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Abstract

Motivation: Technological advances have enabled the identification of an increasingly large spec-

trum of single nucleotide variants within the human genome, many of which may be associated

with monogenic disease or complex traits. Here, we propose an integrative approach, named

FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence

variants. Our method utilizes various genomic annotations, which have recently become available,

and learns to weight the significance of each component annotation source.

Results: We show that our method outperforms current state-of-the-art algorithms, CADD and

GWAVA, when predicting the functional consequences of non-coding variants. In addition,

FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding

variants. The method includes a confidence measure to rank order predictions.

Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.

biocompute.org.uk

Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid technological advances and the falling costs of next-gener-

ation sequencing technologies have accelerated the identification of

single nucleotide variants (SNVs) in the human genome (The 1000

Genomes Project, 2010). Ascertaining which of these are functional,

against a background of neutral SNVs, promises to improve our

understanding of the molecular mechanisms underpinning disease

and complex traits. There is a plethora of computational algorithms

capable of predicting whether SNVs are deleterious (Thusberg et al.,

2011). However, these algorithms are typically restricted to SNVs

falling within protein-coding regions of the genome, with a particu-

lar focus on non-synonymous SNVs (nsSNVs). They are therefore

incapable of assessing the consequences of a significant proportion

of SNVs, given that the vast majority of SNV-trait associations fall

within intergenic or intronic regions of the genome (Hindorff et al.,

2009). In this article, we propose a method for predicting the func-

tional impact of both coding and non-coding SNVs.

Existing protein-based prediction algorithms tend to exploit evolu-

tionary conservation when determining whether or not variants are

functional. However, other potential sources for functional annotation
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are also now available from the Encyclopaedia of DNA Elements

(ENCODE) consortium. Using several different technologies,

ENCODE aims to identify all functional elements within the human

genome, including transcribed non-coding RNAs, transcription factor

binding sites and chromatin structure (The ENCODE Project

Consortium, 2012). At the time of writing, ENCODE has produced

approximately 1640 datasets describing the analysis of 24 different

types of experiments in 147 cell lines, under various conditions (Qu

and Fang, 2013). One of the major challenges faced by researchers is

to successfully integrate the wealth of information contained within

ENCODE to predict the functional consequences of SNVs.

Following our previous work (Shihab et al., 2013b, a, 2014), we

describe a machine learning approach (called FATHMM-MKL) that

integrates functional annotations from ENCODE with nucleotide-

based sequence conservation measures. When assessing the func-

tional consequences of non-coding variants, we observe improved

performance when compared with two recently proposed variant

prediction algorithms: GWAVA (Ritchie et al., 2014) and CADD

(Kircher et al., 2014), which as far as we are aware, are the only

other proposed methods that can predict the functional conse-

quences of non-coding variants. Furthermore, our method achieves

comparable performance to CADD when predicting the functional

impact of nsSNVs. A web-based implementation of FATHMM-

MKL, including pre-computed predictions for the entire human

genome and downloadable software, is available at http://fathmm.

biocompute.org.uk.

2 Methods and materials

2.1 Datasets
We assembled two distinct datasets: our pathogenic dataset was

constructed using heritable germ-line mutations from the Human

Gene Mutation Database (Stenson et al., 2014) (release 2013.4, sub-

sequently denoted HGMD) and our control dataset was constructed

using SNVs from the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2012). This control dataset will contain many

variants that are unannotated, and therefore it will likely contain

some true positives. We will consider this issue in more detail in

Section 3.3. Similarly, among positively labelled datapoints from the

HGMD dataset, we could expect some true negatives: some neutral

variants can be inherited alongside pathogenic variants due to gen-

omic proximity, for example. Thus the positive class should be

viewed as disease-associated variants that are enriched for func-

tional impact as a set. The method we are to describe can be used

with datasets for both inherited single nucleotide polymorphisms

(SNPs) and somatic SNVs. The HGMD dataset is therefore an

example of the former category.

