of cancer

microarray datasets and large microarray dataset repositories

(Barrett et al., 2013; Davis et al., 2007; Parkinson et al., 2011;

Sherlock et al., 2001). However, once published, these datasets

are most often neglected as regards to further analysis. In fact,

meta-analyses of this vast body of data are rarely attempted

(Cahanm et al., 2007; Krupp et al., 2011). The reasons are mani-

fold, ranging from the difficulty of integrating various technical

platforms to the absence of bioinformatics knowledge on the

part of primarily molecular oriented scientists, and the need for

advanced statistics (Ioannidis, 2010). Finally, these datasets

could be subject to alternative analysis strategies to obtain add-

itional information not yielded by ‘standard’ analysis protocols.

The concept of transferring gene function annotation from one

gene to another based on the profile of their characteristics

[‘guilt-by-profiling’, guilt-by-association (GBA)] has been fre-

quently described. New biological relationships have been suc-

cessfully identified in GBA studies, including correlated gene

expression (Wu et al., 2002), correlated phylogenetic profiles

(Date et al., 2003) and membership within gene expression clus-

ters (Hughes et al., 2000; Stolovitzky 2003).
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Some guilt-by-profiling studies have exploited gene–gene
relationships by transforming them into gene functional charac-

teristics. This occurs when integrating gene expression profiling
or functional annotations of the respective genes (Wu et al.,

2002). Despite such proven success, no attempts have been
made to include samples from multiple tumor entities or samples

of both types of inference. The benefits of such a large-scale
GBA approach are obvious because genes closely regulated

across42000 samples and various tumor entities may be active
in a highly robust carcinogenic network. We therefore hypothe-

sized that integrating multiple sources of biological information,
such as expression profiling and functional annotation over

thousands of tumor samples and entities, may provide novel in-
sights into key regulatory changes in cancer development and

help to identify highly causative genes.
Using this approach and proving its feasibility, we validated

the use of bioinformatics GBA strategies in large-scale molecular
oncology, identified two novel oncogenes, demonstrated their

deregulation in several tumors, functionally characterized the
novel oncogenes, identified corresponding downstream targets

and showed the prognostic relevance of downstream predictors
for hepatocellular carcinoma (HCC) as well as many other

tumors (Fig. 1).

2 METHODS

2.1 Bioinformatics data analysis

The ‘GSE2109’ dataset was obtained from NCBI’s Gene Expression

Omnibus 39 via the Bioconductor package ‘GEOquery’ 40. Further

analysis was performed using R (http://r-project.org). According to

the experimental description, signal values of the probe set were

summarized using the Microarray Suite 5.0 (MAS5) and normalized.

After downloading and combining the data into a single expression set,

the expression data were transformed for each array via the Z-score

(Cheadle et al., 2003). Gene-centered information was obtained by

summarizing and averaging the expressions of all gene-specific spots

per array as described by the annotation GPL570 and documented

in the Gene Expression Omnibus. Highly correlated gene expressions

were detected by Pearson’s correlation coefficient (CC). Genes with

a CC of jCCj40.8 were used for further analysis. For hierarchical clus-

tering, distances between genes within the reduced dataset were calculated

with Pearson’s CC and transformed through CC=1– jCCj, to be used

for hierarchical clustering. Complete clustering was applied to trans-

formed distances. To estimate the ideal number of clusters, the KL

index and the C index (Charrad et al., 2010) were applied to the clustering

result.

2.2 Analysis of gene expression correlation

The CC is a measure of the linear interdependence of the characteristics.

We used Pearson’s CC to calculate correlating gene expression, which

ranged between –1 and 1. Analysis of CC was performed in C++ be-

cause of the enormous quantity of data, and for parallelization by

Pthreads, which significantly accelerated the analysis. An optimal

number of subclusters were identified using the C and KL indices

(Charrad et al., 2010).

2.3 Analysis of robustness of co-regulated genetic

subclusters

Main data were reduced to the specific tissues of interest (liver, colon and

breast). Robustness was calculated by applying the methods described

above to the selected tissue-specific subsets. Genes within cluster #4

in the main data analysis were subsequently mapped to the novel

tissue-specific clusters and analyzed for overlapping genes, genes with

changing associations and genes not being co-regulated40.8 in specific

tissue.

