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Abstract

Motivation: Current methods for reconstructing dynamic regulatory networks are focused on mod-

eling a single response network using model organisms or cell lines. Unlike these models or cell

lines, humans differ in their background expression profiles due to age, genetics and life factors.

In addition, there are often differences in start and end times for time series human data and in

the rate of progress based on the specific individual. Thus, new methods are required to integrate

time series data from multiple individuals when modeling and constructing disease response

networks.

Results: We developed Scalable Models for the Analysis of Regulation from Time Series

(SMARTS), a method integrating static and time series data from multiple individuals to recon-

struct condition-specific response networks in an unsupervised way. Using probabilistic graphical

models, SMARTS iterates between reconstructing different regulatory networks and assigning indi-

viduals to these networks, taking into account varying individual start times and response rates.

These models can be used to group different sets of patients and to identify transcription factors

that differentiate the observed responses between these groups. We applied SMARTS to analyze

human response to influenza and mouse brain development. In both cases, it was able to greatly

improve baseline groupings while identifying key relevant TFs that differ between the groups.

Several of these groupings and TFs are known to regulate the relevant processes while others rep-

resent novel hypotheses regarding immune response and development.

Availability and implementation: Software and Supplementary information are available at http://

sb.cs.cmu.edu/smarts/.

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Several methods have been developed for modeling regulatory net-

works (Hecker et al., 2009). While most of these methods focus on

static networks, recent methods have also been developed for recon-

structing dynamic regulatory networks (Bar-Joseph et al., 2012).

These methods, which usually integrate time series gene expression

data with other types of (often static) genomic data, are specifically

appropriate for modeling response and developmental processes

that involve several factors that interact with their targets at differ-

ent time points.

To date, such methods have been focused on modeling-specific

responses or developmental processes, usually in a model organism
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or a cell line. Examples include modeling mouse stem cell develop-

ment (Mendoza-Parra et al., 2011), yeast response to stress

(Ernst et al., 2007), plant hormone response (Chang et al., 2013)

and human t-cell development (Rangel et al., 2004). In theory, mod-

eling may also be beneficial for studying human development and

disease response using time series data collected from individuals.

Dynamic models provide important information regarding TFs that

differentiate good from bad responders for a specific treatment

(which may suggest new directions for clinical interventions), iden-

tify pathways that are differentially regulated and suggest groupings

of patients for further treatment and/or analysis based not only on

the observed expression changes but also on the underlying net-

works that lead to these expression profiles.

While modeling dynamic human response networks is an import-

ant goal, current methods for reconstructing regulatory networks

are not appropriate for this task. Unlike model organisms or cell

lines, humans differ in their background expression profiles due to

age, genetics and life factors. Thus, while repeat data from animal

studies are usually very helpful, time series data from different

human subjects are usually not easy to integrate. In addition, there

are often differences in start and end times for time series human

data (e.g. the first time a patient sees a doctor for a specific infection

may be very different between individuals when considering the ac-

tual time an individual has been infected). There are also differences

in the rate of progress so that one day for one individual may repre-

sent a longer or shorter period for another (Kaminski and Bar-

Joseph, 2007). Finally, there are also several differences in regula-

tory relationships between individuals which often result from small

differences in their genomes (Kasowski et al., 2010). Thus, obtaining

dynamic, condition and response-specific models from human data

is still a major challenge.

In this article, we present a new method for inferring dynamic,

discriminatory, regulatory networks using static data and time series

from multiple individuals. In contrast to previous techniques, our

method, Scalable Models for the Analysis of Regulation from Time

Series (SMARTS), uses multiple time series expression experiments

(TSEEs) to identify the underlying regulatory dynamics. SMARTS

aligns the different datasets, determines appropriate modeling time

and resolution and uses an iterative procedure to learn groupings

and models in an unsupervised manner. Following the assignment

and modeling phases, SMARTS proposes new hypotheses (in the

form of transcription factor activity) that aim to explain the differ-

ences between the groupings it identifies.

