arXiv:1407.1507v1 [cs.DS] 6 Jul 2014

BIOINFORMATICS

Vol. 00 no. 00 2014
Pages 1-21

KMC 2: Fast and resource-frugal k-mer counting
Sebastian Deorowicz 'y Marek Kokot !, Szymon Grabowski?, Agnieszka

Debudaj-Grabysz !

nstitute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
2Computer Engineering Department, Technical University of £ 6dZ, Al. Politechniki 11, 90-924 t.6dz,

Poland
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: Building the histogram of occurrences of every k-
symbol long substring of nucleotide data is a standard step in
many bioinformatics applications, known under the name of k-mer
counting. Its applications include developing de Bruijn graph genome
assemblers, fast multiple sequence alignment and repeat detection.
The tremendous amounts of NGS data require fast algorithms for
k-mer counting, preferably using moderate amounts of memory.
Results: We present a novel method for k-mer counting, on
large datasets at least twice faster than the strongest competitors
(Jellyfish 2, KMC 1), using about 12 GB (or less) of RAM memory. Our
disk-based method bears some resemblance to MSPKmerCounter,
yet replacing the original minimizers with signatures (a carefully
selected subset of all minimizers) and using (k, z)-mers allows to
significantly reduce the 1/O, and a highly parallel overall architecture
allows to achieve unprecedented processing speeds. For example,
KMC 2 allows to count the 28-mers of a human reads collection with
44-fold coverage (106 GB of compressed size) in about 20 minutes,
on a 6-core Intel i7 PC with an SSD.

Availability: KMC 2 is freely available at http://sun.aei.polsl.pl/kmc.
Contact: sebastian.deorowicz@polsl.pl

1 INTRODUCTION

One of common preliminary steps in many bioinformatics
algorithms is the procedure df-mer counting This primitive
consists in counting the frequencies offallong strings in the given
collection of sequencing reads, wherds usually more than 20,

(as presented in (Marcais and Kingsford, 2011)) requirederthan
100 GB of memory to handle human genome data with 30-fold
coverage. BFCounter_(Melsted and Pritchard, 2011) emplbgs
classic compact data structure, Bloom filter (BF), to redtiee
memory requirements due to preventing most single-ocooerk-
mers (which are usually results of sequencing errors andhfust
applications can be discarded) from being added to a hask. tab
Although BF is a probabilistic mechanism, BFCounter aygpiien

a smart way, which does not produce counting errors. Unfiatgly,
BFCounter is single-threaded and its performance is nopetitive
(see also the experimental results in_(Deorovétal, [2013)).
DSK (Rizk et all,12013) and KMC|(Deorowicet all., [2013) are two
disk-based algorithms. On a high level, they are similargartition

the set ofk-mers into disk buckets, which are then separately
processed. DSK is more memory frugal and may process human
genome data in as little as 4GB of RAM, while KMC is faster
but typically uses about 11-16 GB of RAM. Turtle (Rewal,
2014) bears some similarities to BFCounter. The standanorBl
filter is there replaced with its cache-friendly variant {#et all,
2009) and the hash table is replaced with a sorting and cdiopac
algorithm (which, accidentally, resembles a component I,
apart from adding parallelism and a few smaller modification
Finally, MSPKmerCounter (Li and Yan, 2014) is another disised
algorithm, based on the concept of minimizers, describedetail

in the next section.

In this paper we present a new version of KMC, one of the fastes
and most memory efficient programs. The new release borrows
from the efficient architecture of KMC 1 but reduces the diskge
several times (sometimes about 10 times) and improves #wedsp

and has applications in de novo assembly using de Bruijnhgrap usually about twice. In consequence, our tests show that KMC
correcting reads and repeat detection, to name a few are@® M s the fastest (by a far margin) algorithm for countitigners, with

applications can be found, e.g., In_(Marcais and Kingsf@i1),

with references therein.

even smaller memory consumption than its predecessor.
There are two main ideas behind these improvements. Thésfirst

K-mer counting is arguably one of the simplest (both the use of signatures éfmers that are a generalization of the idea

conceptually and programmatically) tasks in computatibiwogy,

of minimizerg(Robertset all,12004¢&.,b). Signatures allow significant

if we do not care about efficiencyhe number of existing papers on reduction of temporary disk space. Thenimizerswere used for

this problem suggests however that efficient execution isfttsk,
with reasonable memory use, is far from trivial. The mostessful
of early approaches was Jellyfish (Marcais and Kingsfoi,12,

the first time for thek-mer counting in MSPKmerCounter, but our
modification significantly reduces the main memory requeeta
(up to 3-5 times) as well as disk space (about 5 times) as aeahpa

maintaining a compact hash table (HT) and using lock-freeqo MSPKmerCounter. The second main novelty is the ugé of)-

operations to allow parallel updates. The original Jeltyfiersion

*to whom correspondence should be addressed

mers ¢ > 0) for reduction of the amount of data to sort. Simply
speaking, instead of sorting some amount-ahers we sort a much

© Oxford University Press 2014.

http://arxiv.org/abs/1407.1507v1
http://sun.aei.polsl.pl/kmc
sebastian.deorowicz@polsl.pl

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

smaller portion of(k + =)-mers and then obtain the statistics for
k-mers in the postprocessing phase.

2 METHODS
2.1 Minimizers of k-mers

Most k-mer counting algorithms start in the same way: they process

each read from left to right and extract &tmers from them, one by
one. Although the destination fdr-mers (hash table in Jellyfish, Bloom
filter in BFCounter, disk in DSK and KMC 1) and other detaildfeti in
particular solutions, the first step remains essentiallystime. There is high
redundancy in such approach as consecutiveers sharé — 1 symbols.

An obvious idea of reducing the redundancy is to store (inesoray) a
number of consecutivé-mers (ideally even a complete read) in one place.
Unfortunately, to collect the statistics we need to find alpies of each

2.2 From minimizers to signatures

To overcome the aforementioned problems we resign from epur
minimizers and prefer to use the termsifinaturesof k-mers. Essentially, a
signature can be any.-mer of k-mer, but in this paper we are interested in
such signatures that solve both of the problems mentionedealiNamely,
good signatures of lengtin should satisfy the following conditions:

1. The size of the largest bin should be as small as possible.
2. The number of bins should be neither too large nor too small
3. The sum of bin sizes should be as small as possible.

Point 1 is obvious as it limits the maximum amount of neededhorg.
Point 2 protects from costly operations on a large numberles fiopen,
close, append, etc.) in case of too many bins but also froh b@dancing
difficulties on a multi-core system when the number of binsrsll. The
last point refers to the disk space, so minimizing it redubegotal I/O.

unique k-mer, which is not an easy task when the copies are stored in Obtaining optimal signatures, i.e., such that cannot berowes in

many places. A clever solution to these problems is based@mrdncept
of minimizers [(Robertgt all, 2004£.b). Aminimizerof a k-mer is such of
its m-mers (n < k) that no other lexicographically smallen-mer can

be found. The crucial observation is that usually many coutse k-mers

have the same minimizer, so in memory or in a file on disk they fma

represented as one sequence of more khgymbols, significantly reducing
the redundancy.