2.4 Cell lines and vectors

The target gene kinesin family member 18B (KIF18B) and cell division

cycle associated 3 (CDCA3) sequences were obtained from the

NCBIGene. The annotated sequences have been cloned in a PUC57

vector. For overexpression in the mammalian cell line, a PCI vector

carrying a cytomegalie virus (CMV) promoter was used (Promega).

HUH7 cells were cultivated in advanced Dulbecco’s modified Eagle

medium (DMEM). The cells were seeded into six-well plates at a density

of 1 million cells per six-well plate, 15 h before transfection. Transfection

was performed using Lipofectamine LTX plus (Invitrogen) in Opti-MEM

medium. After 6 h of incubation, the medium was changed to advanced

DMEM, and cells were cultivated for 24h at 37�C and 5% CO2. Cell

harvesting and RNA isolation were performed using TRI reagent (Sigma-

Aldrich).

2.5 Microarray analysis

The entire genome array analysis was performed on an agilent human

whole-genome array chip at the Institute of Molecular Biology

(University of Mainz). All samples were analyzed in triplets. The R-ver-

sion 2.13.1 and the extension array QualityMetrics 3.8.0 were used to

process the results. Ingenuity and Prism (Graphpad) were the basis of

further analyses for change of expression, networking and survival

analysis.

2.6 qPCR Analysis

For qPCR on the targets found by bioinformatics, a two-step strategy

was selected. Reverse transcription was performed with the RevertAid H

Minus First Strand cDNA Synthesis Kit (Fermentas) using an oligo-dT-

primer. Quantitative analysis itself was done with QuantiTect Primer

Assays (Quiagen) in a LightCycler LC480 (Roche). Three biological sam-

ples were run in triplicate and quantified using a comparative cycle

threshold. Further evaluation and t-testing were performed with MS

Excel 2010.

2.7 Colony-forming assay

Proliferation of the cells was examined with the colony-forming

assay. Transfected cells and controls were shown at densities of 5000

and 10000 cells per well. Cells were grown for 1 week, changing media

every second day. Colonies were then stained with crystal violet for

analysis.

2.8 Impact of CDCA3 and KIF18B target gene

expression for survival of patients with HCC;

predictor development

To investigate the prognostic relevance of CDCA3- and KIF 18B-

dependent target genes in human HCC, we analyzed a dataset containing

53 human genome-wide HCC microarrays (Andersen et al., 2009) using

BRB array tools (http://linus.nci.nih.gov/BRB-ArrayTools.html; version

3.8.0). All data were subjected to log2 transformation. After normaliza-

tion using the median over the entire array, all genes with a percentage of

missing data420% were excluded. The remaining genes were filtered for

either the CDCA3 or the KIF18B target gene list. Unsupervised hierarch-

ical clustering using Euclidean distance and average linkage were used to

split the human dataset into two subgroups: A and B (cluster 3; Eisen

et al., 1998). For comparing the difference in survival between the two
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subgroups, we performed Kaplan–Meier survival analysis and the log-

rank test using the MedCalc software packages (http://www.medcalc.be).

To develop a CDCA3- and KIF18B-dependent predictor, we calculated

the average expression for each gene in both cluster groups of the

training dataset. As the next step, independent test data from 242 patients

with HCC (Roessler et al., 2010) were correlated to this predictor by

means of Pearson’s correlation. Patients were assigned to one of the

two groups (A or B), depending on the higher correlation value.

Survival for patients in the test data subgroups was again analyzed by

plotting Kaplan–Meier curves (Supplementary Fig. S1).

3 RESULTS

3.1 Bioinformatics co-expression analysis of a large

oncogenetic microarray dataset, meta-analysis of

microarray data and application of a co-regulation

approach to large-scale oncogenetic data

To identify co-regulated genes and networks, we analyzed

expression profiles of 20827 (genome wide) genes over 2158

microarray datasets incorporating 163 diverse tumor entities.

