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Abstract

Summary: Current strategies for SNP and INDEL discovery incorporate sequence alignments from

multiple individuals to maximize sensitivity and specificity. It is widely accepted that this approach

also improves structural variant (SV) detection. However, multisample SV analysis has been sty-

mied by the fundamental difficulties of SV calling, e.g. library insert size variability, SV alignment

signal integration and detecting long-range genomic rearrangements involving disjoint loci. Extant

tools suffer from poor scalability, which limits the number of genomes that can be co-analyzed and

complicates analysis workflows. We have developed an approach that enables multisample SV

analysis in hundreds to thousands of human genomes using commodity hardware. Here, we de-

scribe Hydra-Multi and measure its accuracy, speed and scalability using publicly available data-

sets provided by The 1000 Genomes Project and by The Cancer Genome Atlas (TCGA).

Availability and implementation: Hydra-Multi is written in Cþþ and is freely available at https://github.

com/arq5x/Hydra.

Contact: aaronquinlan@gmail.com or ihall@genome.wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We present an extension of Hydra (Quinlan et al., 2010), our struc-

tural variant (SV) discovery software that, like many extant tools,

was designed to detect SV in a single genome using discordant

paired-end alignment signals. Hydra-Multi generalizes the Hydra al-

gorithm to multiple samples/libraries and extends its scalability to

incorporate information from many genomes simultaneously.

Variant discovery from multiple samples has been a staple of SNP

and INDEL discovery (Koboldt et al., 2009; Larson et al., 2011; Lee

et al., 2010; McKenna et al., 2010), and has been shown to provide

substantial improvement in accuracy over the single-genome strat-

egy. Therefore, it is logical to make use of all available data in SV de-

tection, especially due to the ever-increasing number of datasets

from large projects such as The Cancer Genome Atlas (TCGA) and

The 1000 Genomes Project (1KGP). We previously applied

multisample SV discovery in a study of genome instability in

mouse-induced pluripotent stem cell lines (Quinlan et al., 2011).

However, the algorithm employed for that study was limited to a

handful of samples. Hydra-Multi was therefore developed to call SVs

in a large number of ‘tumor-normal’ pairs (Malhotra et al., 2013). In

previous studies, the standard cancer genome workflow consisted of

calling SVs in a tumor and a matched normal and subsequently com-

pared the calls in each sample to find putative somatic mutations. Such

‘tumor-normal’ comparisons are fraught with somatic misclassifica-

tions (i.e. predicting that a variant is somatic when it is actually in the

germline) where evidence of SV is found in the tumor but not the nor-

mal. This problem is exacerbated when shallow coverage is obtained

for normal samples, leading to a greater number of false somatic SV

predictions in the tumor sample. In contrast, directly integrating mul-

tiple datasets can prevent somatic misclassification in cases where the

supporting alignments do not exist in the matched normal but do exist

in the genomes of other normal samples.
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Other algorithms (Handsaker et al., 2011; Hormozdiari et al.,

2011) have employed similar strategies; however, these frameworks

either scale poorly on commodity hardware or simply perform post

hoc genotyping rather than directly combining all data during SV

discovery. Genotyping after discovery can suffer from instances

where ample coverage may not be present, and therefore SV break-

points are missed in the discovery phase.

2 Methods

Hydra-Multi’s read-pair clustering strategy is similar to that of

Hydra and a detailed description of both the workflow

(Supplementary Fig. S1) and algorithm can be found in the

Supplementary Materials. Fundamentally, Hydra-Multi differs from

Hydra by accounting for the intra- and inter-sample differences in

the size and variance of fragments observed among DNA libraries,

thus enabling Hydra-Multi to infer which read-pairs from different

samples corroborate the same SV despite variability in the absolute

mapping distances. The algorithm extracts discordant read-pairs

from each sample in parallel (one process per input bam file) and

then segregates them by the chromosome and alignment orientation

observed on each end. This process isolates the distinct sets of align-

ments that have the potential to support each rearrangement class

(e.g. deletions, inversions, etc.) on a chromosome (or pair of

chromosomes). Each chromosome/orientation set is then sorted by

their left-most chromosomal coordinate using a memory-efficient k-

way merge-sort algorithm. This allows for population-scale SV dis-

covery under the memory constraints of typical commodity comput-

ing hardware. Sorting discordant alignments by chromosome

coordinate allows the discovery algorithm to ‘sweep’ across

chromosomes in search of clusters of discordant alignments that

support a common SV breakpoint. Because discordant alignments

are presegregated by chromosome and orientation pairs, clusters can

be identified in parallel. We use a greedy algorithm to integrate the

supporting alignments into a single breakpoint call. A cluster is ter-

minated by a mapping whose start coordinate is to the ‘right’ of the

current cluster’s rightmost end coordinate; such a mapping cannot

support the same breakpoint as the mappings already in the cluster.