We applied SMARTS to human influenza infection and mouse

brain development data. In both cases, by relying on regulatory

information, SMARTS was able to greatly improve the assignment

of datasets to models compared with a baseline method that only

used gene expression data. In addition, SMARTS identified several

TFs as discriminatory between the different groups, some of which

are known to be related to the conditions studied and others which

represent novel hypotheses.

2 Methods

SMARTS uses an iterative procedure to build models from sets of

TSEEs (see Fig. 1). We first align our TSEEs so that all the datasets

are on a common biological time scale. Next, we use clustering to

learn an initial grouping for the TSEEs using our aligned time series.

Finally, we iterate between creating regulatory models for sets of

TSEEs and assigning TSEEs to models until convergence. In addition

to the regulatory models derived by SMARTS, which can be used to

identify specific activated pathways and genes, we also use statistical

analysis to identify TFs that differ in activity between models.

Such TFs are important for understanding differences between dif-

ferent individuals or populations.

SMARTS can be applied on any type of data which produces

time series expression measurements, such as microarrays, RNA-seq

and in situ hybridization (ISH). Static TF-gene interaction data can

be used based on the specific domain at hand, or some general data

are included with SMARTS for multiple organisms.

2.1 Synchronizing individual time series
The first phase of the algorithm involves the establishment of a

common biological time scale among the various TSEEs. Due to dif-

ferences across organisms (including humans) in metabolism, age

or genetic factors, the rates of biological processes may differ

(Aach and Church, 2001; Bar-Joseph et al., 2008; Lin et al., 2008).

For example, the incubation period of a flu infection may vary

across individuals based on their prior exposures and other immuno-

logical factors. Thus, we first perform pairwise alignments for

all pairs in our dataset using a method described in Bar-Joseph

et al. (2003).

As part of the iterative alignment process, we compute a gene-

wise penalty term based on the residual error after alignment with

the current set of parameters. This term is used to update the global

alignment parameters as discussed in Bar-Joseph et al. (2003). Such

weighted alignment allows us to focus on genes that are key partici-

pants in the response being studied (which will likely agree on the

correct alignment, and have low residual error) while minimizing

the impact of background genes that may differ among individ-

uals for other reasons (age, life style, gender, etc.). (See the

Supplementary text for more details.)

As part of the alignment process, we calculate the pairwise

alignment error between datasets (i.e. after alignment, the amount

of average residual difference between genes in the two datasets).

We then use this error (or distance) matrix to perform an initial

clustering of datasets. Any of several clustering methods can be

used for this initial dataset assignment. Here, we use spectral

clustering (Shi and Malik, 2000) for cases where we are interested

in two clusters. For clusterings with more than two clusters,

we use affinity propagation (Frey and Dueck, 2007), as it tended

to produce clusters that were more balanced than spectral

clustering.

Fig. 1. Flowchart of the SMARTS algorithm. SMARTS uses two types of data

(dark blue), a set of TSEEs and a list of TF–gene interactions. It performs an

iterative process (lighter blue) to learn dynamic regulatory models and to as-

sign individuals to these models. Analyzing the models leads to the identifica-

tion of transcription factors with activity that differs between individual time

series (Color version of this figure is available at Bioinformatics online.)
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2.2 Model building
Clustering allows us to obtain an initial grouping of the different

individuals. However, this clustering is only based on the observed

expression data (which is often noisy) and furthermore uses all genes

to compute the distance between the datasets. In contrast, the condi-

tion of interest (which is the unifying factor for all individuals/data-

sets in an experiment) is likely only affecting a small percentage of

the genes, and these genes are regulated by an even smaller number

of TFs and pathways. Thus, to improve our understanding of the

condition and our ability to determine the different groups of indi-

viduals in our input set, we build regulatory models for groups of

our input time series datasets.

2.2.1 The Dynamic Regulatory Events Miner (DREM)

To construct a regulatory model for each group, SMARTS extends

DREM (Ernst et al., 2007). DREM was developed and applied to

model the dynamics of a single expression experiment at a time. In

contrast, SMARTS attempts to jointly model sets of TSEEs which re-

quire us to modify DREM in a number of ways discussed below.