The idea of minimizers was adopted recentlyfemer countingl(Li and Yan,
2014). Since in genomic data the read direction is rarelywknok-
mer counters usually do not distinguish between didechers and their
reverse complements, and collect statistics ¢anonical k-mers. The
canonicalk-mer is lexicographically smaller of the pair: tthemer and its
reverse complement. Therefore, Li and Yan in their MSPKroer@er use
canonical minimizersi.e., the minima of all canonicaln-mers from the
k-mer. They process the reads one by one and look for contgyaceas

any of the listed aspects, seems hard, so a compromise musuie.
Since the origin of both problems are runs of As (especialysignature
prefixes), we propose to use as signatures canonical miisyibut only
such that do not start with AAA, neither start with ACA, na&thcontain
AA anywhere except at their beginning. We note that in eanierks
on minimizers |(Robertst al., |20045.b] Wood and Salzbetg. 2014) similar
problems were spotted (in different applications) and seha¢ different
solutions were presented.

As the experiments show (cf. experimental section of theepagsuch
a modification significantly reduces the size of the largestdnd also
reduces the total number of sugemers, therefore both the main memory
and temporary disk use is much smaller compared to usingcarsnical
minimizers.

2.3 (k,x)-mers

containing k-mers having the same canonical minimizer; they dub these|n the memory-frugak-mer counters (DSK, KMC 1, MSPKmerCounter) all

areas as “supér-mers”. Then, the resulting supemers are distributed into
one of severabins (disk files) according to the related canonical minimizer
(more precisely, according to its hash value; in this way rihenber of
resulting bins is kept within reasonable limits). In thea®t stage each bin
is loaded into main memory (one by one), /dmers are extracted from the
superk-mers, and then counted using a hash table; after proces&imgthe
entries from the hash table are dumped to disk and the hakhrtamory
reclaimed. Since each bin contains only a small fractiorl df-aners present
in the input data, the amount of memory necessary to probedsrt is much
smaller that in the case of whole input data.

This elegant idea allows to significantly reduce the diskcepzompared
to storing eactk-mer separately (as KMC 1 and DSK do). Unfortunately, it
has the following drawbacks:

1. The distribution of bin sizes is far from uniform. In patlar, the
bin associated with the minimizer AA...A is usually huge.héxt
minimizers with a few As in their prefix also tend to produceg&a
bins.

. When a minimizer starts with a few As, then it often implgsveral
new superk-mers spanning a singlemer only. To given an example,
with m = 7 and AAAAAAC as the minimizer: when the minimizer
falls off the sliding window, so the currektmer starts with AAAAAC,
then AAAAACX (for some X) will likely be the new minimizer; bu
unfortunately for yet another window AAAACXY (for some Y)sal
has a fair chance to be a minimizer, etc.

As the amount of main memory needed by MSPKmerCounter isttlire
related to the number df-mers in the largest bin, especially the former
issue is important. It will be shown in the experimental mecthat the file
corresponding to the minimizer AA...A can be really large.

the inputk-mers are split into parts to reduce the amount of RAM memory
necessary to store all themers in explicit form. Then, thé&-mers are
sorted, inserted into a hash table or Bloom filter. Neveet®| often the
size of the largest part (bin) can be a problem, i.e., affdetspeak RAM
use. Also, there is a need to explicitly process (sort, tnsén some data
structure) each single-mer.

Below we show that it is possible to reduce the amount of mgmor
necessary for collecting the statistics even more and pisedsup the sorting
process by processing a significant partkefners implicitly. To this end,
we need to introducék, x)-mers that arék + z’)-mers in the canonical
form, wherex’ = 0,1, ..., z (for some smalk) such that alk-mers within
(k, z)-mer are in canonical form.

The idea is that instead of breaking supemers intok-mers (for sorting
purposes), we break them into as few as posgible:)-mers in such way
that no two neighbors share the sakner, but eacht-mer present in a
superk-mer is present in some ¢k, x)-mers. As preliminary experiments
on real data show, with setting = 3 the number of k, z)-mers becomes
about twice smaller than the number /ofmers. This means that the main
memory is reduced almost twice. At the same time, the sogepd is
improved.

2.4 Sketch of the algorithm

Similarly to its predecessor, KMC 2 has two phases: distiobuand sorting.
In the distribution phase, the reads are read from FASTQIRAS8les.
Each read is scanned to find (partially overlapping) regisuperk-mers)
sharing the same signature (Fig. 1). These séperers are sent to bins
(disk files) related to signatures. The number of possildeatires,4™,
can be, however, quite large, e.g., 16,384 for typical vaiue= 7. Thus,
to reduce the number of bins to at most 512, some signatueemerged
(i.e., the corresponding sequences are sent to the samé&bitgcide which

KMC 2: Fast and resource-frugal k-mer counting

Minimizers
CGTTGATCAATTTG Read
CGITGATC Minimizer: rev_comp(CGI T) = AACG
GTTGATCAAT Minimizer: rev_comp(TGAT) = ATCA
GATCAATT Minimizer: AATT
ATCAATTTG Minimizer: rev_comp(ATTT) = AAAT
Signatures
CGTTGATCAATTTG Read
CGITGATC Signature: rev_.comp(CGIT) = AACG
GITGATCAAT Signature: rev_comp(TGAT) = ATCA
GATCAATTTG Signature: AATT

Fig. 1. A toy example of splitting a read into supkrmers. The assumed

parameters aréi = 8, m = 4.

Super k-mer
ACGCCGACGATGAACTGCCATCTCACA

Successive (k, 1)-mers
ACGCGACGATGAACT
GCAGTTCATCGTCGCG
CGACGATGAACTGCCA
ACGATGAACTGCCATC
AGATGGCAGTTCATC
ATGAACTGCCATCTCA
GAACTGCCATCTCACA

rev_comp(CGCGACGATGAACTGC)

rev_comp(GATGAACTGCCATCT)

Sorted (k, 1)-mers
ACGCGACGATGAACT } R
AGATGGCAGTTCATC 0
ACGATGAACTGCCATC} R
ATGAACTGCCATCTCA A
CGACGATGAACTGCCA } Rc } R
GAACTGCCATCTCACA} R
GCAGTTCATCGTCGCG | ¢

Fig. 2. Splitting a supetk-mer into (k, 1)-mers followed by sorting them.

The assumed parameters dte= 15, m = 4. The rangeR is empty (thus
not shown).

signatures to merge, in a preprocessing stage KMC 2 readsilafsaation
of the input data, builds a histogram of found signatured, farally merges
the least frequent signatures.

In the sorting phase, KMC 2 reads a file, extracts (ther)-mers from
superk-mers and performs radix sort algorithm on them. Then, itudates

the statistics fok-mers. In real implementation can be 0, 1, 2, or 3, but for

presentation clarity we will describe how to collect thetistacs of k-mers
from (k, 1)-mers.

It is important to notice where in the sorted array(&f 1)-mers some
k-mer can be found. There are 6 possibilities:

1 it can be just &-mer,
2 it can be a prefix of somg: + 1)-mer,
3-6 it can be a suffix ofk + 1)-mer preceded by A, C, G, or T.

Therefore, we conceptually split the array @, 1)-mers into 5 non-
overlapping, sorted subarrays: ony| containingk-mers and four g 4,

Rc, R, Rr) containing(k+1)-mers starting with A, C, G, T. There is also
one extra subarray{;) containing all(k + 1)-mers, i.e., a concatenation of

Ra, Rc, Rg and R (Fig.[2).