A cluster may also be terminated in regions of aberrantly high read-

depth. These regions typically reflect poorly assembled regions of

the reference genome and can cause numerous false positives and ex-

cessive runtimes. Such loci can be avoided by limiting the number of

discordant alignments that may be attributed to a putative cluster,

as informed by the depth of the input datasets. All alignments from

all samples are examined together and, by tracking the sample or li-

brary from which each supporting alignment originated, the algo-

rithm accounts for the expected variance in fragment size for each

sample when screening for supporting alignments in a given SV clus-

ter. As such, the final output of Hydra-Multi contains the number of

supporting alignments observed in each sample for every SV break-

point call, thereby allowing analyses of the presence of SV break-

points in each sample.

3 Results

3.1 Accuracy
To evaluate the relative accuracy of the predictions made by Hydra-

Multi, we compared it with two widely used SV discovery tools,

GASVPro (Sindi et al., 2009) and DELLY (Rausch et al., 2012). We

chose to compare with these methods because they have been shown
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Fig. 1. Receiver operating characteristic curves describing deletion detection in NA12878 from three scenarios. The relative accuracy of Hydra-Multi (red) was

compared with both DELLY (blue and purple) and GASVPro (green) in three analyses that each compared fragment size parameters of 5 and 8 median absolute

deviations (MADs) (Supplementary Methods). Each plot displays the relationship between the number of true and false positives at varying levels of minimum

alignment support (4–10 read-pairs). A true positive was defined as detection of one of the 3077 non-overlapping truth set deletions where both intervals from a

predicted deletion breakpoint intersected with both of the truth set deletion breakpoint intervals. In order to make a fair comparison across all tools, each pre-

dicted breakpoint was represented as two 200 bp intervals that faithfully represent the region implicated by the original SV call. A list of regions to exclude based

on excessively high read-depth were used on both the truth set and putative call sets (Supplementary Methods). The three situations used to assess the three

tools are as follows: (A) The 50� NA12878 dataset was subsampled to 5� and analyzed. (B) The 50� NA12878 data were analyzed. (C) The subsampled 5�
NA12878 dataset was analyzed concurrently with 64 randomly selected datasets of �5� coverage from 1KGP. Total support was evaluated as the total number of

read-pairs across all datasets analyzed. The presence of a deletion in NA12878 by DELLY was inferred by both the reported genotype (GT) and by observing at

least one high-quality variant pair (DV) in NA12878. Only GT was reported in the single dataset analyses, as GT and DV are functionally the same when requiring

4–10 read pairs of support. In both single and joint analyses using Hydra-Multi, the contribution of at least one read pair by NA12878 was required. Note:

GASVPro does not simultaneously run on multiple datasets
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to outperform various other methods and they have been employed

in the analysis of large-scale datasets from TCGA and 1KGP.

However, we note that multisample variant calling is a relatively

new and as yet unpublished feature of DELLY, and that to our

knowledge GASVPro is not capable of multi-sample calling. We

measured each tool’s ability to detect deletions by analyzing

NA12878 from the 1KGP CEPH population in three typical scen-

arios (Fig. 1). The lack of a reliable truth set for hundreds to thou-

sands of samples limited the size and scope of the performance

analysis to a trusted set of 3077 validated, non-overlapping dele-

tions in NA12878 (Mills et al., 2011).

Our analysis revealed that DELLY has the best performance in

terms of sensitivity and specificity when a single dataset is analyzed

in isolation (Fig. 1A and B), and that Hydra-Multi has the best per-

formance when 65 datasets are subjected to joint multisample ana-

lysis (Fig. 1C). The slightly superior performance of DELLY on a

single dataset is not surprising given that it utilizes both paired-end

and split-read alignment signals during SV discovery, whereas

Hydra-Multi and GASVPro rely solely on paired-end alignments.