DREM uses an input–output Hidden Markov model (IOHMM)

to construct dynamic regulatory models. An IOHMM is an exten-

sion of a Hidden Markov model (HMM) that allows output vari-

ables to be explicitly conditioned on a set of input variables. In the

case of DREM, the IOHMM framework allows us to model the

path of a gene through a time series experiment using regulatory

models conditional on the transcription factors known to regulate

each gene. These ‘regulatory’ models combine a single TSEE with

static protein–DNA interaction data (from DNA-binding motifs,

ChIP–chip or ChIP–seq data). Thus, DREM allows us to create

models where states represent the emission of a specific gene value

at a given time point, and transitions represent how the expression

of the gene evolves to the next time point (conditional on any regula-

tory activity that may have occurred). Ultimately, the model is used

to identify regulatory events, points in the time series where a set of

genes that were previously coexpressed diverge. These splits corres-

pond to states in the HMM and are annotated with the TFs that

are predicted to regulate genes in the outgoing paths. Thus, we can

identify the time of regulatory events, and the TFs that cause

them. See Figure 2 for an example of what these regulatory models

look like.

To determine the set of TFs associated with each split, DREM

learns a L1-regularized logistic regression classifier. The classifier

uses the binding profile of a gene (the set of TFs that regulate it) to

predict its next state going out of the split.

DREM has been successful at modeling biological processes and

systems in a variety of organisms, such as stress response in yeast

and Escherichia coli (Ernst et al., 2007, 2008; Gitter et al., 2013),

and mouse development (Mendoza-Parra et al., 2011; Roy et al.,

2010; Schulz et al., 2013).

2.2.2 Building models on multiple datasets

Unlike the original DREM method, which is aimed at a single

dataset from one individual, in SMARTS we wish to reconstruct

a regulatory network model from multiple individuals and/or

datasets. There are four important ways in which we modify the

IOHMM framework in order to support the reconstruction of such

models:

• Aligning and sampling constituent time series: As discussed

above, we must align TSEEs to be on the same biological time

scale. This means that even if all datasets were sampled at the

same time points, after alignment we may not have the same set

of points across individuals. We thus need to select a set of points

to which we apply the (discrete) HMM model and recover the

values for these points from the different datasets. To select a set

of points for the model, we calculate the cumulative distribution

of measured time points across all datasets, and choose the n

time points which evenly split the density of these measurements.

A density-based method is used since the rate of measurement is

typically informative about when regulatory activity occurs, and

it ensures that the points chosen maximize the amount of infor-

mation we use from the data.

Once a time scale and time points are chosen, we use cubic

splines to obtain a continuous representation for genes in all

datasets and sample these splines at the specific time points

selected correcting for the alignment parameters. Since all align-

ments are pairwise, we must choose a baseline dataset for our

canonical time scale. We choose the class medioid—the dataset

with the lowest alignment error to other datasets in the class.

After choosing the baseline dataset, the splines from each dataset

are sampled at the points aligned to the canonical points in the

baseline.
• Extending the emission/transition model: To allow for multiple

readings from a gene across the different individuals we

change the way we compute the maximum likelihood for the

emission and transition parameters. For the emission, we sim-

ply use all copies of a gene to learn a Gaussian model.

Fig. 2. Regulatory models for human influenza patients. Each model repre-

sents the regulatory program of a set of flu patients. Each path represents the

activity (in terms of differential expression) of a set of genes over time. Split

nodes occur when a regulatory event is predicted to cause a set of genes

which were previously regulated similarly to diverge. Split paths are anno-

tated with the set of TFs predicted to regulate the split event; only statistically

significant TFs are shown. In (a), the orange and magenta paths show

increased differential expression, as well as regulatory activity by known im-

mune response factors in the IRF family. The top path contains many im-

mune–response-related genes, such as TLR7 and IL1RA (Color version of this

figure is available at Bioinformatics online.)
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Transition probabilities are calculated based on the TFs which