For our analysis, we restricted our control dataset to SNVs hav-

ing a global minor allele frequency �1% and further removed those

that were also present in our pathogenic dataset. In order to assess

the predictive utility of our method in both coding and non-coding

regions of the genome, we further split our pathogenic and control

datasets according to whether or not the variant introduces an

amino acid substitution. We used 10 feature groups, denoted [A–J],

which could be predictive of disease association and are therefore

used to annotate out datasets using a customized pipeline. These fea-

ture groups are more fully described in the Supplementary material,

but a short description is as follows:

A. 46-Way Sequence Conservation: based on multiple sequence

alignment scores, at the nucleotide level, of 46 vertebrate gen-

omes compared with the human genome.

B. Histone Modifications (ChIP-Seq): based on ChIP-Seq peak calls

for histone modifications.

C. Transcription Factor Binding Sites (TFBS PeakSeq): based on

PeakSeq peak calls for various transcription factors.

D. Open Chromatin (DNase-Seq): based on DNase-Seq peak

calls.

E. 100-Way Sequence Conservation: based on multiple sequence

alignment scores, at the nucleotide level, of 100 vertebrate gen-

omes compared with the human genome.

F. GC Content: based on a single measure for GC content calcu-

lated using a span of five nucleotide bases from the UCSC

Genome Browser.

G. Open Chromatin (FAIRE): based on formaldehyde-assisted iso-

lation of regulatory elements (FAIRE) peak calls.

H. Transcription Factor Binding Sites (TFBS SPP): based on SPP

peak calls for various transcription factors.

I. Genome Segmentation: based on genome-segmentation states

using a consensus merge of segmentations produced by the

ChromHMM and Segway software.

J. Footprints: based on annotations describing DNA footprints

across cell types from ENCODE.

2.2 Data integration
The resulting product of this data preparation is several large matri-

ces comprising data from different feature groups, each of which

can have different measurement scales. These feature groups can all

indicate whether an SNV is functional or not, and hence we use a

classifier based on multiple kernel learning (MKL). In MKL, differ-

ent types of input data are encoded into kernel matrices, which

quantify the similarity of data objects. A number of different meth-

ods have been proposed for deriving kernel matrices for different

types of data objects, including data with discrete and continuous

values, sequence data and graph data (Shawe-Taylor and

Cristianini, 2004). With MKL, each constituent type of data is

encoded into a corresponding base kernel K‘ (where ‘ ¼ 1; . . . ; p if

there are p feature groups), from which we can derive a composite

kernel matrix K ¼
Pp

‘¼1 k‘K‘ where
Pp

‘¼1 k‘ ¼ 1 and k‘�0. The k‘
are kernel weights. This composite kernel can then be used with a

kernel-based classifier, such as a support vector machine (SVM)

(Campbell and Ying, 2011), which was the classifier used here.

During the training phase, this approach requires determination

of the learning parameters for the SVM in addition to the

kernel weights. A variety of methods have been proposed for MKL

(Gönen and Alpaydin, 2011), and this approach has been success-

fully demonstrated with various classification problems in bioinfor-

matics, which use different types of input data (Ying et al., 2009).

By using all available data encoded into a set of kernels, MKL

classifiers most frequently outperform a single kernel classifier

constructed for one type of data. In addition, the kernel weights are

adjusted according to the relative informative-ness of the different

types of data: this enhances overall performance and interpretation

of the model.

As further explained in the Supplementary Material, we also

introduce a confidence measure associated with predicted class

label. An SVM for binary classification has a decision function

of the form signð/Þ with the sign of / determining the predicted

class. However, the magnitude j/j is also a measure of the confi-

dence in this class assignment. By fitting a sigmoid function, we

convert / into a confidence measure based on the posterior prob-

ability of a positive (pathogenic) outcome P(y¼1j/) (Platt,

1999). Apart from indicating the reliability of a prediction, this
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confidence measure can be used to rank predictions and to fur-

ther enhance predictive accuracy via cautious classification, i.e.

by restricting predictions to high confidence instances, we achieve

greater accuracy, but at the expense of only making predictions

on a fraction of variants. Using a P-value (posterior probability

value) cutoff, we can isolate a subset of predictions with higher

reliability for subsequent experimentation. In order to compare

predictive test accuracies, we report our results using receiver

operating characteristic (ROC) curves and associated area under

the curve (AUC) measures for both non-coding and coding

variants.