Fig. 1. Schematic summary of bioinformatics analysis, hypothesis generation and validation by molecular biology approaches, demonstrating

the close and continuous interaction between bioinformatics and molecular biology analyses and resulting in a novel approach to profiling high-

throughput oncogenetic data based on their correlation of gene expression. These findings could be successfully transferred to the detection of novel

biomarkers

218

T.Itzel et al.

--
http://www.medcalc.be
&acute;
Kaplan 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu586/-/DC1
,
,
-
,


Using Pearson’s CC of jCCj � 0.8, we identified 428 genes

(2.1%) as being highly co-expressed (Fig. 2D, Supplementary

Fig. S4). Next, we aimed to identify biologically interacting net-

works within this still large number of 428 highly co-regulated

genes. To estimate an optimal cutoff for separating subnetworks

on the basis of the initial unsupervised clustering, we performed

C index and KL index analysis and determined the optimal num-

bers of subclusters. As shown in Figure 2A and B, both algo-

rithms pointed toward good separation of clusters when 74 or 75

subclusters were chosen. For further analysis, we separated the

large unsupervised cluster of 428 genes into 75 subclusters, based

on a Pearson’s coefficient of jCCj � 0.56. On plotting the size

(number of genes) of these subclusters, we identified several

small, but also four larger, subclusters containing �20 genes

(cluster #3, 4, 14 and 16). Cluster #4 was by far the largest

subnetwork, containing 61 genes (Fig. 2D and E).

3.2 Identification of functionally related subnetworks by

means of biological function enrichment analysis

Analyzing the complete cluster of 428 genes that were found to

be highly co-regulated, Ingenuity Pathway Analysis revealed that

the most prominent bio-function was ‘Cancer’ (P-value: 1.74E-

26–8.7E-03, number of genes: 177), thus validating our

approach. In addition, other tumor-related bio-functions such

as ‘Cell Death’ (7.49E-10–9E-03, 101) and ‘Cellular Growth

and Proliferation’ (5.57E-07–9E-03, 121) were identified. Next,

subnetworks with high genetic similarity as demonstrated by un-

supervised clustering were analyzed in respect of their signaling

pathway and biological function enrichment. Among the largest

co-regulated subnetworks was a 61-gene-containing network (#4,

CC: 0.59–0.88) that had mainly genes related to cell cycle regu-

lation and cancer development as determined by PubMatrix

analysis (Becker et al., 2003). Other co-regulated subnetworks

were found to contain enrichment of ribosomal genes (#14, 41

genes, CC: 0.66–0.98); these genes are involved in immunity (#16,

42 genes, CC: 0.56–0.96) and immunological events (Fig. 2D).

3.3 Robustness of co-regulated genetic subclusters

Given our hypothesis that the co-regulated networks functionally

interact and also for the purpose of biological relevance, these

networks should be visible on overall analysis and also stable

within individual tissues. For this reason, we compared their

stability and behavior in HCC (45 samples, 2.1% of the overall

data), breast cancer (353 samples, 16.4%) and colon cancer sam-

ples (289 samples, 13.4%). An overlap of 255 of the 428 genes

was continuously co-regulated in all three tissues. On average,

78.2% of the genes in the four largest subclusters (#4, #16, #3

and #14) were preserved (at least 57.1%). Thus, high coherence

of the cluster function was conserved in several tissues

(Supplementary Fig. S2).

3.4 Advanced functional analysis of a highly conserved

oncogenetic subcluster

Among the different clusters, #4 incorporated genes with high

enrichment of carcinogenic and cell cycle-regulating gene ontol-

ogies. Given the importance of cell cycle regulation for cancer

development, we decided to focus our subsequent analysis on this

cluster. To better understand the detailed molecular mechanism

by which these genes interfere with cell cycle regulation, we eval-

uated the enrichment of canonical pathways among these 61

genes. Top-ranked genetic pathways included the mitotic

roles of polo-like kinase (�2.73E-09), cell cycle: G2/M DNA

damage checkpoint regulation (�4.96E-04) and the role of

CHK protein in cell cycle checkpoint control (�7e-03). The ana-

lysis indicated the major impact of this subnetwork on G2/M

transition and checkpoint kinases (IPA analysis, http://www.in-

genuity.com, Fig. 4).
To obtain a broad overview about the known biomedical

information concerning these 61 genes, we next performed

a text-mining analysis using PubMatrix (Becker et al., 2003).