are predicted to regulate a given gene. At each split node, a logis-

tic regression classifier is learned based on the static binding data

input. We use a multiplicative model to account for the presence

of multiple copies of a gene, where

ptransðgtÞ ¼
Y

fd2Dm and gt
d

existsg
ptransðgt

dÞ;

where Dm is the set of all datasets belonging to model m and

gt
d is the measurement of gene g at time t in dataset d. Thus,

the transition probability is a product of all of the observed ex-

amples of time series making the transition; this has the effect of

emphasizing transition probabilities observed more frequently.
• Allowing different start and end points for individual time series:

We cannot guarantee that all time series will be of the same

length and, furthermore, after alignment even time series of the

same length may be aligned such that the first or last time points

of one time series extend beyond those of another. Thus, we

must be able to model time series beginning and ending. We do

so by adding implicit ‘begin’ and ‘end’ states to the IOHMM.

Individuals ‘skip’ all states before and after their alignment-

defined start and end times. This is done by connecting all states

to the new start and end states.
• Enforcing that all copies of the same gene in different individuals

follow the same path in the model: Since we assume that all indi-

viduals assigned to the same model are regulated by the same

TFs and pathways, we learn a single regulatory network for these

individuals. To achieve this we use the joint likelihood over

all genes and their time points when determining the maximum

likelihood path. Each gene is assigned its individual maximum

likelihood path:

LðD; g; mÞ ¼ max
p

Y
d2Dm

Y
t

pp
transðgt

dÞpp
emðgt

dÞ

for each path p, gene g, dataset d in the set of all datasets for

model m (Dm) and time t. gt
d is the measurement of gene g

in dataset d at time t. These likelihoods are calculated using the

forward–backward algorithm and used to compute the model

parameters.

2.3 Model assignment and reassignment
Once models have been built for each of our classes, we reassign

each dataset to the model which best describes it. We do this in two

ways. First, we do a number of iterations using a subset of TFs with

highly differentially expressed targets. After this process has con-

verged (or a predefined number of iterations have been performed)

we perform a set of ‘refinement’ iterations using more of the genes

in the datasets.

2.3.1 TF-based assignment

While assignment of datasets (or individuals) to models can be per-

formed using every gene modeled in the IOHMM, we found that in

many cases using only the most discriminating TFs leads to better

performance. This approach provides two major advantages: First,

it allows us to look at only a few, most important factors to explain

the observed expression patterns making the models easier to inter-

pret. Second, such a process allows us to overcome the dimensional-

ity problem (tens of thousands of genes and a few individuals) by

reducing the model dimensionality to a few factors that explain

most of the changes.

See the Supplementary text for details in how these TFs are chosen.

2.3.2 Refinement assignment

Once our TF-based iterations have converged to a fixed set of TFs

(and thus class assignments), we perform a set of ‘refinement’

iterations, which takes into account many more genes in the model.

We choose the top n genes using a likelihood ratio score: We first

calculate for each gene and each TSEE the log likelihood ratio

between the TSEE’s assigned model and the best other model. We

then take the average of this (log) score over all TSEEs (which is

equivalent to multiplication in probability space). We rank all genes

based on this score, where the highest scoring genes are the most dis-

criminating. We take the genes with scores in the top 50% of all

scores, and use them to build the final model.

2.4 Cross-model analysis
Finally, to identify outcome-related transcription factors, we define

a ‘differential P-value’ that measures the difference in a TF’s activity

between models using a randomization test. We perform this test for

each TF and model. The test is based on all genes predicted to be

regulated by the TF, and represents the average log likelihood ratio

of these genes in the given model compared with the best other

model:

sðm; tÞ ¼
X

d2Dm

X
g2Gt

‘ðgd; mÞ
jjGtjj

2
4

3
5� max

n2Mnm

X
g2Gt

‘ðgd; nÞ
jjGtjj

2
4

3
5

0
@

1
A:

Here we compute the score for model m and transcription factor

t, where d is a TSEE from the set assigned to model m (Dm), Gt is

the set of genes regulated by TF t, ‘ðgd; mÞ is the log likelihood

of gene g measured in dataset d given model m, and M is the set of

all models.