2.3 Predicting the effects of non-coding variants
Our non-coding dataset was substantially imbalanced, yielding

more than 6.7 million negative examples and 12 438 positive ex-

amples (annotated disease-causing mutations). As noted by Ritchie

et al. (2014), examples from the HGMD database are not distrib-

uted uniformly across the genome, and it is unlikely that the genes

associated with these positive examples represent an unbiased sam-

ple. To mitigate potential bias, and to facilitate a comparison with

GWAVA, we used the strictest data selection procedure outlined in

Ritchie et al. (2014), i.e. selecting negative examples that fall within

a 1000-nt window of some positive example. This reduces our pool

of negative examples from several million to 24 064. Furthermore,

in order to assemble a training dataset for our MKL classifier, we

required training examples with at least one value in each of our fea-

ture groups. Unfortunately, data can be absent from some feature

groups for a given training example. Therefore, we could in prin-

ciple use a larger number of feature groups, which would result in

fewer training examples, or we could use a smaller number of fea-

ture groups, but with many more training examples. If we used a

10-feature group model [A–J], this requirement restricted our data-

set to 1372 negative examples and just 913 positive examples.

However, if instead we opted to use four feature groups (see the

Supplementary data for how these groups were selected), this

yielded a dataset comprising 5252 negative examples and 3063 posi-

tive examples for training and testing. As noted in the

Supplementary data, the final version of our algorithm uses four

feature groups [A–D].

We compared our method to two state-of-the-art methods for

predicting non-coding deleterious mutations: GWAVA (Ritchie

et al., 2014) and CADD (Kircher et al., 2014). CADD is a database

of pre-computed scores. As with our method, CADD is based on

use of a SVM classifier. CADD also integrates different annotations

to create a single score (C-score), though it does not use an algorith-

mic procedure to weight different annotations according to rele-

vance, unlike our approach. Though the C-scores derived within

CADD quantify extent of pathogeneity, the derivation of these

scores is distinct from the probability measures we introduce in this

article. To ensure a fair comparison, we restricted our test data to

those examples that appear in the CADD database. GWAVA is a

random forest classifier that makes predictions for novel SNVs

based on training data that are included with the software.

Prediction on any of GWAVA’s training examples should be trivial

and represents the training error, which does not estimate how well

GWAVA generalizes to new variants. So we omitted those examples

from our test set. This final filtering step reduced our test data

from 8315 examples to 7623 examples (4591 negative and 3032

positive) for comparing our method with these alternatives. This re-

sultant dataset provided enough examples to perform 5-fold cross-

validation with 4800 examples for training and 1200 examples for

testing in each fold.

In an experimental setting, we may also want to know the confi-

dence associated with a particular prediction and the potential ac-

curacy at a given confidence level. Therefore, we also associated a

confidence measure with each prediction and considered restricting

predictions to those instances where the associated confidence meas-

ure exceeds a given P-value cutoff, see the Supplementary data for

details.

2.4 Predicting the effects of coding variants
In total, 87 518 coding examples were available, consisting of

67 305 positive and 20 213 negative examples. However, missing

values in some feature groups and the requirement of a balanced

dataset reduced the size of the training dataset. Using 10 feature

groups, [A–J], it was possible to construct a balanced training data-

set of 1073 positive and 1073 negative examples, from a set of 2714

positive and 1073 negative examples. If we use four feature groups

[A–D], we could use a balanced set of 3000 positive and 3000 nega-

tive examples for training, from a set of 17 362 positive and 4853

negative examples. Using 5-fold cross-validation, the remaining data

were used as the test set in both cases. We did not apply the restric-

tion that negative examples must be located within a thousand

nucleotides of positive examples (this would have resulted in too

few negative training examples).