FASTQ reader

] FASTQ parts queue

FASTQ reader

] Bin chunks queue

] Sorted and compacted
bins queue

Completer

Fig. 3. A scheme of the parallel KMC algorithm

Now to collect the statistics ok-mers we scan these 6 subarrays in
parallel. So, we have 6 pointers somewherdinWe compare the pointed
elements, find the lexicographically smallest canonicaher among them
(from Rx for X being a letter we take the suffix ¢k 4 1)-mer) and store
it in the resulting array of statistics éf-mers P if it is different than the
recently added-mer to P. Otherwise, we just increase the counter related
to thisk-mer in P. Since, we scan the arrays. in a linear fashion, the time
complexity of this “merging” subphase is linear.

The overall KMC 2 algorithm is presented in F[d. 3. SeveralSF®
readers send input data chunks into a queue, handled thegiitbgrs which
dispatch supek-mers with the same signature to the same bin chunk. The
queue of these chunks is in turn processed with a disk writeich dumps
the bin to disk. In the next phase, the bins, read from diskqaeue in the
memory, are sorted and compacted by multiple sorter threiidally, the
completer stores the sorted bins in the output databaseskn di

The final database of-mers is stored in compact binary form. The
KMC 2 package contains: the-mer counter, dump program that allows
to produce the textual list ok-mers together with their counters, C++
API designed to allow to use the database directly in varapications.
The k-mer counter allows to specify various parameters, e.g.thteshold
below which thek-mer is discarded (e.g., in some applications kheers
appearing only once are treated as erroneous), the maximalrd of
memory used in the processing. More details on the API, ttebdae format
and the search algorithm in the database are given in thelSunpptary
material.

2.5 Additional features

KMC 2, like its former version, allows to refrain from coumg too rare
or too frequentk-mers. It is done during “merging” substage, in which
the total number of occurrences of eakkmer is known. The software
also supports quality-aware counters, compatible withgbpular error-
correction package Quake (Kelleyal, [2010). In this mode, the counter
for thek-mer is incremented by the probability that all symbols & hmer
are correct (calculated according to the base quality sqlui allow this,

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

Table 1. Characteristics of the datasets used in the experiments. Table 2. k-mers counting results fd. gallus
Organism Genome No. FASTQ No. Gzipped Avg.read k=28 k=55
length bases filesize files size length Algorithm RAM Disk Time RAM Disk Time
F. vesca 210 4.5 103 11 35 353 SSD
G. gallus 1,040 34.7 1159 15 25.9 100 Jellyfish 2 33 0 880 out of memory
M. balbisiana 472 56.9 197.1 2 49.1 101 KAnalyze 9 270 11,071 unsupportedc
H. sapiensl 3,093 86.0 223.3 6 70.8 100 DSK 6 101 1,325 6 94 1,836
H. sapien 3,093 1353 3129 48 105.8 101 Turtle 48 0 1,004 out of memory
MSPKC 17 114 3,382 out of time & 10 hours)
No of bases are in Gbases. File sizes are in Gbytes (1Ghydé bytes). Approximate KMC 1 13 101 868 12 173 1,792
genome lengths are in Mbases accordingttp://www.ncbi.nlm.nih.gov/genome/| KMC 2 (12GB) 12 25 408 12 18 503
KMC 2 (6GB) 6 25 431 6 18 562
the qualities must be stored in temporary disk files for eaself a supek- HDD
mer. To our knowledge, the only othlermer counters with this functionality ~ Jellyfish 2 33 0 915 out of memory
are KMC 1 and Jellyfish 1 (but not the current version 2). KMCaddiies DSK 6 101 3,600 6 94 4,206
not only sequencing reads (FASTQ), but also genomes (FASIAQly, we Turtle 48 0 1058 out of memory
note that KMC 2 can work in RAM-only mode in which the bins airagly MSPKC 17 114 4,853 outoftime (> 10 hours)
stored in the main memory, which may be convenient for laajaaknters. KMC 1 11 101 1,320 12 173 2,036
KMC 2 12 25 587 12 18 656

3 RESULTS

The implementation of KMC 2 was compared against the beggrims of
speed and memory efficiency, competitors: Jellyfish 2 (whiaignificantly
more efficient than the version described in (Marcais anth&ford| 2011)),

Table 3. k-mers counting results fovl. balbisiana

k=28 k=155
DSK, Turtle, MSPCounter, KAnalyze and KMC 1. Each prograns tested . - - - -
for two values ofk (28 and 55) and in two hardware configurations: using Algorithm RAM Disk Time RAM Disk Time
conventional disks (HDD) and using a solid-state disk (SSD§ used
several datasets (Taljle 1) of varying size; two of them aneanudata with SSD
large coverage. The experiments were run on a machine exlipjth an Jellyfish 2 17 0 1,080 26 0 853
Intel i7 4930 CPU (6 cores clocked at 3.4 GHz), 64 GB RAM, andDDi4 KAnalyze 9 354 8249 - = —
(3TB each) in RAID 0 and single SSD (1 TB). The programs werewith DSK 6 164 2,356 6 138 2,962
the number of threads equal to the number of virtual caes ¢ = 12), to Turtle 46 0 1484 out of memory
achieve maximum speed. MSPKC 10 185 8,729 out of time & 10 hours)
The comparison, presented in Tab[d$12—4 and SupplementrestT KMC1 13 165 1,229 15 279 2,622
1-2, includes total computation time (in seconds), maximRAM use, KMC 2 (12GB) 12 41 755 12 29 834
maximum disk use. RAM and disk use are given in GBs (1 GB*B). KMC 2 (6GB) 6 41 685 6 29 895
Time is wall-clock time in seconds. A test running longentii® hours was
interrupted. Other reasons for not finishing a test were ssiee memory HDD
consumption (limited by the total RAM, i.e., 64 GB) or exdessdisk use Jellyfish 2 17 0 1,115 26 0 881
(over 650 GB, chosen for our 1 TB SSD disk; note that the larggsit DSK 6 164 6,216 6 138 7,228
datasetH. sapien2, occupies 312.9 GB on the same disk). Turtle 46 0 1,498 out of memory
Several conclusions can easily be drawn from the preseatgest Two MSPKC 10 185 12,152 outoftime & 10 hours)
of the competitors, KAnalyze and MSPKC, are clearly the sty for KMC 1 13 165 2,194 15 279 3,367
this reason, KAnalyze was tested only on the SSD. KAnalyge abkes a KMC 2 12 41 960 12 29 1,041

large amount of temporary disk space, which was the reascstopped its
execution on the two human datasets {for 28 only, as KAnalyze does not
support large values @f). MSPKC, on the other hand, theoretically allows
the parametek to exceed 32, but in none of our datasets it finished its work
for & = 55; for the smallest dataseF.(vesca it failed probably because Turtle is rather fast as well (slower than Jellyfish thoudht, even more
of variable-length reads, on the other datasets we stopédidi more than ~ memory hungry; we could not have run it on the two largeststa Turtle
10 hours of processing. The only asset of KAnalyze and MSPKGave and Jellyfish are memory-only algorithms, all the other aaresdisk-based.
found is their moderate memory use. This is the reason why changing HDD to a much faster SSD daeafiest

DSK is not very fast either. Still, it consistently uses theafiest amount the performance of these two counters significantly (yetitdn-zero due to
of memory (6 GB was always reported) and is quite robust, passed all ~ faster input reading from the SSD).

the tests. KMC 2 on the SSD was tested twice for eachwith standard memory
Jellyfish 2 is not very frugal in memory use, and this is thesosaon our use (12GB) and with reduced memory use (6 GB). These setirgsa
machine it passed the test fler= 55 only for two datasetsH vescaandM. “suggestion” rather than a rigid limitation, as a large maxim bin size may
balbisiang. Still, for £ = 28 it passed all the tests, being one of the fastest force KMC 2 to use more memory, Such a phenomenon was seeralseve
programs, often outperforming KMC 1. times especially in the memory-reduced runs. This also swtat our goal

http://www.ncbi.nlm.nih.gov/genome/

KMC 2: Fast and resource-frugal k-mer counting

Table 4. k-mers counting results fdi. sapiens2.