Hydra-Multi was explicitly designed for joint analysis of a large

number of datasets, and in this usage scenario it exhibits signifi-

cantly improved sensitivity; however, Hydra-Multi also exhibits

competitive performance in single dataset usage scenarios, outper-

forming GASVPro and achieving near parity with DELLY in most

cases. In the single dataset analyses (Fig. 1A and B), we found that

the true positive rates were fairly consistent amongst the different

tools, with the main difference being the number of false positives.

Although all methods have a high false positive rate under minimum

evidence parameters required to achieve high sensitivity, the false

positive ranges under different parameters suggests that this can be

largely ameliorated by parameter tuning and filtering. This exempli-

fies the well-recognized difficulty of performing sensitive and accur-

ate SV detection from short-read sequencing data, although we note

that the 1KGP truth set is known to be incomplete and therefore the

number of false positives we report here is likely to be an upper

bound.

The advantage of multisample analysis is apparent by the dra-

matic improvement in SV detection sensitivity for both Hydra-Multi

and DELLY when the 5� NA12878 dataset is co-analyzed with 64

additional 5� genomes (Fig. 1C) relative to when the 5� NA12878

dataset is analyzed by itself (Fig. 1A). In this comparison, Hydra-

Multi has substantially higher sensitivity than DELLY with a toler-

able increase in the number of false positives at a given evidence

threshold. Taken together, these results show that Hydra-Multi is

competitive with other best-in-class SV detection tools in terms of

sensitivity and specificity when run on a single dataset in isolation,

and that Hydra-Multi excels at joint multi-sample SV calling.

Hydra-Multi was originally developed to explore the mechan-

isms driving complex genomic rearrangements among 129 whole

genome sequencing datasets (64 tumors and 65 matched normal tis-

sues, Supplementary Table S1) from TCGA (Malhotra et al., 2013).

After filtering, we obtained a final set of 33 218 high-confidence SV

breakpoints among the 129 genomes. As expected, >80% (27 039)

of these breakpoints were observed in matched normal samples and

inferred to be germline variants. Because each tumor-normal pair

originated from the same individual, we expect that a comparison of

the genetic distance between the 129 genomes will reveal this rela-

tionship. To test this, we applied hierarchical clustering to 11 944

high-quality germline deletion and duplication calls (�1 Mb). For

each germline SV, the presence or absence of the breakpoint was

measured in the 129 samples. As expected, each tumor-normal pair

is most closely related to one another (Supplementary Fig. S2).

The remaining 6502 SVs found in Malhotra et al. (2013) were

‘private’ SVs observed in only one of the 129 samples. As expected

given that solid tumor genomes are often highly rearranged, over

95% (6179) of the private breakpoints were found in a single tumor

genome. In contrast, a mere 323 (5%) of the breakpoints were

observed in the genome of a single matched normal DNA sample.

By assuming that all variants private to a normal genome are false

and that the absolute number of false positive somatic calls is similar

between tumor and normal datasets, we inferred the somatic false

discovery rate (FDR) to be 5.2% (323/6179) (Malhotra et al.,

2013). This may be an overestimate given that a fraction of the vari-

ants private to a single normal sample are likely to be real, owing to

occasional loss of heterozygosity in the matched tumor. We further
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Fig. 2. Reduction in the somatic SV FDR for tumor-specific mutations by sim-

ultaneously integrating data from 128 TCGA samples. The somatic FDR is the

predicted rate at which somatic SV breakpoints are false, either due to false

positive SV calls or due to inherited germline SVs that have been misclassi-

fied as somatic due to false negatives. For this experiment, we identify false

somatic calls by their presence in a single normal genome but not in the

paired tumor genome or any of N additional tumor-normal pairs (X-axis)

Table 1. Memory usage and runtime performance from four scenarios

Hydra-Multi DELLY GASVPro

Maximum memory Total runtime Maximum memory Total runtime Maximum memory Total runtime

NA12878 (5�) 1.9 Gb 17 min 1.6 Gb 37 min 1.1 Gb 217 min

NA12878 (50�) 1.8 Gb 145 min 7.1 Gb 337 min 7.8 Gb 2017 min

NA12878 (5�) þ 64 Datasets (5�) 1.9 Gb 192 min 41.3 Gb 2 392 min N/A N/A

500 NA12878 (5�) 6.9 Gb 1817 min 70.7 Gb 21 258 min N/A N/A

The relative speed and scalability of Hydra-Multi was compared with the other tools by measuring the maximum memory used per process and runtime with