3 Results

3.1 Performance of the method: non-coding variants
We found that a MKL model with the four most distinct feature

groups (Figs. 1 and 2 with an AUC of 0.91) gave better performance

than a model with all 10 feature groups (Supplementary Figs. S1 and

S2 with an AUC for MKL of 0.85). We discuss the selection of these

four feature groups in the Supplementary data. In experiments with

this 4-feature group model, we found that feature group A, based on

conservation scores from the alignment of 46 vertebrate genomes

to the human genome, yielded the strongest performance of any in-

dividual kernel. It had an average AUC score of 0.88 (Fig. 1). The

other feature groups yielded weaker performance with individual

AUC scores ranging from 0.55 to 0.61. These scores are reflected in

Fig. 1. Five-fold cross-validation performance using the non-coding dataset

and four feature groups (see Supplementary data [A–D]). ROC curves

for FATHMM-MKL and classifiers using only one type of data. Even weak-

performing feature group classifiers may contribute discriminatory informa-

tion to the weighted aggregate MKL classifier, which outperforms any of the

individual feature group classifiers
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the MKL kernel weights (Supplementary Fig. S3). The weight for

46-way conservation is 0.71, whereas the second most informative

feature group, TFBS Peak-Seq, receives a weight of 0.26. However,

we found that MKL detects some additional discriminative power

within the two weakest-performing feature groups with non-zero

kernel weights of 0.004 and 0.03. The contribution of these weaker

groups is evident from the overall MKL performance, which

achieved an AUC score of 0.91 (Fig. 1). We obtained CADD scores

by downloading files from their website and querying mutations

using Tabix (Li, 2011); for GWAVA scores, we compared results

from all three of the GWAVA models (region, tss and unmatched)

and report those that yielded the highest accuracy in our tests. Our

MKL classifier (FATHMM-MKL) yielded a significant performance

improvement over both GWAVA (region) and CADD (Fig. 2).

Performing a non-parametric test (simple binomial sign test) on the

AUC scores across the 5-folds (FATHMM-MKL versus CADD), the

difference in predictive accuracy is significant for all folds and

the probability is 0.03125 that there is no statistical difference.

When we apply cautious classification to our classifier, we can

achieve near-perfect classification accuracy at the highest P-value

cutoffs (Figs. 3 and 4). For predictions with 90% confidence or

greater, the classifier achieves a 96% test accuracy while making

predictions for nearly 40% of examples, while at 95% confidence,

the accuracy increases to 98% with nearly 16% of examples having

label predictions (Fig. 3).

3.2 Performance of the method: coding variants
Unlike our non-coding dataset, we found that an MKL model with

all 10 discriminative feature groups (Figs. 5 and 6 with an AUC of

0.93) gave better performance than a model with the top four fea-

ture groups (Supplementary Figs. S4 and S5 with an AUC for MKL

of 0.91). This superior performance with 10 feature groups was

achieved despite using only 2146 training examples in contrast to

the 6000 training examples used with the four-feature group model.

We found that FATHMM-MKL was comparable to CADD on the

same dataset (Fig. 6). Further, cautious classification gave similar

curves to those for the non-coding data (Figs. 3 and 4), see

Supplementary Figures S6 and S7.

3.3 Performance of method: prediction across

all nucleotides in the human genome
3.3.1 Prediction across the whole genome

Next, we evaluated the prediction performance of FATHMM-MKL

across a wider spectrum of the human genome (results for the entire

human genome are available at the associated website). Across the

wider genome, many ‘neutral’ (unannotated) variants may be true

Fig. 2. Five-fold cross-validation performance using the non-coding dataset

and four feature groups (see Supplementary data [A–D]). ROC curves indicat-

ing that FATHMM-MKL yields substantially better predictive performance

relative to CADD or GWAVA on the same examples

Fig. 3. Five-fold cross-validation performance using the non-coding dataset

and four feature groups (see Supplementary data [A–D]). Cautious classifica-

tion yields nearly perfect performance as we increase the P-value cutoff (test

accuracy as a fraction versus P-value cutoff)

Fig. 4. Five-fold cross-validation performance using the non-coding dataset

and four feature groups (see Supplementary data [A–D]). The breakdown of

true positive (TP), true negative (TN), false positive (FP) and false negative

(FN) predictions for cautious classification shows that TP and TN predictions

remain robust up to the highest P-value cutoffs (based on 5-fold cross-

validation, the average number of test predictions from 1200 is 469.0 at a 90%

cutoff and 195.4 at a 95% cutoff)

