
Genetic and population analysis

minimac2: faster genotype imputation

Christian Fuchsberger1,*, Gonçalo R. Abecasis1,* and David A. Hinds2

1Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA and 223andMe, Inc., Mountain View,

CA, USA

*To whom correspondence should be addressed.

Associate Editor: Jeffrey Barrett

Received on September 16, 2014; revised on October 16, 2014; accepted on October 20, 2014

Abstract

Summary: Genotype imputation is a key step in the analysis of genome-wide association studies.

Upcoming very large reference panels, such as those from The 1000 Genomes Project and the

Haplotype Consortium, will improve imputation quality of rare and less common variants, but will

also increase the computational burden. Here, we demonstrate how the application of software en-

gineering techniques can help to keep imputation broadly accessible. Overall, these improvements

speed up imputation by an order of magnitude compared with our previous implementation.

Availability and implementation: minimac2, including source code, documentation, and examples

is available at http://genome.sph.umich.edu/wiki/Minimac2

Contact: cfuchsb@umich.edu, goncalo@umich.edu

1 Introduction

Genotype imputation is routinely used to increase the power of gen-

ome-wide association studies (GWAS; Howie et al., 2012; Li et al.,

2009; Marchini et al., 2007). The approach works by finding haplo-

type segments that are shared between study individuals, which are

typically genotyped on a commercial array with 300 000–5 000 000

SNPs, and a reference panel of more densely typed individuals, such

as those studied by The 1000 Genomes Project (The 1000 Genomes

Project, 2012). In this way, the approach can accurately assign geno-

types at markers that have not been directly examined, facilitating

comparison of results across samples genotyped using different

marker panels and easing fine-mapping efforts.

To reduce the computational burden of this procedure, we intro-

duced an approach called pre-phasing (Howie et al., 2012). In brief,

this approach works in two steps. First, haplotypes are estimated for

each of the GWAS individuals. Second, the estimated haplotypes are

used for imputation. This two-step approach reduces the computa-

tional cost of imputation in two ways. First, the GWAS samples can

be decomposed into haplotypes once, and these haplotypes can then

be re-used many times. With standard methods (Browning and

Browning, 2009; Li et al., 2009; Marchini et al., 2007) likely haplo-

types for each sample are estimated every time imputation is

repeated with a new or updated reference panel. Second, because we

restrict searches for matching haplotypes to the most likely haplo-

type for each sample (or a small set of likely haplotype

configurations), comparisons between study samples and reference

panels proceed much faster. Previous implementations accounted

for haplotype uncertainty and sought a pair of matching haplotypes

(a process for which computation costs increase quadratically with

sample size).

Ongoing whole-genome sequencing studies will contribute to

reference panels much larger than currently available (Francioli

et al., 2014; Morrison et al., 2013). Based on our computer simula-

tions (Table 1), we expect substantial gains in imputation accuracy

(measured as the r2 between imputed genotypes and the true simu-

lated genotypes) and in association information (which increases

with imputation accuracy) using these panels. This is particularly

pertinent for rare variants for which imputation based on current

panels (which typically have <1000 samples) is relatively poor.

Since the complexity of imputation increases linearly with the

number of markers and individuals in the reference panel, further

improvements in computational efficiency are needed to keep imput-

ation broadly accessible. Here, we describe and evaluate a collection

of improvements that speed up imputation by 10–100-fold while

maintaining the accuracy of our current method.

2 Approach

In this section, we present the software engineering techniques used

to speed up pre-phasing imputation. To validate our improvements,

VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 782

Bioinformatics, 31(5), 2015, 782–784

doi: 10.1093/bioinformatics/btu704

Advance Access Publication Date: 22 October 2014

Applications Note

http://genome.sph.umich.edu/wiki/Minimac2
; Li etal., 2009; Howie etal., 2012
,
-
,
,
,
,
 to
http://www.oxfordjournals.org/

we compare the running times of our well-established pre-phasing

method, minimac (Howie et al., 2012), with its tuned version, mini-

mac2 (Table 2). Compared with Impute2 (Howie et al., 2012) and

Beagle (Browning and Browning, 2009), minimac2 is 8� and

>100�, respectively, faster and requires less memory (1.1 GB com-

pared with 2.4 GB for Impute2 and 10 GB for Beagle, Table 2). To

maximize efficiency of our code, we used vector and matrix oper-

ation functions from the highly optimized OpenBLAS library (http://

www.openblas.net; �30% faster than the standard functions). We

note that, due to overlapping effects, the overall speed-up is lower

than the product of the speed ups measured for each single

optimization.