We then perform a randomization test on gene sets t* with 1000

draws of randomly selected differential genes, where jjGt� jj ¼ jjGtjj,
and obtain the score s(m,t*). Our P-value is the percentage of ran-

domization scores better than our TF of interest’s score.

3 Results

While the major goal of SMARTS is to learn unsupervised models of

gene regulation for groups of individuals or datasets, we initially

tested it on a human flu supervised dataset for which we know

the correct groupings so that results can be compared with the

ground truth. Next, we used it to analyze time series data from

mouse brain development for which much less is known about the

correct groupings.

3.1 Applying SMART to data from human flu patients
We applied SMARTS to a set of TSEEs from Huang et al. (2011)

containing 17 patients who were (voluntarily) infected with influ-

enza. Nine of the 17 patients developed a symptomatic influenza

infection; the other eight patients were asymptomatic. Each patient

was measured for 16 time points over 132 h.

We used static TF–gene interaction data consisting of predicted

interactions using the method and data from Ernst et al. (2010). For

each TF, the top 100 predicted gene targets were chosen. For more

information on the TF–gene interaction data, see the Supplementary

text. We performed SMARTS analysis on the 17 time series using

k¼2 as the number of requested models. The resulting models are

presented in Figure 2.

Table 1 presents a comparison of SMARTS assignment

of asymptomatic and symptomatic TSEEs with two other methods

that have been used to analyze and model dynamic biological
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processes: Clustering based on gene expression, and methods that

do not account for differences in response initiation and rates (Ernst

et al., 2007). As can be seen, using a clustering method that only

utilizes the gene expression data leads to an unbalanced grouping

(with 12 datasets assigned to class 1, and 4 assigned to class 2). This

clustering uses the average residual error between genes after time

series alignment as a distance metric. Thus, it does not use the regu-

latory network model underlying SMARTS. Using a one-tailed

Fisher exact test, we find that the separation between labels (symp-

tomatic or not) for the clustering assignment is not significant

(P¼0.61). Similarly, a simplified version of SMARTS’s regulatory

network model that uses neither time series alignment nor network-

based gene selection (see Section 2.3) is also unable to correctly sep-

arate these two classes of patients. As Table 1, panel b shows, this

method separates two asymptomatic patients in one class while the

other class contains five asymptomatic patients and nine symptom-

atic patients (P¼0.175). In contrast, the SMARTS result (Table 1

panel c) misclassifies only one dataset (see Section 4 for more on

this), and has a one-tailed Fisher exact P-value of 0.0007. These re-

sults indicate that both the network-based gene selection and align-

ment aspects of SMARTS are pivotal in its ability to accurately

model different response networks. See the Supplementary Results

for additional comparisons of SMARTS with simpler methods.

3.2 Reconstructed flu symptomatic and asymptomatic

networks
The differences between the symptomatic and asymptomatic models

(Fig. 2) are visually striking, and clearly show that a much stronger

immune response occurs in patients that develop flu symptoms. This

can be seen, for example, in the symptomatic model which includes

a path (colored in orange) containing a large set of highly upregu-

lated genes. The TFs associated with this path are predominantly

STAT1 and Interferon Response Factor (IRF) factors, both well

known to be involved in immune response (Taniguchi et al., 2001).

The genes associated with this path include many well known to be

involved in immune response, including TLR7, IL1RA and

TRIM22. In the asymptomatic model, the levels of differential ex-

pression are in general much lower. This is also indicative of another

strength of our models, that by incorporating multiple time series,

we smooth out any extraneous noise.

We next used our differential test statistic to identify transcrip-

tion factors that differed in activity between the two models. The

top TFs (all of which have P<0.001 using our differential score)

are members of the IRF family, RXRA and STAT1. STAT1 and the

IRF factors are well known to be involved in immune response

(Taniguchi et al., 2001), and RXRA has also been identified as a

regulator of immune response (Du et al., 2005). It is worth noting

that several IRFs show up in our model. This may be in part due to

a difficulty in differentiating between TFs in a family: if our static

TF–gene interaction data provide very similar predictions for the

targets of TFs in a family, we will not be able to determine which

specific family member(s) are actually active.