Fig. 5. Five-fold cross-validation performance using the coding dataset and

10 feature groups (Supplementary [A–J]). ROC curves for FATHMM-MKL and

for classifiers using only one type of data
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functional variants that are not reported because (i) they haven’t

been tested against a relevant phenotype or (ii) their effects are

subtle and haven’t been detected. In this section, we will explore the

potential for FATHMM-MKL to correctly predict novel functional

mutations and compare its behaviour with that of CADD and

GWAVA across the entire human genome.

As noted earlier, our total of labelled variants consisted of

67 56 202 neutral and 12 438 positive non-coding examples, giving

a total of 67 68 640. Of these, 65 07 401 had at least one of the four

feature groups necessary to make a prediction (64 98 026 neutral

and 9375 positive), which we used as our validation set. For many

of these examples, we were not able to obtain data for all of our fea-

ture groups. In these cases, we used only the feature groups we had

and rescaled the associated kernel weights by setting the missing ker-

nel weights to 0 and the remaining weights k0‘ ¼ k‘=
P

‘ k‘. We com-

pared our predictions for the same 6.5 million positions in the

CADD database and to predictions from the GWAVA software

tool. Both FATHMM-MKL and GWAVA yield scores in the range

[0, 1], while the CADD database provides a raw decision function

value along with an encoded ranking of its scores. In all cases, the

higher the score, the greater the confidence of a functional mutation.

Conversely, the lower the score, the greater the confidence that a

mutation is neutral. Given this vastly unbalanced test dataset, we

focused our evaluations on false-positive rates, using optimal thresh-

olds for each method.

To find optimal thresholds, we iterated threshold values over the

entire range of scores for each method. At each threshold we

counted scores below the threshold as negative predictions and those

at or above the threshold as positive. This allowed us to count true-

positive, false-positive, true-negative and false-negative predictions

for computing the balanced accuracy and the false-positive rate at

each threshold. We also evaluated FATHMM-MKL at its intended

threshold of 0.5. Figures 7 and 8 show the test accuracy curves for

FATHMM-MKL and for CADD at different threshold values (raw

scores for CADD and P-values for FATHMM-MKL). CADD’s ac-

curacy peaks at a threshold of 0.73, achieving balanced accuracy of

87.6% while yielding a false-positive rate of 9.3%. FATHMM-

MKL exhibits a nominal peak at 0.26, achieving balanced accuracy

of 90.5% with a false-positive rate of 7.2%. At its default threshold

of 0.5, FATHMM-MKL’s accuracy drops to 89.6% but with a dra-

matic drop in false-positive rate to 3.8%. GWAVA (region model)

reached a peak accuracy of 67.7% at a threshold of 0.38, with a

false-positive rate of 16.7% (Supplementary Fig. S8). We also com-

pared the number of false-positive predictions at the highest confi-

dence levels for each method. FATHMM-MKL yielded 4 84 780

false-positives at its optimum threshold, 2 58 840 false-positives at

its default threshold of 0.5, 96 408 at P-values above 0.90, 50 357

above 0.95 and 1870 above 0.99. CADD had 6 29 370 false-posi-

tives at its optimal threshold, 3 54 264 false-positives ranked in the

top 10% of its predictions, and 23 563 ranked in the top 1%

(encoded rank values above 10 and 20, respectively).