2.1 Vectorization
The hot spots of many algorithms are loops where the same oper-

ation is applied across different array elements:

for (int i = 0; i <1024; i++)

c[i] = a[i] + b[i];

Vectorization transforms these loops into instructions that work on

multiple data items simultaneously:

for (int i = 0; i <1024; i+ = 4)

c[i:i + 3] = a[i:i + 3] + b[i:i + 3];

Modern central processing units (CPUs) can execute multiple in-

structions in parallel within each core, so that the operation on the

four elements takes roughly as long as the single operation, the vec-

torized loop runs approximately four times faster. All recent CPUs

support vectorization and all major compilers apply this well-

established technique by default. However, this automatic approach

misses many more complicated optimization opportunities. In fact,

we identified three key instances where the compiler did not auto-

matically optimize our code and where manual loop vectorization

resulted in significant speed-ups.

2.2 Data locality
The main bottleneck often is not computation time but rather mem-

ory access delay: CPUs can execute many instructions in the time

needed to fetch a single word from the main memory. To guard

against delays with accesses to main memory, most modern CPUs

use high-speed memory to cache recently accessed elements and, cru-

cially, their neighbors. Organizing matrices and other data struc-

tures so elements that are accessed in close succession are also

located close to each other in memory can thus result in substantial

speed-ups (by increasing the chance that they can be fetched from

the high-speed memory cache). Two other useful techniques are to

group together sections of code that use or modify the same

variables and to shorten the distance between multiple uses of the

same element in loops.

As with vectorization, modern compilers can automatically iden-

tify many opportunities for speed-ups and optimize memory access.

However, automatic strategies fail to recognize more complex

opportunities, which might require the restructuring of several

nested loops, knowledge about the underlying statistics or modifica-

tion of the layout of core data structures. We manually inspected

our code and discovered that, for example, all the accesses to the ref-

erence haplotypes examine one marker at a time across many indi-

viduals, but that our default memory layout resulted in genotypes

for different individuals at the same marker to be stored far apart in

memory. Instead, our default layout placed all genotypes for each in-

dividual together. Reorganizing the haplotype representation alone

led to a three-fold speed-up. Overall, improving data locality in

three instances resulted in a 3.8–12.3-fold speed-up for the single

and quad core minimac2, respectively (Table 2).

2.3 Adaptive precision
Floating point calculations with double precision are slower than

with single precision (Press et al., 2007). Based on our empirical

evaluation, fitting of recombination and error rate parameters is

quite sensitive to precision, but the imputation is not. By switching

imputation to single precision, we obtain essentially identical

imputed genotypes (maximum difference in imputed dosages for

any single individual¼10�3, SD¼10�5) while gaining a 1.5-fold

speed-up.

2.4 Parallel Processing
To take advantage of built-in parallel computing support of modern

multicore CPUs, we parallelized all computationally expensive loops

using OpenMP (http://openmp.org). This is especially attractive,

since after pre-phasing GWAS genotypes, each haplotype can be

imputed separately. We observe that in most environments, four

cores provide the optimal balance between speed-up and paralleliza-

tion overhead.