A list of all TFs and their differential P-values can be found

on the Supplementary website.

3.3 Mouse developing brain analysis
In addition to modeling sets of human individual TSEEs, SMARTS

can be applied to other domains where sets of time series represent a

single condition. We used SMARTS to analyze time series expres-

sion data from the developing mouse brain (the Allen Brain Atlas—

Henry and Hohmann, 2012). This data consist of gene expression

measurements from ISH studies taken at seven time points from

multiple mouse brain tissues during development. In all, about

2000 genes are measured at each time point, for each brain region.

We restrict our analysis to the 25 brain regions for which there is

ISH data at all seven time points.

The static TF–gene interaction data that we used as input for

the brain development models were obtained by integrating se-

quence and tissue-specific epigenetic data using the PIPES method

(Zhong et al., 2013). To perform the analysis using PIPES we used

DNase data from developing and adult mouse brain tissues (14 days,

18 days and 8 weeks) (Stamatoyannopoulos et al., 2012). For

more information on the TF–gene interaction data, see the

Supplementary text.

Since these measurements are already synchronized (using genet-

ically similar mice) we did not perform alignment, but simply used

the time points as given. The brain regions are described in an ontol-

ogy at a number of levels of granularity. At the highest level, 3 of

these 25 regions were classified as ‘midbrain’, 12 were ‘hindbrain’

and 10 were ‘forebrain’. We first performed SMARTS with two

groups (models). The resulting models and assignments successfully

distinguished forebrain from hindbrain, and improved on the base-

line clustering that only relied on the expression data. After our

initial clustering (based on average error between the curves of all

genes) which only used the time series ISH data, we obtained

extremely unbalanced clusters, with no clear relation to brain

region (Table 2 panel a). Using a one-tailed Fisher exact test, the sep-

aration between labels was not significant (P¼0.1948). After our

initial iterations of SMARTS using the subset of TFs determined to

be differential (see Section 2.3.1), the new models greatly improved

upon the initial assignment (P¼0.0007) as can be seen in Table 2,

panel b. However, the best result was obtained after completing

the additional refinement iterations (see Section 2.3.2), which

resulted in only one forebrain region mislabeled (Table 2, panel c)

(P<0.0001).

The models can be seen in Figure 3. We identified differentially

active TFs using our cross-class P-value analysis (see Section 2.4).

A number of TFs were identified as differentially active between

conditions with P<0.001. Of these TFs, many are known to be

Table 1. Clustering of symptomatic and asymptomatic flu datasets

Asymptomatic Symptomatic

(a) Clustering after residual error clustering

Class 1 5 7

Class 2 2 2

(b) Clustering after SMARTS without alignment or network-based gene

selection

Class 1 5 9

Class 2 2 0

(c) Clustering after SMARTS algorithm

Class 1 0 8

Class 2 7 1

Each panel shows the clustering of the flu patient time series into two

classes; the values in the table represent the number of time series in the inter-

section of a given condition and class label. (a) Baseline clustering using only

gene expression data. (b) A simplified version of SMARTS clustering using

regulatory information, but neither using alignment nor selecting a subset of

genes based on their relevance. (c) Full SMARTS clustering shows better

separation between symptomatic and asymptomatic time series, with only

one patient mislabeled
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differentially active in the developing brain. For example, SIX6

activity is largely centered in the forebrain (diencephalon)

(Conte et al., 2005), EMX2 is centered in the telencephalon

(also forebrain) (Yoshida et al., 1997), and DLX5 is predominantly

expressed in the forebrain (Ruest et al., 2003). See the

Supplementary website for a full list of significant TFs and their

P-values.