We recall that for training we selected negative examples from

regions within 1 K of some annotated deleterious example. Hence,

the negative examples in our validation set consist almost entirely of

examples outside these 1 K regions. In addition, the false-positive

predictions on our validation set represent just 4–7% of negative

examples. Thus, we consider the possibility that many of the

Fig. 6. Five-fold cross-validation performance using the coding dataset and 10

feature groups (Supplementary [A–J]). ROC curves indicating that FATHMM-

MKL yields comparable performance relative to CADD the same examples

Fig. 7. Evaluation of accuracy and false-positive counts for FATHMM-MKL on

the full set of known examples from the 1000 Genomes and HGMD (evaluated

on both coding and non-coding variants). FATHMM-MKL exhibits a nominal

peak at 0.26, achieving balanced accuracy of 90.5% while yielding a false-

positive rate of 7.2%. At its default threshold (0.5), FATHMM-MKL’s accuracy

drops to 89.7% but with a dramatic drop in false-positive rate to 3.8%. Its ac-

curacy remains over 88% up to a threshold of 0.92, with the false-positive rate

dropping to just 1.2%

Fig. 8. Evaluation of accuracy and false-positive counts for CADD, for com-

parison with FATHMM-MKL, depicted in Figure 7. CADD’s accuracy peaks at

a threshold of 0.73, achieving balanced accuracy of 87.6% while yielding a

false-positive rate of 9.3%. However, as its false-positive rate declines notice-

ably above this threshold, so does its accuracy
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false-positive predictions could be true positives, i.e. that they are

mis-annotated. To explore this possibility further, in Figure 9, we

plot the distribution of minor allele frequencies for our predicted

high-scoring false-positives against the distribution of all neutral ex-

amples at a P-value confidence of 0.95 or higher. These high-scoring

false-positives have a distribution that is shifted towards lower

frequencies (this trend gradually diminishes as the P-value cutoff is

reduced). Through evolution, common variants are unlikely to be

associated with disease and it is rare variants, which are likely to be

the main source of functional impact. An individual prediction

should not be biased towards these rare variants. Consequently, the

higher incidence of false positives among rarer variants suggests

the false positive set in the data is actually enriched with some

mislabelled true positives.

3.3.2 Comparison with ClinVar data

We further evaluated FATHMM-MKL on data from the ClinVar

database (Landrum et al., 2013). This same resource was used to

validate both GWAVA and CADD so was an ideal source of novel

examples for comparing these methods (Ritchie et al., 2014; Kircher

et al., 2014). Using the most recent dataset (August 8, 2014), we ex-

tracted records labeled either as benign or pathogenic (CLNSIG

codes 2 and 5, respectively) and removed those found in our training

data. This yielded sets of 647 non-coding and 3520 coding muta-

tions that were unknown to FATHMM-MKL. Consistent with our

other experiments, we found that FATHMM-MKL outperformed

the other methods substantially on non-coding data (Fig. 10), with

an AUC of 0.93 compared with 0.89 for CADD and 0.62 for

GWAVA (region model). This gives us confidence that FATHMM-

MKL will generalize robustly to other non-coding regions of the

genome, where a vast number of novel deleterious SNVs are likely

to be discovered. Classification on coding examples was somewhat

weaker: FATHMM-MKL achieved a ROC of 0.80 compared with

0.88 for CADD and 0.56 for GWAVA (unmatched model). We

speculated that this performance may be due to examples that were

missing data for some of the FATHMM-MKL feature groups: of the

3520 coding examples, only 157 (4.5%) had data in all 10 feature

groups. When we restricted our evaluation only to examples with

data for all features, FATHMM-MKL’s performance improved

substantially (red line, bottom of Fig. 10), once again comparable

to CADD’s. This highlights a tradeoff between the accuracy we

can achieve by using many sources of evidence, and a possible

decrease in the number of confident predictions we make from those

sources.

3.3.3 Novel HGMD examples

Finally, the positive examples for our training dataset were derived

from release 2013.4 of the Human Gene Mutation Database.

During the interval after we constructed and tested the classifier,

new datapoints were added to the HGMD (now release 2014.2),

Fig. 9. The normalized count versus minor allele frequency for false-positives

(a labelled negative, predicted positive) and neutrals (a labelled negative,

predicted negative)

Fig. 10. Performance of FATHMM-MKL, CADD and GWAVA on ClinVar ex-

amples for non-coding regions (top) and coding regions (bottom). As in our

other tests, FATHMM-MKL performs substantially better than the other meth-

ods on non-coding examples, suggesting that it will generalize robustly to

non-coding regions of the genome where the vast majority of novel deleteri-

ous SNVs are likely to reside. CADD’s coding classifier performed best over-

all, while both CADD and FATHMM-MKL outperformed GWAVA. When we

considered only examples with data in all 10 feature groups, FATHMM-MKL’s

performance was comparable to CADD’s (FATHMM-MKL full, bottom figure,

red line)
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consisting of 2205 novel positive examples from coding regions and

401 from non-coding regions. This gives us an objective test of recall

performance on unseen instances. Of these novel positive examples,

339 non-coding examples (85%) and 1955 coding examples (89%)

are correctly predicted by our classifier at the default threshold.