A search based on the terms ‘cancer’, ‘tumor’, ‘liver’, ‘carcin-

oma’, ‘HCC’ and ‘hepatocellular carcinoma’ revealed that the

majority of genes (94%) had already been described with respect

to (liver) ‘cancer’. This served as the ‘proof of principle’ for our

approach. Two genes had not been previously described with

respect to carcinogenesis: CDCA3 and KIF18B. However, as

CDCA3 and KIF18B were part of this tightly co-regulated

oncogenetic and cell cycle-regulating network, we proposed as

Fig. 2. (A) C index analysis for good separation of clusters, indicating

optimal separation for 74 clusters. (B) KL index analysis for good sep-

aration of clusters, indicating good separation for 75 clusters. (C) Plot of

the number of genes in each of the 75 subclusters. (D) Unsupervised

clustering of all 428 genes with correlation� 0.8 over all 2158 datasets.

(E) Enlargement of subcluster #4 containing 61 single genes
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a guilt-of-association hypothesis that these two genes may be

novel oncogenes essentially linked to carcinogenesis.

3.5 Activation of CDCA3 and KIF18B in multiple tumor

entities

To evaluate the importance of CDCA3 and KIF18B in carcino-

genesis, we next investigated differential gene expression in four

different tumor entities, i.e. breast, lung, ovarian and renal

cancer (n=5, each). Liver cancer expression was further evalu-

ated in a publicly available dataset of 60 patients (Shimokawa

et al., 2010). In all five tumor entities, a highly significant upre-

gulation of both CDCA3 and KIF18 B expression was registered

in comparison with normal tissue.
Specifically, CDCA3 showed on average 227-, 159-, 560- and

16-fold overexpression in breast, lung, ovarian and renal cancer,

respectively, compared with normal tissue. For KIF18B, the gene

showed on average4100-, 22-,4100- and4100-fold overexpres-

sion in breast, lung, ovarian and renal cancer, respectively,

compared with normal tissue. This was particularly because of

low expression in normal tissue (Fig. 3).

Besides, CDCA3 was overexpressed in 59 and KIF18B was

overexpressed in 49 of 60 patients in a Japanese liver cancer

patient cohort with a median 3.59- and 2.34-fold change, respect-

ively (Fig. 3).

3.6 CDCA3- and KIF18B-dependent downstream

signatures identified by microarray analysis further

confirm a role in carcinogenesis

To further confirm the role of CDCA3 and KIF18B as driver

genes in carcinogenesis, we performed microarray analyses

after 24-h overexpression of both genes in HUH7 cells.

Compared with empty expression vector controls (PCI), we

identified 143 genes being differentially regulated by CDCA3

overexpression and 440 genes by KIF18B overexpression.

Functional annotation of CDCA3- and KIF18B-regulated

genes showed significant enrichment of cancer-related genes.

Most downstream target genes showed consistent enrichment

of major oncogenic pathways for both genes (P=9.20E-

06 – 1.01E-02 among CDCA3 target genes, P=5.64E-

05 – 1.09E-02 among KIF18B target genes). In addition, many

of the highest ranked associated network functions (CDCA3:

antigen presentation, cell-to-cell signaling and interaction,

hematological system development and function, cell death, cel-

lular movement and cell cycle; KIF18B: cell death, cellular de-

velopment, hematological system development, cell-to-cell

signaling and interaction, cellular movement and immune cell

trafficking) or molecular and cellular functions (CDCA3: cellu-

lar growth and proliferation P=6.75E-06 – 1.01E-02; KIF18B:

cell death 2.06E-06 – 1.10E-02, cellular development 1.77E-

05 – 1.10E-02 33, cell cycle 4.41E-05 – 1.10E-02 14) further sup-

port key tumorigenic roles of these genes and their associated

molecular signaling pathways (http://www.ingenuity.com).
Together, the enrichment of established cancer-related

signaling pathways and biological functions indicates that

Fig. 4. (A) Interaction network of cell cycle-interfering genes containing

CDCA3 and KIF18B. (B) RT-PCR analysis of major components of this

network after CDCA3 and KIF18B overexpression and empty expression

vector transfection in HUH7 cells. Key factors of cell cycle regulation

were significantly disturbed in terms of expression because of CDCA3

and KIF18B overexpression

Fig. 3. (A) Results of CDCA3 and KIF18B gene expression analysis

from the iCOD liver cancer database, summarizing the number of

patients showing overexpression of CDCA3 or KIF18B (59 or 49, blue

bars) among all investigated patients (60, yellow bar). (B) RT-PCR results

of CDCA3 and KIF18B gene expression in breast, kidney, lung and

ovarian tumors compared with normal tissue. Both genes were highly

overexpressed in all of the diverse cancer tissues
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overexpression of CDCA3 and KIF18B is deeply linked to func-

tional changes in carcinogenesis.

3.7 Cell cycle regulation by CDCA3 or KIF18B

overexpression, RT-PCR validation

As cell cycle regulation is a major hallmark of genes

involved in carcinogenesis, we investigated the impact of

CDCA3 or KIF18B on cell cycle regulation in greater detail

(Fig. 4).

3.8 Cell cycle regulation

The importance of cyclin D1, CDK4 CDK2 and p21/CDKN1A

for G1/S-phase transition is widely accepted (Sherr, 1996).

Disruption of these genes was analyzed. All four genes showed

significant downregulation after CDCA3 overexpression (cyclin

D1: –0.37, P=0.01; CDK4: –0.5, P=0.020; CDK-2: –0.84,

P50.01; p21/CDKNA1: –0.93-fold, P50.01). The residual ac-

tivity of 7% for p21/CDKNA1, clearly shown to act as a tumor

suppressor, may be equated with nearly complete inactivation of

the gene locus. Even greater suppression was observed after

KIF18B overexpression (cyclin D1: –0.53, P=0.01; CDK4:

–0.68, P50.01; CDK2: –0.86, P50.01; p21/CDKNA1: –0.94,

P 50.01). Altogether, the overexpression of CDCA3 or

KIF18B caused considerable disturbance in the gene expression

of G1/S cell cycle stage-regulating genes (Fig. 4). We then looked

for key regulators of G2/M transition (Bucher et al., 2008).

Consistently, on overexpression of CDCA3 the cells responded

with a strong increase in activity of both examined cyclins, cyc-

lins B1 (2.38-fold, P50.01) and B2 (1.78-fold, P=0.03), com-

pared with PCI. Conversely, the activity of the corresponding

cyclin opponent WEE-1 was reduced –0.40-fold (P50.01).

Overexpression of KIF18B exerted an even stronger effect on

the upregulation of cyclins B1 (1.42-fold, P50.01) and B2

(1.54-fold, P50.01). Consistently, WEE-1 expression was

decreased –0.21-fold (P=0.11). However, despite the clear

trend, the latter data failed to achieve statistical significance

(Fig. 5).

3.9 Tumor suppressor and oncogenes

Besides major cell cycle checkpoints, well-established tumor

suppressor genes were significantly downregulated after

CDCA3 and KIF18B expression. TP53 [Lee and Muller, 2010;

–0.34-fold (KIF18B, P=0.11) to –0.43-fold (CDCA3, P50.01)]

and the apoptosis-inducing gene TRAF2 (Takeuchi et al., 1996)

were significantly downregulated [–0.62-fold (CDCA3, P50.01)

to –0.82-fold (KIF18B, P50.01)].