3.4 Four-way classification of brain development
Unlike our binary classification of healthy versus diseased individ-

uals, brain structure is hierarchical, and so more than two develop-

mental networks may be active across the different tissues. To

further analyze this process, we ran SMARTS with k¼4 to capture

a more detailed level of regulatory control during brain develop-

ment. The classification resulting from this analysis is presented

in Table 3. While the results substantially recapitulate topographical

regions, they also deviate slightly from the ontological groupings.

Class 1 is the hindbrain, excluding the most anterior structures

(rhombomere 1 and isthmus). Class 2 represents the midbrain,

including the most anterior portion of the hindbrain (rhombomere 1

and isthmus) and the most posterior portion of the forebrain

(pretectum) indicating that the difference between these structures

(hind, mid and fore) is not fully encompassed by the discrete naming

convention. Indeed, there are known developmental processes that

extend beyond the borders of these defined regions. For example,

Irving and Mason (2000) describe how patterning of the midbrain

and rhombomere 1 are both signaled by the isthmus. Class 3 con-

tains the diencephalon, and also groups the hypothalamus (classi-

fied as secondary prosencephalon) with the thalamic regions

(in the diencephalon). In fact, the hypothalamus is frequently

considered part of the diencephalon, and our analysis supports

that view. Class 4 contains the remainder of the secondary prosen-

cephalon. We also performed our differential P-value analysis on

the four-way classification (see the Supplementary website).

Some of our differential TF activity is supported by the literature.

For example, we predict that IPF1 is differentially active in the

diencephalon, which is a result supported by Perez-Villamil et al.

(1999).

4 Discussion

We have presented SMARTS, a novel algorithm for classifying

and modeling TSEEs. SMARTS is able to build regulatory models

from sets of TSEEs, and to classify time series into these models.

The SMARTS framework integrates data from many individual

gene expression time series with TF–gene interaction data, allowing

for novel forms of analysis, such as analyzing and classifying human

disease time series or modeling the differentiation of tissues during

embryonic development.

We applied SMARTS to flu response data and have shown how

the modeling framework greatly improves upon baseline clustering.

SMARTS can also point to outlier datasets. In the flu data SMARTS

identified one of the TSEEs as an outlier indicating that neither of

the models is better at explaining this time series when compared

with a null model (all genes assumed to have mean 0 and a single

standard deviation). Figure 4a presents the model for just the outlier

dataset. It appears that the first time point of the dataset is wildly

divergent from the later time points. Though labeled asymptomatic

by Huang et al. (2011), it is clear looking at this individual model

that the patient does not resemble either the symptomatic or asymp-

tomatic models in Figure 2. Thus, it appears that our outlier labeling

is correct.

Figure 4b presents a DREM model for the only TSEE that

SMARTS misclassified in the flu analysis (SMARTS labeled it

as asymptomatic whereas it is really a symptomatic dataset). This

patient, labeled in Huang et al. (2011) as patient 15, is the mildest

case labeled as symptomatic (as can be seen in their Fig. 1b).

Furthermore, as can be seen in Figure 4b, the patient developed

symptoms much later in the time course than the consensus

Table 2. Clustering of forebrain and hindbrain datasets before and

after the SMARTS algorithm

Forebrain Hindbrain

(a) Clustering after residual error clustering

Class 1 2 0

Class 2 8 12

(b) Clustering after TF-based iterations

Class 1 6 0

Class 2 2 12

(c) Clustering after SMARTS algorithm

Class 1 9 0

Class 2 1 12

Each panel shows the clustering of brain region time series into two classes.

Each value in the table represents the number of time series in the intersection

of a given brain region and class label. (a) Baseline clustering using only gene

expression data. (b) Clustering after the TF-based iterations of SMARTS, but

before the refinement iterations. Note that two forebrain regions are not as-

signed to either class. (c) Clustering after SMARTS algorithm only misclassi-

fies a single brain region. The three midbrain regions are classified, but

omitted from the table

Fig. 3. Regulatory models for 2-class developing brain. (a) Forebrain model.