For some non-coding examples, we had no data in any of the feature

groups and hence FATHMM-MKL could not make a prediction.

When we consider only those examples where predictions can be

made, these proportions increase to 88%. We also found that 34 of

these novel positive examples were labeled negative in our training

data, illustrating the potential prevalence of noise in the data.

In summary, FATHHMM-MKL has distinct advantages over

CADD and GWAVA and the above observations indicate that it

provides reliable predictions with recall near 88%.

3.3.4 FATHMM-MKL website

The associated website allows users to query our prediction data-

base for novel deleterious mutations. In addition, we provide down-

loadable tables of ranked positive predictions (functional in disease)

for three values of the P-value cutoff: at 0.95, 0.90 and at 0.26

(the former are subsets of the latter). Finally, we provide software

for generating predictions given new data in at least one of our

feature groups.

4 Discussion

The method we have outlined outperformed both GWAVA and

CADD when predicting the functional consequences of non-coding

sequence variants (Fig. 2 and Supplementary Fig. S2). In this case,

better performance was achieved using a smaller number of feature

groups ([A–D] in Fig. 1), as opposed to a broader range of feature

groups ([A–J] in Supplementary Fig. S1). We also achieved good per-

formance when predicting the functional impact of nsSNVs (Fig. 6).

For coding sequence variants, better performance was achieved

using all the feature groups ([A–J] in Fig. 5) instead of a smaller

subset of feature groups (e.g. [A–D] in Supplementary Fig. S4). This

out-performance was achieved despite the fact that the 10 feature

group model used only 36% of the training examples available to

the four feature group model. This suggests that a broad range

of data sources are informative for classifying variants in coding re-

gions. For predicting the functional impact of variants in non-coding

regions, the opposite is suggested, with fewer types of data being

truly informative. In both cases, the most informative indicator

is whether or not the variant falls within regions which are highly

conserved across species.

One advantage of our method is that it highlights the relative in-

formative-ness of the different sources of data (e.g. Supplementary

Fig. S3). Furthermore, the addition of a confidence measure also

allows for the isolation of a smaller set of variants that have a higher

confidence of correct functional impact assignment. This provides

an intuitive way to rank predictions for subsequent analysis when

discovering novel deleterious variants, as one may be able to survey

only a small set of the most compelling variants. However, as noted

in Section 3.3.2, incomplete data may restrict the feature groups we

can use to make a prediction. Currently, we rescale kernel weights

to accommodate these cases, but as our experiments with coding ex-

amples reveal, rescaling may not adequately compensate for missing

features. We anticipate that rapidly growing data resources will

mitigate this issue eventually, but immediate improvements in test

accuracy are possible. For example, provided the number of feature

groups remains small, we could learn sets of kernel weights specific

to all possible combinations of feature groups. Feature groups

had between 8 and 443 component features, with the strongest-

performing group having the fewest features (46-way and 100-way

conservation). It may be possible to improve performance using

feature selection within these groups. In addition, rather than inte-

grating component feature groups at the level of the data, via a com-

posite kernel, it would be possible to integrate classifiers (each

handling one feature group), via ensemble learning. Additional im-

provements are possible. For example, for non-coding regions, we

could further exploit the sequence context of a variant to identify a

possible functional element (e.g. a non-coding RNA site) and use

this information to improve predictive accuracy.

In future projects, we shall investigate these potential improve-

ments in addition to devising bespoke predictors for labelling vari-

ants in specific disease contexts, such as cancer. For prediction using

coding variants, there are further sources of data that could be rele-

vant to enhancing prediction performance. We will also experiment

with these to establish if the proposed MKL method could be

improved further, leading to out-performance over CADD.
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