Table 5. Influence of input data format on thlemers counting
times of KMC 2 forH. sapien2.

k=28 k =55
Algorithm RAM Disk Time RAM Disk Time k=28 k =55
Algorithm RAM Disk Time RAM Disk Time
SSD
Jellyfish 2 62 0 3212 out of memory Non-gzipped input files
KAnalyze out of disk & 650 GB) unsupported: KMC2fIPD 12 101 2,259 13 70 2,640
DSK 6 263 5,487 6 256 7,732 KMC2SSD 12 101 1,615 13 70 2,038
Turtle out of memory out of memory KMC 288D 6 101 1,706 13 70 2,446
MSPKC out of time & 10 hours) out of time % 10 hours)
KMC 1 17 396 2,998 out of disk & 650 GB) Gzipped input files
KMC 2 (12GB) 12 101 1,615 13 70 2,038 KMC 2HDD 12 101 2,004 13 70 2,495
KMC 2 (6GB) 6 101 1,706 13 70 2,446 KMC 258D 12 101 1,217 13 70 1,607
KMC 255D 7 101 1,495 13 70 1,909
HDD
Jellyfish 2 62 0 3,231 out of memory
DSK 6 263 18,493 6 256 22,432
KMC 1 17 396 4,898 out of disk & 650 GB))) .
KMC 2 12 101 2.259 13 70 2.640 Table 6. Comparison of signatures and minimizers @rgallusdataset.
Minimizers Signatures
Length Avg.in No.k-mers Min. Avg.in Nok-mers Min.
read largest bin memory read largest bin memory
to match DSK in memory use in the memory-reduced mode wasuite g k= 928
a}ccompllshed, yet we note that reducing the memory resintpdbcessing 5 6.935 3,361 26.5 6.045 1,904 18.1
time longer by only 5%-20%. , o 6 7519 1231 109 6385 625 5.9
' KMC 2 with its standard memory use is a.clear winner in prooess 7 7.919 641 5.5 6.728 283 26
time, on the human da‘tasets being about twice faster th;h}flslelz or 8 8.304 371 31 7143 328 30
KMC 1. These speed differences concern the SSD experimasitsn the
HDD the gap diminishes (but is still significant). This canéoglained by
I/O (especially reading the input data) being the bottleriaseveral phases k =55
of KMC 2 processing. 5 2.669 3,940 62.0 2.477 2,257 38.3
It is worth examining how switching a conventional disk toSCBaffects 6 2.915 1,513 24.1 2.501 819 13.9
the performance of disk-based software. It might seem abthiat the 7 3.038 801 12.8 2.642 280 5.5
8 3.117 467 7.3 2.678 330 6.4

biggest time reduction (in absolute time, not percentage) gaould be seen
in those programs which use more disk space. To some deggdaliit (e.g.,
KMC 1 gains more than KMC 2) but DSK is a “counter-example’g.eon ~ ‘Avg. in read’ is the average no. of supksmers per read. ‘Nok-mers largest bin"is the
H. sapiens2 it gains a whopping 13,006 s which is almost seven times thaumber(in millions) ofk-mers in the Iarges? bin. ‘Min. memory’ is the amount of meynor
reduction for KMC 1, seemingly surprising as DSK uses lesk sipace. Yet, (in Gbytes) ngcessary to proce;ss theers in the Ia_rgest bin, |_.e., Fhe lower bound of the

L . . memory requirements. The size of temporary disk space &ymeted by the average
a probable e>_<planat|on is that DSK works in several pasgesss sotal 1/0 number of minimizers/signatures in a read. For exampledisiespace requirements for
is actually quite large for large datasets. minimizer/signature length 7 are: 25.4 GB (signatudes= 28), 28.6 GB (minimizers,

Interestingly, for disk-based algorithms the disk use of &Rlis typically 1 — 2g).
reduced when switching froa = 28 to &k = 55. This can be explained by a
smaller number ok-mers per read, and in case of KMC 2 also by a smaller
number of supek-mers per read.

We also measured how the input format (raw, gzipped) andar(&tbD,
SSD) affects the performance of our solution on the largesaset, H.
sapiens2 (Table[®). As expected, using the SSD reduces the time by-25%
40%, and reading the input from compressed form also hastdevjgsitive
impact. We note in passing that replacing gzip with, e.gipdZresults
not shown here) would not be a wise choice, since the impremérimn
compression cannot offset much slower bzip2's decommessi (Fig. [H), but the effect on processing time (Fig. 4) is not &ac Still,

Table[® compares signatures with minimizers@ngallus We can see counting k-mers fork > 32 is generally slower than for smaller values
that using our signatures diminishes the average numbepefs-mersina of .
read by about 10-15 percent. Also the numbét-ofiers in the largest (disk) From Fig[® we can see that using more memory accelerates KNdGt 2
bin is significantly reduced, sometimes more than twice s€lahievements the effect is mediocre (only about 10% speedup when raisiagrtemory
directly translate to smaller RAM and disk space consumptio consumption from 16 GB to 40 GB). The reasons behind the sjpeade

How (k,z)-mers affect bin processing is shown in Table 7 for two basically 2-fold:(7) the extra RAM allows to use a larger number of sorter
datasets. It is easy to see that the number of strings to sanbbre than threads (which is more efficient than few sorters with moterimal threads
halved forz = 3, yet the speedup is more moderate, due to the extra spliper sorter), andiz) occasional large bins disallow to run other sorters at the
phase and sorting over longer strings. Stik, 3)-mers vs. plaink-mers same time if memory is limited.

reduce the total time by more than 20% (and even 38%if@apiens? and
k = 55).