3 Conclusions

The computational complexity of genotype imputation together

with upcoming very large reference panels could become a major

bottleneck for the next generation of GWAS. The software engin-

eering techniques described in this article helped to speed up

Table 2. Speed-up for imputing 1000 FUSION (Scott et al., 2007)

GWAS samples using The 1000 Genomes Project Phase 1 refer-

ence panel (1092 individuals, 37.4M SNPs) compared with

minimac

Optimization Speed-up compared to minimac

minimac2 minimac2 (four cores)

Data locality 4.5� 13.2�
Vectorization 3.8� 12.3�
Adaptive precision 1.5� 5.8�
Overall 18� 55�

All experiments were run on a server with four 2.4 GHz Intel Xeon, 128 GB

of RAM, gcc 4.7.2, and OpenBLAS 0.2.11. minimac(2) required a maximum of

1.1 GB (2.8 GB using four cores) memory to impute the genome in 5-Mb

chunks (including 0.5 Mb overlaps, total 6 Mb, up to 110 350 variants).

Table 1. Expected imputation accuracy

Reference panel

sample size

Imputation accuracy (mean r2)

MAF <0.1% MAF 0.1–1% MAF >1%

1000 0.41 0.64 0.96

10 000 0.69 0.84 0.98

20 000 0.79 0.89 0.99

Results are based on simulated haplotypes under a coalescent model using

ms (Hudson, 2002) under a model consistent with European haplotype diver-

sity (Plagnol and Wall, 2006), and imputed into GWAS data.

minimac2: faster genotype imputation 783

to
to
http://www.openblas.net
http://www.openblas.net
,
∼
4
central processing units (
)
well
,
3
-fold to
-
-
http://openmp.org
paper

imputation by an order of magnitude and, therefore, will enable in-

vestigators to impute from the upcoming larger panels at no extra

computational cost. As with previous eras of genetic analyses, our

results illustrate the great value of combining excellent algorithms

with underlying improvements in software engineering (Cottingham

et al., 1993; Gudbjartsson et al., 2000; Purcell et al., 2007).

Acknowledgements

We acknowledge M. Zawistowski for assistance with simulations. We thank

the GWAS community for testing the software and providing useful feedback.

Funding

This work was funded by National Institutes of Health research grants (to

G.R.A.).

Conflict of interest: none declared.

References

Browning,B.L. and Browning,S.R. (2009) A unified approach to genotype im-

putation and haplotype phase inference for large data sets of trios and unre-

lated individuals. Am. J. Hum. Genet., 84, 210–223.

Cottingham,R.W. et al. (1993) Faster sequential genetic linkage computations.

Am. J. Hum. Genet., 53, 252–263.

Francioli,L.C. et al. (2014) Whole-genome sequence variation, population

structure and demographic history of the Dutch population. Nat. Genet.,

46, 818–825.

Gudbjartsson,D.F. et al. (2000) Allegro, a new computer program for multi-

point linkage analysis. Nat. Genet., 25, 12–13.

Howie,B. et al. (2012) Fast and accurate genotype imputation in genome-wide

association studies through pre-phasing. Nat. Genet., 44, 955–959.

Hudson,R.R. (2002) Generating samples under a Wright-Fisher neutral model

of genetic variation. Bioinformatics, 18, 337–338.

Li,Y. et al. (2009) Genotype imputation. Annu. Rev. Genom. Hum. Genet.,

10, 387–406.

Marchini,J. et al. (2007) A new multipoint method for genome-wide associ-

ation studies by imputation of genotypes. Nat. Genet., 39, 906–913.

Morrison,A.C. et al. (2013) Whole-genome sequence-based analysis of high-

density lipoprotein cholesterol. Nat. Genet., 45, 899–901.

Plagnol,V. and Wall,J.D. (2006) Possible ancestral structure in human popula-

tions. PLoS Genet., 2, e105.

Press,W. et al. (2007). Numerical Recipes: The Art of Scientific Computing.

Cambridge University Press, New York.

Purcell,S. et al. (2007) PLINK: a toolset for whole-genome association and

population-based linkage analysis. Am. J. Hum. Genet., 81, 559–575.

Scott,L.J. et al. (2007) A genome-wide association study of type 2 diabetes in

Finns detects multiple susceptibility variants. Science, 316, 1341–1345.

The 1000 Genomes Project (2012) An integrated map of genetic variation

from 1,092 human genomes. Nature, 491, 56–65.

784 C.Fuchsberger et al.

	btu704-TF2
	btu704-TF1