Further, the oncogenes RAN [(Rensen et al., 2008) (2.04-

(CDCA3, P=0.01) to 2.07-fold KIF18B, P=0.01) and

TRIM37 (–0.74-(CDCA3, P50.01) to –0.64-fold KIF18B,

P50.01)] revealed a marked increase in expression on CDCA3

or KIF18B expression. Additionally, SKP-1, an essential com-

ponent of the Skp, Cullin, F-box containing (SCF) complex

complex involved in the degradation of WEE-1, was significantly

overexpressed [1.29- (CDCA3, P50.01) to 1.72-fold (KIF18B,

P50.1) (Jia et al., 2009)].

3.10 Overexpression of CDCA3 and KIF18B leads

to impaired proliferative capacity due to the

disturbance of cell cycle regulation, which is

a major deregulation in cancer

To further characterize the functional consequences associated

with overexpression of CDCA3 and KIF18B in vitro, we assessed

proliferative behavior by colony-forming assay. A massive

increase in proliferation compared with the PCI controls was

observed. Strongest growth was observed in those cells with

excessive CDCA3 activity (number of colonies). Notably, over-

expression of KIF18B not only changed the incidence of colony

formation but also resulted in a morphological change: larger

colonies were found compared with those after CDCA3 over-

expression (Fig. 5A).
Interestingly, the induction of CDCA3 and KIF18B did not

impair the apoptosis response as assessed by fluorescence-acti-

vated cell sorting (FACS), underlining the predominant role of

these genes in cell cycle regulation (Fig. 5B).

3.11 Prognostic relevance of CDCA3 and KIF18 B

downstream target predictors

As the data detailed above pointed toward the major role of

CDCA3 and KIF18B in carcinogenesis in general as well as in

multiple tumor entities, we specifically investigated their prog-

nostic potential in various cancers, especially HCC.
The 143 CDCA3- and 440 KIF18B-dependent genes were

integrated into our 53 HCC patient database (training data,

Andersen et al., 2009). Unsupervised clustering resulted in

two distinct subgroups. On Kaplan–Meier analysis both the

Fig. 5. Overexpression of CDCA3 and KIF18B increased proliferation,

whereas the apoptosis rate remained unchanged. (A) The colony-forming

assay showed significantly more colonies after overexpression of CDCA3

and KIF18B in HUH7 cells compared with the overexpression of the

empty expression vector (PCI) without overexpression of any vector.

(B) Analysis of apoptosis after overexpression of CDCA3 and KIF18B

in HUH7 cells showed no significant difference between the overexpres-

sion of CDCA3 and KIF18B in HUH7 cells and controls
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CDCA3-dependent and the KIF18B predictors demonstrated

statistically significant prognostic relevance in these two patient

groups (P=0.04, P=0.01, Fig. 6). To validate these results, we

further correlated two independent datasets of 242 and 81 HCC

patients to the mean of each gene from the training data by

means of Pearson’s correlation (test data, Fig. 7). Kaplan–

Meier analysis again showed two prognostic subgroups with sig-

nificant differences in survival in both datasets for CDCA3

(P=0.0001, P=0.009). The 242 patient datasets also showed

two prognostic subgroups with significant differences in survival

for the 242 patient cohort (P=0.005) and a trend to differences

in survival for the 81 patient cohort (P=0.11). Early survival

showed highly significant differences for CDCA3 (P=0.0000,

P=0.0001) and KIF18B (P=0.004, P=0.0006) in both

cohorts (Fig. 7).
Finally, we tested our CDCA3 and KIF18B networks for

association with prognosis in a meta-analysis of several other

tumors using the Oncomine database (http://www.oncomine.

org). Besides HCC, these genetic networks were found to be of

prognostic relevance in diverse tumor entities, including breast

and colon cancers (Supplementary Table S3).

