
Vol. 31 no. 2 2015, pages 287–289
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu632

Data and text mining Advance Access publication September 30, 2014

KDDN: an open-source Cytoscape app for constructing

differential dependency networks with significant rewiring
Ye Tian1, Bai Zhang2, Eric P. Hoffman3, Robert Clarke4, Zhen Zhang2, Ie-Ming Shih2,
Jianhua Xuan1, David M. Herrington5 and Yue Wang1,*
1Department of Electrical & Computer Engineering, Virginia Tech, Arlington, VA 22203, 2Departments of Pathology and
Oncology, Johns Hopkins University, Baltimore, MD 21231, 3Research Center for Genetic Medicine, Children’s National
Medical Center, Washington, DC 20010, 4Lombardi Comprehensive Cancer Center, Georgetown University,
Washington, DC 20057 and 5Department of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA

Associate Editor: Jonathan Wren

ABSTRACT

Summary: We have developed an integrated molecular network learn-

ing method, within a well-grounded mathematical framework, to con-

struct differential dependency networks with significant rewiring. This

knowledge-fused differential dependency networks (KDDN) method,

implemented as a Java Cytoscape app, can be used to optimally

integrate prior biological knowledge with measured data to simultan-

eously construct both common and differential networks, to quantita-

tively assign model parameters and significant rewiring p-values and

to provide user-friendly graphical results. The KDDN algorithm is

computationally efficient and provides users with parallel computing

capability using ubiquitous multi-core machines. We demonstrate the

performance of KDDN on various simulations and real gene expres-

sion datasets, and further compare the results with those obtained by

the most relevant peer methods. The acquired biologically plausible

results provide new insights into network rewiring as a mechanistic

principle and illustrate KDDN’s ability to detect them efficiently and

correctly. Although the principal application here involves microarray

gene expressions, our methodology can be readily applied to other

types of quantitative molecular profiling data.

Availability: Source code and compiled package are freely available

for download at http://apps.cytoscape.org/apps/kddn

Contact: yuewang@vt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Modeling biological networks is an important tool in systems

biology to study the orchestrated activities of gene products in

cells (Mitra et al., 2013). Significant rewiring of these networks

provides a unique perspective on phenotypic transitions that can

occur in biological systems. Thus, instead of asking ‘which genes

are differentially expressed’, a more interesting question is ‘which

genes are differentially connected?’ (Hudson et al., 2012; Mitra

et al., 2013). To systematically characterize selectively activated

or deactivated regulatory components and mechanisms, the

modeling tools must effectively distinguish significant rewiring

from random background fluctuations. Although specific biolo-

gical networks cannot be constructed by the existing knowledge

alone, novel incorporation of prior knowledge into data-driven

approaches can improve the robustness and biological relevance

of network inference.
Differential dependency network (Zhang et al., 2009; Zhang

and Wang, 2010) and its knowledge-fused extension (Tian et al.,

2011, 2014) KDDN have been developed to infer biological net-

works with significant rewiring by integrating experimental data

and biological knowledge. The unique and attractive features of

the KDDN software tool are as follows: (i) it is easy to use with a

user-friendly graphic user interface (GUI) and cutting-edge

performance; (ii) both conserved and differential biological

networks can be inferred via efficient closed-form numerical

solutions; (iii) model parameters are determined statistically

aligned with the expected performance; (iv) prior knowledge

(condition specific or non-specific) is incorporated for inferring

dependency networks under different conditions; and (v) statis-

tical significance on the differential connections and the type I

error rate are rigorously assessed.
The KDDN Cytoscape 3.x app adapts and extends recent

KDDN algorithms in the literature (Tian, et al., 2011, 2014;

Zhang et al., 2009; Zhang and Wang, 2010) (Fig. 1). Via a

user-friendly GUI, users can easily install KDDN software and

perform network analysis by just a few clicks. KDDN software

has been tested thoroughly on both synthetic and real gene

expression data, and has been successfully applied to a wide

range of research projects, including yeast oxidative stress

response, breast cancer recurrence, muscular dystrophy and

estrogen exposures. Helpful tips for users to use the software

in an efficient manner yet with fully informed limitations are

provided in Supplementary Information.