The impact ofk on processing time and disk space is presented in
Figures[# and5, respectively. Longlemmers result in even longer super
k-mers, which minimizes 1/O, but makes the sorting phase dangor
this reason, the disk space consumption shrinks smoottily gvowing k

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

Table 7. Impact of (k, z)-mers on bin processing and overall KMC 2
processing, foG. gallusandH. sapiens2. 12 GB RAM set, gzipped
input. “Sorted fraction” is the ratio of the number @, z)-mers to the
number ofk-mers.

k=28 k=055
T Split Sort Total Sorted Split Sort Total Sorted
time time time fraction time time time fraction

G. gallus
0 102 159 261 1.000 98 381 479 1.000
1 127 131 258 0.646 104 284 388 0.639
2 127 119 246 0.539 104 265 369 0.527
3 127 112 239 0.491 106 240 346 0.479
H. sapiens ERA015743
0 672 867 1539 1.000 399 2188 2587 1.000
1 664 669 1333 0.648 448 1480 1928 0.638
2 644 614 1258 0.541 455 1176 1630 0.526
3 644 573 1217 0.495 439 1168 1607 0.478

ForH. sapien2 the largest bin was too large to fit the assumed amount of RAM
in two cases, and the RAM consumption of KMC 2 was 25 GB(ff, 0)-mers,
18 GB for (55, 1)-mers, 15 GB fo(55, 2)-mers, and 13 GB fo(55, 3)-mers.

o
[0}
£ | i
E 1,000 - -
i —e— 12GBRAM | |
: —8— 24GB RAM
0 TN T
20 30 40 50 60 70

Fig. 4. Dependence of KMC 2 processing timeffor H. sapien dataset
(k = 22,25, 28, 32, 40, 50, 60, 70)

Finally, we analyze the scalability and CPU load of our safev(FigLY).
As expected, the highest speed is achieved when the numitareafds
matches the number of (virtual) CPU cores (12). Still, timeetireduction
between 1 and 12 threads is only by factor 3 or less, when {hé ihata
are in non-compressed FASTQ. Using the compressed inpatiens the
gap to factor 6.4 fok = 28 and 4.9 fork = 55. The corresponding gaps
between 1 and 6 threads (i.e., equal to the numbgrhgsicalcores) are:
2.3 and 25k = 28 andk = 55) with non-compressed input, and 4.9
and 3.9 £ = 28 andk = 55) with gzipped input. The latter experiment
tells more about the scalability of our tool, since the perfance boost from
Intel hyper-threading technology can be hard to prediatying from less
than 10%|(Schuepbaddt al,, (2013, Tab. 1) to about 60% (Sebast&al.,
2012, Tab. Il) in real code.

4 CONCLUSION

Although the dominating trend in IT solutions nowadays is th
cloud, the progress in bioinformatic algorithms shows thetn
home computers, equipped with multi-core CPUs, severalyitgs

UL L L 0
[—e— 12GB RAM | |

100 =

m . i

19} L |

(]

¥ L B

]

o L B

"

x 50 |- |

0

o L B
07\\HH\HM\HHH\MHH\HMHHHHMHHHHMF
20 30 40 50 60 70

Fig. 5. Dependence of KMC 2 temporary disk usagekofor H. sapiens2
dataset

3,000 LS L L L LA

—e— Lk =28

—=—k =255

2,000

1,000

Time [s]
T T T T T T T T T T T T
TN B T T B N N B |

0 S A A Y I
10 20 30 40

RAM [GB]

Fig. 6. Dependence of KMC 2 processing time on maximal available RAM
and type of disk foiH. sapiens2 dataset. There are 4 results for= 55

and 13GB RAM. These results are for set 6 GB, 8GB, 10GB, 12GB as
maximal RAM usage. However, the largest bin enforced to dmreast

13 GB of RAM

of RAM and a few fast hard disks (or one SSD disk) get powerful
enough to be applied for real “omics” tasks, if their resesrare
loaded appropriately.

The presented KMC 2 algorithm is currently the fastest
k-mer counter, with modest resource (memory and disk)
requirements. Although the used approach is similar to the o
from MSPKmerCounter, we obtain an order of magnitude faster
processing, due to the following KMC features: replacing th
original minimizers with signatures (a carefully selectedbset of
all minimizers), using(k, z)-mers and a highly parallel overall
architecture. As opposed to most competitors, KMC 2 worked
stably across a large range of datasets and test settings.

In real numbers, we show that it is possible to count the 28-
mers of a human reads collection with 44-fold coverage (1B6 G
of compressed size) in about 20 minutes, on a 6-core Intet Gor
PC with an SSD. With enough amounts of available RAM it is also
possible to run KMC 2 in memory only. In our preliminary tegts
almost did not help compared to an SSD (up to 5% speedup) but
may be an option in datacenters, with plenty of RAM but pdgsib
using network HDDs with relatively low transfer. In this segio a
memory-only mode should be attractive.

KMC 2: Fast and resource-frugal k-mer counting

2,000 r T T T T T T T I T T
t —— k=28 —m— k=055 B
| —a—k =28-gz —8— k = 55-gz | |
1,500 |- N
°, L i
[} — |
E 1,000 | |
[= I B
500 |- .
oL | | | | | L
0 2 4 6 8 10 12
No. threads
T T T T
1,000 |
g L
()
o L
b
= 500 |-
> L
o
O L
0 | | | | | |
0 2 4 6 8 10 12

No. threads

Margais, G. and Kingsford, C. (2011). A fast, lock-free eggeh for efficient parallel
counting of occurrences of k-merBioinformatics 27(6), 764—770.

Melsted, P. and Pritchard, J. K. (2011). Efficient countihgeners in DNA sequences
using a Bloom FilterBMC Bioinformatics 12(333).

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walei®, Brownley, A., Johnson,
J., Li, K., Mobarry, C. M., and Sutton, G. G. (2008). Aggressassembly of
pyrosequencing reads with mat&oinformatics 24(24), 2818-2824.

Putze, F., Sanders, P., and Singler, J. (2009). Cache-amkbpace-efficient Bloom
filters. ACM Journal of Experimental Algorithms4.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK:mer counting with very low
memory usageBioinformatics 29(5), 652—-653.

Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorked.J(2004). Reducing
storage requirements for biological sequence compari8aoinformatics 20(18),
3363-3369.

Roberts, M., Hunt, B. R., Yorke, J. A., Bolanos, R. A., and d»elr, A. L. (2004).
A preprocessor for shotgun assembly of large genordesrnal of Computational
Biology, 11(4), 734-752.

Roy, R. S., Bhattacharya, D., and Schliep, A. (2014).
frequent k-mers with cache-efficient algorithms.
doi:10.1093/bioinformatics/btu132.

Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.WimKD., and Dubey, P.
(2010). Fast Sort on CPUs and GPUs. A Case for Bandwidth @bEVSIMD Sort.
Proc. of the 2010 Int. Conf. on Management of daa 351-362.

Schuepbach, T., Pagni, P., Bridge, A., Bougueleret, L.,axies, I., and Cerutti, L.
(2013). pfsearchV3: a code acceleration and heuristicacchePROSITE profiles.
Bioinformatics 29(9), 1215-1217.

Sebastiao, N., Encarnacdo, G., and Roma, N. (2012). emmphtation and
performance analysis of efficient index structures for DN#arsh algorithms in
parallel platforms. Concurrency and Computation: Practice and Experieroba:
10.1002/cpe.2970.

Wood, D. E., Salzberg, S. L. (2014). Kraken: Ultrafast metagnic sequence
classification using exact alignmentenome Biologyl5(3), R46.

Turtldentifying
Bioinformatics

Fig. 7. Dependence of KMC 2 processing time and CPU usage on the set

number of threads foB. gallusdataset.

We expect to successfully apply KMC 2 for a few problems

related tok-mers, e.g., finding nullomers (Faléaall,[2014).

ACKNOWLEDGMENT

Funding This work was supported by the Polish National Science

Centre under the project DEC-2012/05/B/ST6/03148. Théwas
performed using the infrastructure supported by POIGRR2124-
099/13 grant: “GeCONil-Upper Silesian Center for Compatsl
Science and Engineering”.