4 DISCUSSION

4.1 Bioinformatics combination of guilt-by-profiling

and GBA strategies

The availability of large microarray collections of tumor tissue

without corresponding normal tissue serves as a rich source of

information about carcinogenesis in general, which may not be

achieved by conventional microarray analysis (http://expo.

intgen.org/geo/home.do). To extract the key biological changes

and functions of carcinogenesis, GBA strategies may provide

valuable options for the analysis of data (Lee et al., 2004;

Wolfe et al., 2005). GBA assumes that genes with related

functions tend to share biological features, such as expression

patterns (Oliver, 2000). Generally, on a lower scale, GBA is a

concept used repeatedly in biology on a gene-by-gene basis.
Gene functions are frequently estimated and discovered using

the analogy of other functionally well-characterized genes. On a

genome-wide scale, several bioinformatics publications reported

on efforts to improve the computational aspects of GBA

approaches for predicting gene function (Hishigaki et al., 2001;

Pena-Castillo et al., 2008; Tsuda et al., 2005; Wolfe et al., 2005).

However, the number of biologically proven predictions based

on high-throughput approaches is still small, and the promise

of GBA as a general unbiased method for filling in unknown

gene function has not come to fruition. With respect to cancer

biology, only 34 publications are listed in PubMed (Sayers et al.

2012) when searching for ‘guilt by association’ and ‘cancer’.

Furthermore, most of these publications addressed only method-

ical aspects of the procedure.
Applying a combined guilt-by-profiling and GBA bioinfor-

matics strategy, we successfully analyzed the GSE2109 micro-

array repository providing data on 2158 microarray tumor

samples (http://expo.intgen.org/geo/home.do) These data did

not contain any corresponding normal tissue, which may be

one of the major reasons why this dataset was not comprehen-

sively investigated earlier in respect of differential gene expres-

sion or deregulated genetic clusters. However, as these data were

all generated from the same consortium on the same technical

platform, they seem ideal for a large-scale meta-analysis of gene

expression in cancer.

By analyzing genes for co-regulation across a large collection

of tumor samples instead of looking at the differences between

tumor and corresponding normal tissue, we identified highly

Fig. 6. Kaplan–Meier analysis of the prognostic relevance of CDCA3

and KIF18B downstream predictors in a training dataset of 53 patients

with HCC. In all, 143 genes were significantly differentially regulated with

dependence on the overexpression of CDCA3, whereas 440 were depend-

ent on KIF18B overexpression. Unsupervised clustering resulted in two

different prognostic subgroups. Both (A) CDCA3- and (B) KIF18B-

dependent predictors showed a significant difference (P=0.04, 0.01)

Fig. 7. Independent validation of the prognostic relevance of CDCA3

(A and C) and KIF18B (B and D) downstream predictors in HCC.

Unsupervised clustering of two independent cohorts with 242 patients

(A and B) and 81 patients (C and D) with HCC on the basis of these

predictors resulted in two diverse prognostic subgroups
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stable oncogenetic networks. We confirmed these findings

by three different molecular and functional approaches: bioinfor-

matics combination of guilt-by-profiling and GBA strategies,

identification and molecular validation of novel oncogenes, iden-

tification of their downstream functional pathways and

identification of novel signatures of prognostic relevance

in HCC.

Overall, our work demonstrated the potential of integrating

intelligent bioinformatics analyses and sophisticated molecular

analyses as a highly valuable tool to obtain novel insights into

tumor biology, diagnostics and eventually therapy (Fig. 1).
Besides, we were able to successfully validate the high coher-

ence of a key regulatory network in carcinogenesis, not only in

overall analysis but also in individual tissues such as liver, breast

or colon cancer. This was of particular interest because averaging

Pearson’s CC over a large number of arrays and diverse tissues

may be limited by the drawback of the potentially high variabil-

ity of gene expression correlation within these diverse tissues. We

demonstrated two important aspects: given the stability of our

cluster, this network may be regarded as a key regulator in car-

cinogenesis. Second, combining GBA studies with a subsequent

analysis in a search of highly coherent subnetworks may

yield much greater success in translating this sophisticated bio-

informatics strategy into cancer biology and also enhance our

understanding of many other diseases in the future.