2 DESCRIPTION

2.1 Methods and software

KDDN algorithm jointly learns the conserved biological

network and statistically significant rewiring across different

conditions. Condition-specific data and prior knowledge are*To whom correspondence should be addressed.
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quantitatively fused via an extended Lasso model with ‘-1 reg-

ularized convex optimization formulation (Tian et al., 2014).

Based on the unique nature of the problem, we derive an efficient

closed-form solution for the embedded subproblem solved by the

block-wise coordinate descent algorithm. We conduct the

computational complexity analysis on the KDDN algorithm

(Supplementary Information). As existing knowledge is often

non-specific or imperfect, KDDN uses a ‘minimax’ strategy to

maximize the benefit of prior knowledge while confining its nega-

tive impact under the worst-case scenario. Furthermore, KDDN

matches the values of model parameters to the expected false-

positive rates on network edges at a specified significance level,

and assesses edge-specific P-values on each of the differential

connections (Tian et al., 2014).
KDDN is implemented as an open-source cross-platform

Cytoscape 3.x app with parallel computing capability in Java.

The control panel will guide users to navigate through the

experiment settings that allow flexible configuration of the ana-

lytic tasks. KDDN software takes the quantitative expression

values of relevant genes/proteins as input, and incorporates the

prior knowledge applicable to either or both conditions (e.g.

KGML files downloaded from KEGG pathway Web site can

be directly imported as prior knowledge). In addition to inferring

common and/or significant rewiring with edge-specific P-values,

conventional differential analysis is simultaneously performed

allowing users to compare expression fold changes and network

rewiring side by side. The constructed networks are visualized

seamlessly in Cytoscape, and detailed numerical results together

with model parameters are presented in dedicated panels (Fig. 2).

All experimental settings and results can be conveniently

exported for further analysis.

2.2 Case study

We applied KDDN to analyze the network rewiring in budding

yeast Saccharomyces cerevisiae in response to oxidative stress,

focused on cell cycle-related genes. Integrating the prior biolo-

gical knowledge in the KEGG yeast pathway and gene expres-

sion data (GSE7645), the significant differential networks

constructed by KDDN are given in Figure 2, where red edges

indicate the connections existing under control and green edges

indicate the connections created under stress, exclusively.
Oxidative stress is a harmful condition in cell, due to the fail-

ure of the antioxidant defense system to effectively remove reac-

tive oxygen molecules and other oxidants (Lee et al., 2011). The

result shows that Yap1, Rho1 and Msn4 are among differential

hubs and at the center of the network response to oxidative

stress; they are activated under oxidative stress and many con-

nections surrounding them are created (green edges). Yap1 is a

major transcription factor that responds to oxidative stress;

Msn4 is considered as a key responder to environmental stresses,

including oxidative stress; Rho1 is known to resist oxidative

damage and facilitate cell survival; Ctt1 acts as an antioxidant,

and it coordinates with Yap1 to protect cells from oxidative

stress. The stress-induced interaction between Hog1 and Fus1,

detected by KDDN, is also observed in an earlier study. The

biologically plausible results suggest not only the network rewir-

ing as a mechanistic principle in determining phenotypes but also

KDDN’s ability to detect them efficiently and correctly.
Detailed descriptions of method, software and more case stu-

dies are included in the Supplementary Information.

3 DISCUSSION

The KDDN Cytoscape app presents an integrated software tool

to construct biological networks and detect significant rewiring

across different conditions. Supported by a well-grounded math-

ematical framework, KDDN integrates the abundant biological

knowledge and condition-specific experimental data to depict the

overall dependency networks and their dynamics. Tested on both

simulations and real gene expression data, KDDN outperforms

peer methods (Supplementary Information) and demonstrates

its effectiveness in revealing significant topological changes.

We expect KDDN to be a useful tool for performing

differential network analysis in many biological contexts (Mitra

et al., 2013).
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Fig. 1. Architecture and flowchart of KDDN software

Fig. 2. KDDN software interface allowing for user-computer interaction,

network/differential analysis, and result presentation/export
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