REFERENCES

Deorowicz, S., Debudaj-Grabysz, A., and Grabowski, S. 8201Disk-basedk-mer
counting on a PCBMC Bioinformatics14, 160.

Falda, M., Fontana, P., Barzon, L., Toppo, S., and Lavezzq2&l4). keeSeek:
searching distant non-existing words in genomes for PCedbaapplications.
Bioinformatics doi:10.1093/bioinformatics/btu312.

Kelley, D. R., Schatz, M. C., and Salzberg S. L. (2010). Qugkelity-aware detection
and correction of sequencing errodenome Biologyl1(11):R116.

Kurtz, S., Narechania, A., Stein, J., and Ware, D. (2008)e# method to compute K-
mer frequencies and its application to annotate large itegplant genomesBMC
Genomics9(1), 517.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway., Antonescu, C., and
Salzberg, S. L. (2004) Versatile and open software for comgdarge genomes.
Genome Biology5(2), R12.

Li, Y. and Yan, X. (2014). MSPKmerCounter: A fast and
memory efficient approach for k-mer counting. Preprint at
http://cs.ucsb.edu/~ yangli/papers/MSPKmerCounter.pdf.

http://cs.ucsb.edu/~yangli/papers/MSPKmerCounter.pdf

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

Supplementary material for the paper
KMC 2: Fast and resource-frugal £-mer counting
by

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski,
and Agnieszka Debudaj-Grabysz

KMC 2: Fast and resource-frugal k-mer counting

1 KMC USAGE

KMC 2 program constructs a database of statistics for inputf$&88TQ files. This database can then be used from other saftwaectly
via KMC API (described in Sectionl 2) or by reading a textua fibntaining a list ok-mers and their related counters. This textual file
can be obtained for a database by KMC-dump program, thatiepted in Sectidd 3 as a sample application of our KMC ARiti@H4
describes the database format in detail for those intetaésténe low-level access to the data. Secfibn 5 containgiaddl experimental
results and a description of the parameters of executiohefkamined programs. Sectign 6 contains description ofthewautomatic
setting of parameters of KMC works.

As this document is in part a technical documentation of Kib@ne parts of it (e.g., API, command-line parameters) agklyisimilar
to the supplement of our previous paper: S. Deorowicz, A.UdaepGrabysz, Sz. Grabowski: Disk-basedner counting on a PBMC
Bioinformatics 14, 160 (2013). The mentioned paper described the previengson of the current tool, i.e., KMC 1.

Below we describe in detail the parameters and options dKM€ command-line tool, in version 2.0.

The general syntax is:
kmc [options]<inputfile_.name> <outputfile_name> <working.directory>
or:
kmc [options]< @inputfile_.names- <outputfile_-name> <working.directory>

where the parameters are:

e input file_.name — a single file in FASTQ format (gzipped or not),
e @inputfile_names — a file name with list of input files in FASTQ format (g=gd or not),
e outputfile_name — the output database file; if such a file exists, it wilbberwritten.

The configuration options comprise:

e -v — verbose mode (shows all parameter settings); defaute fal

e -k<len> — k-mer lengthk from 1 to MAX_K; default: 25,

e -m<size> — max amount of RAM in GB (from 4 to 1024); default: 12,

e -p<par> — set signature length (from 5 to 7); default: 7,

e -fla/g/m] — input in FASTA format (-fa), FASTQ format (-fq) or multi FAR (-fm); default: FASTQ,
e -([value] — use Quake’s compatible counting with [value] represenkinvest quality; default: 33,
e -ci<value> — excludek-mers occurring less thaavalue> times; default: 2,

e -cs<value> — maximal value of a counter; default: 255,

e -cx<value> — excludek-mers occurring more of thaavalue> times; default: 1e9,

e -b — turn off transformation of-mers into canonical form,

e -r—turn on RAM-only mode,

e -sf<value> — number of FASTQ reading threads,

e -sp<value> — number of splitting threads,

e -so<value> — number of sorter threads,

e -sr<value> — number of threads per single sorter,

e -t<value> — total number of threads.

The parameterssf<value>, -sp<value>, -so<value>, and-sr<value> concern the internal work of KMC, i.e., their settings may
affect the program’s processing speed, but won't changeuisut. Not setting at least one parameter from this groukesi&MC ignore
them all. The parametet<value> sets total number of threads (including fastq readersttegj sorters and threads per single sorter, but
NOT including disk writer, bin reader and main KMC thread)-tk value>, -sf<value>, -sp<value>, -so<value>, and-sr<value>
are specified thet<value> is ignored. Setting the parametercauses all computations are performed using RAM memorfouitusing
disk space (memory usage may exceed limit).

Here are some usage examples.
kmc -k27 -m24 NA19238.fastq NA.reglata\kmc_tmp_dir\
kmc -k27 -q -m24 @files.Ist NA.régdata kmc_tmp.dir\

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

2 API

In this section we describe two classes, CKmerAPI and CKNECHihey can be used to obtain access to the databases piduu&aMC
program.

2.1 CKmerAPI class
This class representskamer. Its key methods are:

CKmerAPI(uint32 length = 0) — constructor, that creates the array kndata of appropriate size,
CKmerAPI(const CKmerAPI &kmer) — copy constructor,

char get_symbol(unsigned int pos) — returnsk-mer’'s symbol at a given position (0-based),
std::string to_string() — convertsk-mer to string, using the alphabet ACGT,

void to_string(char *str) — convertsk-mer to string, using the alphabet ACGT; the function assuthat enough memory was
allocated,

void to_string(str::string &str) — convertsk-mer to string, using the alphabet ACGT,
bool from_string(std::string &str) — converts string (from alphabet ACGT) kemer,
CKmerAPI() — destructor, releases the contenkofer_data array,

overloaded operators: =, ==x,.

2.2 CKMCFile class
This class handles/amer database. Its key methods are:

CKMCFile() — constructor,

bool OpenForRA(std::string file_name) — opens two files: filename with added extension “.komre” and “.kmcsuf”, reads their
whole content to enable random access (in memory), and tbsescthem,

bool OpenForListing(std::string file_name) — opens the file filename with added extension “.knopre” and allows to read thie-mers
one by one (whole database is not loaded into memory),

bool ReadNextKmer(CKmerAPI &kmer, float &count) — reads nexk-mer to kmer and updates its count; the return value is bool;
true as long as not eof-of-file (available only when datalimepened in listing mode),

bool Close() — if the file was opened for random access, the allocated mefooiits content is released; if the file was opened for
listing, the allocated memory for its content is releasedi the “.kmer” file is closed,

bool SetMinCount(uint32 x) — set the minimum counter value férmers; if ak-mer has count below x, it is treated as non-existent,
uint32 GetMinCount(void) — returns the value (uint32) set with SetMinCount,

bool SetMaxCount(uint32 x) — set the maximum counter value femers; if ak-mer has count above x, it is treated as non-existent,
uint32 GetMaxCount(void) — returns the value (uint32) set with SetMaxCount,

uint64 KmerCount(void) — returns the number of-mers in the database (available only for databases openezhdom access
mode),

uint32 KmerLength(void) — returns thek-mer length in the database (available only for databasesezpin random access mode),

bool RestartListing(void) — sets the cursor for listing-mers from the beginning of the file (available only for datsés opened in
listing mode). The metho®penForListing(std::string file_name) invokes it automatically, but it can be also called by a user,

bool Eof(void) — returns true if allk-mers have been listed,

bool CheckKkmer(CKmerAPI &kmer, float &count) — returns true if kmer exists in the database and set its dbtime answer is
positive (available only for databases opened in randorasscmode),

bool IsKkmer(CKmerAPI &kmer) — returns true if kmer exists (available only for databagesned in random access mode),
void ResetMinMaxCounts(void) — sets mincount and maxcount to the values read from the database,

bool Info(uint32 &_kmer_length, uint32 & mode, uint32 &_counter_size, uint32 & lut_prefix_length, uint32 &_signature_len,
uint32 & _min_count, uint32 & max_count, uint64 &_total_kmers) — gets current parameters from thener database,

CKMCFile() — destructor.