4.2 CDCA3 and KIF18B, identified by bioinformatics

GBA profiling, are key regulators of carcinogenesis

by interfering with cell cycle regulation

It has become clear that not all genes differentially expressed in

cancer are truly genes driving the neoplastic process (‘driver’

genes). It is therefore essential to distinguish these genes from

sole bystander genes (‘passenger’ genes). One of the most effect-

ive strategies is to analyze their interference with well-established

molecular changes in cancer biology. We therefore functionally

characterized our genes identified through bioinformatics guilt-

by-profiling. We provide several lines of evidence for the key car-

cinogenic role of these genes in many cancer entities, particularly

with respect to cell cycle regulation.
Loss of cell-cycle checkpoints are a hallmark of human cancer

because they result in permanent genomic alterations, such as

deregulation of oncogenes and tumor suppressor genes (Laiho

et al., 2003). Our data supported the interaction of both genes

with cell cycle checkpoint-regulating genes and a severe disturb-

ance of cell cycle regulation on overexpression of either one

(CDCA3 or KIF18B), ultimately leading to tumor growth

(Figs 5 and 6).
First, our large-scale bioinformatics pathway analysis demon-

strated significant enrichment of cell cycle-coordinating genes

due to overexpression of CDCA3 or KIF18B in the hepatoma

cell line HUH7.
Second, qRT-PCR analysis confirmed the deregulation of

multiple checkpoint kinases and central cell cycle regulation

genes, thus validating the obtained microarray data. B-type cyc-

lins, B1 and B2, essential components of the cell cycle regulatory

machinery and both closely connected to G2/M progression,

were found to be severely deregulated after overexpression of

either CDCA3 or KIF18B. Deregulation of these genes and

G2/M may have serious consequences on the cell, such as the

development of cancer. This is particularly because, during

this phase, cells may arrest transiently to allow for the repair

of cellular damage. G1/S-phase-regulating genes were also

significantly deregulated, further disrupting normal cell cycle

control and enhancing tumor development. P21 deficiency was

repeatedly shown to be closely linked to carcinogenesis (Garcia-

Fernandez et al., 2011; Hawkes et al., 2011). CDK2 inhibition

(by p21) has also been linked to liver cancer development

(Kim et al., 2009). CDK4 complexes with cyclin D1 are involved

in cell cycle control. Again, this complex may be inhibited by p21

and such deregulation is found in liver cancer (Rivadeneira et al.,

2010). However, these changes may not only occur in liver cancer

but also in many other tumors.

Third, these data were independently validated by performing

an in vitro functional colony-forming assay, which also

showed significantly greater development of colonies after over-

expression of either CDCA3 or KIF18B.
Taken together, these data concerning interference with

cell cycle regulation clearly provide a functional explanation

for the driving role of carcinogenesis in several cancer types.

4.3 Prognostic relevance of KIF18B and CDCA3

target gene signatures

Gene expression signatures constitute a powerful achievement

in the development of novel diagnostic tools, such as accurate

and unbiased identification of prognostic subclasses and new

cellular targets in liver cancer. The signatures must be robust

to be useful in clinical therapeutic algorithms. However, the ma-

jority of the reported signatures were not confirmed in further

independent datasets (Marquardt et al., 2012; Teufel et al., 2012).

To demonstrate the predictive strength of our CDCA3 and

KIF18B downstream predictors, we evaluated two additional

independent datasets derived from 242 and 81 patients

with HCC, and were able to prove their prognostic role in

these independent test data (Figs 6 and 7).
Furthermore, as we had originally identified the two

novel oncogenes and downstream signatures using a tumor-

entity-independent/superordinate approach, we further validated

our dependent signatures in several other cancer tissues, such

as breast and colon cancer. Given the vigor of predictive signifi-

cance in multiple tumors, we believe that this signature is robust

in respect of essential regulation for HCC as well as cancer in

general.

5 CONCLUSION

Bioinformatics integration of oncogenetic microarray meta-

analysis, guilt-by-profiling and GBA strategies are a suitable

approach for the identification of novel carcinogenic networks

and oncogenes. Using this approach, we identified two novel

oncogenes (CDCA3 and KIF18B), demonstrated their deregula-

tion in multiple tumors, functionally characterized the novel

oncogenes, identified corresponding downstream targets and

showed the robust prognostic relevance of these downstream

predictors for HCC as well as several other tumors.
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