Runit (https://github.com/lh3/misc/tree/master/sys/runit). Hydra-Multi (8 processors) and DELLY were parallelized (32 threads). GASVPro ran as a single pro-

cess/thread, never exceeding the Java Virtual Machine allocation of 20 Gb. From top, we analyzed the following datasets: a 5� NA12878 dataset obtained by sub-

sampling the 50� NA12878 dataset; the 50� NA12878 dataset; the 5� NA12878 dataset combined with 64 additional �5� datasets from 1KGP; 500 copies of

the 5� NA12878 dataset. Note: GASVPro cannot jointly analyze multiple datasets (indicated by ‘N/A’).
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note that approximately half of the apparent false positives are small

deletion variants that are likely misclassified due to varied resolution

amongst samples caused by differing insert size distributions. Here,

we emphasize that the fact that at most 5.2% of the somatic re-

arrangement predictions are incorrect is the direct result of integrat-

ing data from all 129 tumor and normal genomes. In contrast, were

we to predict somatic SVs using the common practice of solely com-

paring each tumor to its matched normal, 89.1% of the predictions

would have been false using the somatic FDR estimation approach

described above (Malhotra et al., 2013). Alternatively, were we to

utilize a post hoc somatic SV classification strategy based on

integrating results after performing single-sample variant calling sep-

arately on all 129 genomes, 21.9% of somatic SV calls would have

been incorrect (versus 5.2% for joint calling). These results further

underscore the superiority of joint variant calling for somatic SV de-

tection. Indeed, as illustrated in Figure 2, the somatic FDR decreases

dramatically as additional tumor-normal pairs are used for discov-

ery, arguing that large cancer genomics studies will greatly minimize

spurious somatic calls by adopting this multi-sample SV detection

strategy.

The main effect of joint variant calling appears to be increased

sensitivity, thus minimizing the misclassification of germline SVs as

somatic SVs due to false negatives. However, it may also be true

that some fraction of false positive SV calls arise systematically in

multiple samples and are classified as ‘germline’ variants, thus fur-

ther reducing the somatic FDR.

3.2 Speed and scalability
The main motivation for the development of Hydra-Multi was fast

runtime and scalable performance, and in these terms it greatly out-

performs the other tools. Under the same usage scenarios as pre-

sented in Figure 1, Hydra-Multi was 2–13� (2.2, 2.3 and 12.5�)

faster than DELLY and 12–14� (12.8 and 13.9�) faster than

GASVPro, and required merely 3.2 h to analyze the set of 65 5�
datasets (Table 1), whereas DELLY required 39.9 h. Hydra-Multi

achieved these fast runtimes while using substantially less memory

than the other tools: e.g. in the 65 dataset comparison (Table 1),

Hydra-Multi used merely 1.9 Gb of memory while DELLY used

41.3 Gb, which represents a 22-fold difference. Importantly, Hydra-

Multi’s performance allows for a much larger number of datasets to

be co-analyzed on a single machine, which improves variant

detection sensitivity and simplifies data processing workflows for

large-scale studies. A large 500-dataset scenario was simulated using

repeated inputs of the 5� NA12878 dataset, revealing tractable

runtime (�30 h) and memory usage (6.9 Gb) for Hydra-Multi on a

single commodity server with 128 Gb of RAM. In contrast, it takes

DELLY more than 2 weeks and >70 Gb of RAM to analyze 500

NA12878 datasets (Table 1).

Hydra-Multi’s low memory usage is achieved primarily through

the use of a memory assisted, k-way merge sorting algorithm and its

speed is achieved largely through parallelization of both the discord-

ant extraction and assembly phases (Supplementary Fig. S1).

Extraction and assembly are coarsely parallelized, i.e. one processor

per dataset and chromosome/orientation set, respectively. Under rec-

ommended parameters, discordant read-pair extraction predomin-

ates algorithm runtime and scales linearly with the amount of input

data when supplied a single processor (Supplementary Fig. S3A).

Supporting this assertion, there is a direct relationship between the

number of discordant read-pairs and runtime (Supplementary Fig.

S3B). By parallelizing the work, the cost of examining additional

data is reduced. Both the disk-based sort and parallelization make

scalability a central strength of Hydra-Multi, thus enabling

incorporation of an extremely large number of datasets for SV

discovery.

Given the increasing number of large-scale genome sequencing

projects, the rapid accumulation of WGS data, and the clear benefits

of pooled multisample variant discovery, Hydra-Multi will enable

sensitive and accurate SV analysis to be conducted on extremely

large datasets using modest computational resources.
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