10

KMC 2: Fast and resource-frugal k-mer counting

3 EXAMPLE OF API USAGE

Thekmc_dump application (Figd.18 arfd 9) shows how to list and pkinthers with at leastuin_count and at mostnaz _count occurrences in
the database. Fi] 8 presents parsing the command-linmptes, includingci<value> and-cx<value>. Input and output file names are
also expected. The code in Hig. 9 is for actual database ingndlhis database is represented BgKIMCFile object, which opens an input
file for k-mer listing (the methodbool OpenForListing(std::string file_.name) is invoked). The parameter of the meth8dtMinCount
(SetMaxCount) must be not smaller (not greater) than the correspondingnpeter-ci (-cx) with which KMC was invoked (otherwise,
nothing will be listed). The liste&-mers are in the form like:

AAACACCGT \t<value>

where the first part is thé-mer in natural representation, which is followed by a tabrabter, and its associated value (integer or float).
(Such format is compatible with Quake, a widely used toolkseguencing error correction.) Note that, if needed, oneseaily modify the
output format, changing the lines 39 and 41 in Eig. 9.

For performance reasons, the KMC package contains twontariaf the dump program. The first one, presented below, is the
kmc_dump_sample program. The second variarkmc_dump, is essentially the same, the only difference is the way thenters are
printed. Instead of théorintf function we used much faster way of converting numbers imgotéxtual form. Thus, in real applications the
kmc_dump variant should be used.

11

© ©® N @ U A~ W NP

g e A A A DS B R BB D ®®®E LW NNNNNNRNNNNRE R R R R e R
DA W NP OB ®N®OR®NRPROSOG®NOO R ®NRPOO©®®N O O KR NP O O© ®N o s @ N P O

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Agnhieszka Debudaj-Grabysz

#include <iostream>
#include ”../kmc_api/kmc_file.h”

void print_.info (void);

int _tmain(int argc, charx argv[])
{
CKMCFile kmer_database;
int i;
uint32 min_count_to_set = 0;
uint32 max_count_to_set = 0;
std:: string input_file_name;
std :: string output_file_name;

FILE % out_file;
/1
/] Parse input parameters
/1
if (argc < 3)

print_info ();
return EXIT_FAILURE;
}

for(i = 1; i < argc; ++i)
it (argv[i][0] == ')

if (strncmp(argv[i], "—ci”, 3) == 0)
min_count_to_set = atoi(&argv[i][3]);
else if (strncmp(argv[i], "—cx”, 3) == 0)
max._count_to_set = atoi(&argv[i][3]);
}
else
break;

}

if (argc — i < 2)
{
print_info ();
return EXIT_FAILURE;

}

input_file_name = std::string(argv[i++]);
output_file_name = std::string(argv[i]);

if ((out_file = fopen (output_file_.name.c_str(),”wb”)) == NULL)

{
print_info ();
return EXIT_FAILURE;

}

setvbuf(out_file , NULL ,_IOFBF, 1 << 24);

Fig. 8. First part ofkmc_dump_sample application

12

KMC 2: Fast and resource-frugal k-mer counting

11
/1 Open kmer database for listing and print kmers within min_count and max-count
11

if (! kmer_database.OpenForListing (input_file_name))

{
print_info ();
return EXIT_.FAILURE ;
¥
else
{

uint32 _kmer_length;
uint32 _mode;

uint32 _counter_size;
uint32 _lut_prefix_length;
uint32 _signature_len;
uint32 _min_count;

uint32 _max.count;

uint64 _total_kmers;

kmer_database.Info (_-kmer_length , _mode, _counter_size, _lut_prefix_length, _signature_len,
_min_count, _max._count, _total_kmers);

float counter;
std::string str;

CKmerAPI kmer_object(_-kmer_length);

if (min_count_to_set)
if (!(kmer_database.SetMinCount(min_count_to_set)))
return EXIT_FAILURE;
if (max_count_to_set)
if (!(kmer_database.SetMaxCount(max_count_to_set)))
return EXIT_FAILURE;

while (kmer_database .ReadNextKmer(kmer_object, counter))

{

kmer_object.to_string (str);

if (-mode)

fprintf (out_file , "%s\t%f\n", str.c_str(), counter);
else

fprintf (out_file , "%s\t%d\n", str.c_str(), (int)counter);

}

fclose (out-file);

}

return EXIT_-SUCCESS;

¥
/1
/l Print execution options
/1
void print_info (void)
{
std::cout << "KMC.dump.ver..” << KMC.VER << ".(" << KMCDATE << ")\n";
std :: cout << "\nUsage:\nkmc_.dump.[options].<kmc_database>.<output_file >\n";
std::cout << "Parameters:\n";
std :: cout << "<kmc._database>.—.kmer_counter’s.output\n”;
std::cout << "Options:\n";
std::cout << "—ci<value>.—.print_k—mers.occurring .less.than.<value>.times\n";
std::cout << "—cx<value>.—.print_.k—mers_.occurring .more.of.than.<value>.times\n”;
b

Fig. 9. Second part okmc_dump_sample application

13

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

4 DATABASE FORMAT
The KMC application creates output files with two extensions

e .kmc_pre — with information onk-mer prefixes (plus some other data),
e .kmc_suf — with information onk-mer suffixes and the related counters.

All integers in the KMC output files are stored in LSB (leagfrsficant byte first) byte order.

4.1 The.kmc_pre file structure
The.kmc_pre file contains, in order, the following data:

e [marker],

o [prefixes],

e [map],

e [header],

e [header position],

e [marker] (another copy, to signal the file is not truncated).

[marker] 4 bytes with the letters: KMCP.

[header position] The integer consisting of the last 4 bytes in the file (befored KMCP marker). It contains the relative position of the
beginning of the field [header]. After opening the file, onewdt do the following:

. Read the first 4 bytes and check if they contain the letttMER.

. Read the last 4 bytes and check if they contain the letttt€R

Jump to position 8 bytes back from end of file and read thdérgaositionz.
. Jump to position: + 8 bytes back from end of file and read the header.