(b) Hindbrain model (Color version of this figure is available at Bioinformatics

online.)
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symptomatic model (Fig. 2a). It seems that a combination of border-

line class membership and difficult alignment is the most likely cause

of this misclassification.

SMARTS allows the analysis of sets of data at differing levels of

granularity. We were able to recover the major fore/hind grouping

of brain development when looking at a two-class analysis of de-

veloping brain regions. When we performed four-class analysis, we

retained this general grouping, but with increasing specificity: two

forebrain groups, encompassing different regions of the forebrain,

a posterior hindbrain group and an anterior hindbrain/midbrain

group.

Beyond merely building models, our technique allows for the

identification of regulatory factors that differ between models. This

could allow the discovery of transcription factors that are not just

active during a disease, but differentially active in different disease

states. This advance will allow for the increasingly granular analysis

of regulatory activity in disease progression.

SMARTS is designed to scale, and is multithreaded at its core.

Though both of the datasets analyzed here contain around 20 indi-

vidual time series, SMARTS is capable on running on substantially

larger experiments—the bottleneck is the availability of data.

While currently only a few patient datasets exist for our applica-

tion, we expect the amount of clinical data to increase and such data

are often temporal in nature. That said, as we showed in Section 3,

the method can be applied to non-clinical data (animal models) as

well, leading to important insights regarding the grouping of differ-

ent conditions or tissues based on their regulatory program.

One difficulty in methods involving the grouping or clustering

of data is the selection of the number of groups to use (in our case,

the parameter k). In both of the examples we present, we choose the

number of groups a priori: in the case of the human flu data, the

number of groups is known (2); in the case of the mouse brain data,

we believe we have showed that looking at the data at multiple gran-

ularities is valuable. In the scenario where the number of groups is

unknown, since we use a likelihood-based algorithm, penalized like-

lihood techniques such as the Akaike information criterion can

be used.

Future work will involve the application of SMARTS to patient

data in a clinical setting, a setting which requires a more sophisti-

cated look at time series alignment. In the clinical setting, the disease

onset date is unknown, only known is the date the patient first

Table 3. Brain region groupings for four-class developing brain model

Class 1 Class 2 Class 3 Class 4

Rhombomere 10: medullary hindbrain (medulla) Collicular (rostral) midbrain

tectum: mesomere 1

Peduncular (caudal) hypo-

thalamus: secondary

prosencephalon

Preoptic telencephalon: sec-

ondary prosencephalon

Rhombomere 11: medullary hindbrain (medulla) Isthmus: prepontine

hindbrain

Pretectal tegmentum:

diencephalon

Roof plate of evaginated tele-

ncephalic vesicle: second-

ary prosencephalon

Rhombomere 2: prepontine hindbrain Preisthmic midbrain tectum:

mesomere 2 (preisthmus or

caudal midbrain)

Prethalamic tegmentum:

diencephalon

Subpallium: secondary

prosencephalon

Rhombomere 3: pontine hindbrain Preisthmic tegmentum: meso-

mere 2 (preisthmus or cau-

dal midbrain)

Prethalamus: diencephalon

Rhombomere 4: pontine hindbrain Pretectum: diencephalon Thalamic tegmentum:

diencephalon

Rhombomere 5: pontomedullary hindbrain Rhombomere 1: prepontine

hindbrain

Thalamus: diencephalon

Rhombomere 6: pontomedullary hindbrain

Rhombomere 7: medullary hindbrain (medulla)

Rhombomere 8: medullary hindbrain (medulla)

Rhombomere 9: medullary hindbrain (medulla)

Each brain region is listed, followed by its ontological category

Fig. 4. Individual models of misclassified and unclassified patients. (a)

Unclassified patient. Gene expression at time point 0 deviates highly from

other time points, resulting in a model that does not resemble a ‘normal’

symptomatic or asymptomatic patient. (b) Misclassified patient. The spike in

immune response genes can be seen in the reddish brown (topmost) path

(Color version of this figure is available at Bioinformatics online.)
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presents to the doctor. Thus, new techniques must be developed to

better align time series with ambiguous start times.
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