. Read [data].

g A~ W N P

[header] The header contains fields describing the file .4mne:

e uint32 kmer_length — k-mer length,

e uint32 mode — mode: 0 (occurrence counters) or 1 (quality-aware coghter

e uint32 counter_size — counter field size: for mode 0 itis 1, 2, 3, or 4; for mode 1 #liways 4,

e uint32 lut_prefix_length — the length (in symbols) of the prefix cut off frodrmers; it is invariant of the scheme that 4 divides
(kmer_length — lut_prefiz_length),

e uint32 signature_length — the length (in symbols) of the signature,

e uint32 min_count — minimum number of:-mer occurrences to write in the database (if the countenaler, thek-mer data are not
written),

e uint32 max_count — maximum number ok-mer occurrences to write in the database (if the countemriatgr, thec-mer data are not
written),

e uint64 total_kmers — total number ofc-mers in the database,

e uint32 tmp[7] — not used in the current version,

e uint32 KMC_VER — version of KMC software (for KMC 2 this value is equal to 0X30

[map]

There is an array afint32 elements, of size*9neture-length | 1 This array is used to identify position of proper prefixesag stored in
[prefixes] region. For example, if the queriddmer iSATACGACAAATG and signature_length = 5, its signature iACGAC (as it is the
smallests-mer which satisfies conditions of being a signature). DNflsgls are encoded as followa:— 0,C — 1,G — 2, T — 3, so
ACGAC is equal to 97 (since - 28 +1-26 + 2.2 +0-2% + 1-2° = 97). In this case we look into “map” at position 97 to get the id of
related prefixes’ array.

14

KMC 2: Fast and resource-frugal k-mer counting

[prefixes]

This region contains a number of prefixes’ arrays (typichliyndreds of them) ofiint64 elements. Each array is of sizét-prefiz-length
The last prefixes’ array is followed by an additionaht64 element being a guard to make the reading process simplertotél number
of prefixes’ arrays can be easily calculated (as start angesition are given, size of one array is also known). The eldmat position:
in prefixes’ array for given signaturepoints to a record in .kmsuf file. This record contains the first suffix bfmer with prefixz and
signatures (the position of the last record can be obtained by decrgdbmvalue at: + 1 in prefixes’ array by 1).

Using the example from the previous section, the start jposdf prefixes’ array fork-mer ATACGACAAATG should be calculated as:
4 4 97 - glut-prefiz-length g (marker+ equivalent ofACGAC signature no. of elements in each arragize of element in prefix array). The
next step is to cut off the prefix of length equalita_prefiz _length from the queriedc-mer. Let us assumit_prefix _length = 4, and then
the prefix iSATAC whose equivalent is 49. The element at positorin the related prefixes’ array (pointed by signatfg is the position
of the first record inkmc_suf file which contains &-mer with prefix ATAC and with signaturddCGAC. Let us suppose this position is
1523, then we look at positiofi0 in prefixes’ array (say, it contains 1685). This means tkauc_suf file stores the suffixes df-mers with
prefix ATAC and signaturédCGAC in the records from 523 to 1685 — 1. Having got this range, we can now apply binary search for the
suffix GACAAATG.

4.2 Thekmc_suf file structure
The .kmc_suf file contains, in order, the following data:

e [marker],
e [data],
e [marker] (another copy, to signal the file is not truncated).

The k-mers are stored with their leftmost symbol first, packed ytes. For examplésCACAAAT is represented &3x51 (for CCAC),
0x03 (for AAAT). Integers are stored according to the LSB (little endigr lorder, floats are stored in the same way as they are stored i
the memory.

[marker] 4 bytes with the letters: KMCS.

[data] An arrayrecord_t records[total_kmers].

total_kmers is taken from thekmc_pre file.

record_t is a type representingiamer. Its first field is thé:-mer suffix string, stored otkmer_length — lut_prefiz_length) /4 bytes. The
next field iscounter_size, with the number of bytes used by the counter, which is eittier. . 4-byte integer, or d-byte float.

15

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

5 EXPERIMENTAL RESULTS
5.1 Test platforms

K-mer Counter (KMC), was implemented in C++11, using gcc piben (version 4.8.3) for the linux build and Microsoft ViaLStudio 2013
for the Windows build.
The configuration of the test machine was:

e CPU: Intel i7 4930 (6-cores clocked at 3.4 GHz),

e RAM: 64 GB RAM (clocked at 1833 MHz),

e HDD: 2 drives Seagate Constellation ES.3 3 TB each in RAIDufebed transfers reported thydparm -t: 355 MB/s.
e SSD: Samsung 840 Evo 1 TB; buffered transfers reporteudparm -t: 510 MB/s.

5.2 Datasets

5.2.1 F.vesca The files were downloaded from the following URLs:

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072006.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072007.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072008.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072009.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastqg/SRA020/SRA020125/SRX030578/SRR072013.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072014.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072029.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastqg/SRA020/SRA020125/SRX030575/SRR072005.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072010.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072011.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastqg/SRA020/SRA020125/SRX030575/SRR072012.fastq.bz2

Then they were decompressed to a silfglastg|file.

5.2.2 G.gallus The files were downloaded from the following URLS:
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/SRX043656/SRR1057881.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/SRX043656/SRR105788 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbjdatabase/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794 _1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794 2 .fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986 2.fastq.bz2

Then they were decompressed to a silggefastg|/file. The files were also re-compressed to gzip format for #peements withk-mer
counting of gzipped files.

5.2.3 M. balbisiana The files were downloaded from the followingll4R

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA098/SRA098922/SRX339427/SRR956987 .fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastqg/SRA098/SRA098922/SRX339427/SRR957627 .fastq.bz2
Then they were decompressed to a siimgkefastg|file.

5.2.4 H.sapiend The files were downloaded from the following URL:
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/data/HG02057/sequence read/
Then they were decompressed to a siligdé.fastq file.

5.2.5 H.sapien2 The FASTQ files (48 files) were downloaded from the followinglU
http://www.ebi.ac.uk/ena/data/view/ERA015743
Then they were decompressed to a siligi2.fastq file. The filehs2_files contains list of gzipped files of this individual.

16

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072006.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072007.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072008.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072009.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072013.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072014.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072029.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072005.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072010.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072011.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072012.fastq.bz2
fv.fastq
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/SRX043656/SRR105788_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030308/SRX043656/SRR105788_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985_2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986_1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986_2.fastq.bz2
gg.fastq
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA098/SRA098922/SRX339427/SRR956987.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA098/SRA098922/SRX339427/SRR957627.fastq.bz2
mb.fastq
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/sequence_read/
hs1.fastq
http://www.ebi.ac.uk/ena/data/view/ERA015743
hs2.fastq
hs2_files

KMC 2: Fast and resource-frugal k-mer counting

5.3 Parameters of programs

Jellyfish Jellyfish (ver. 2.1.3) requires to give as a parameter theard number of countegemers. In all experiments we set this value
to be about 10% larger than the numbetkeahers reported by KMC.

Command lines:
./jellyfish count -m28 -C -s 300M-t 12 -L 2 -0 jelly2 fv.fastq
./ljellyfish count -m55 -C-s 400M-t 12 -L 2 -0 jelly2 fv.fastq
.ljellyfish count -m28 -C -s 1200M -t 12 -L 2 -0 jelly2 gg.fastq
.ljellyfish count -m55 -C -s 1200M -t 12 -L 2 -0 jelly2 gg.fastq
.ljellyfish count -m28 -C-s 1G-t 12 -L 2 -0 jelly2 nbh.fastq
.ljellyfish count -m55 -C-s 1200M -t 12 -L 2 -0 jelly2 nb.fastq
./jellyfish count -m28 -C-s 3G -t 12 -L 2 -0 jelly2 hsl.fastq
.ljellyfish count -m55 -C-s 3G -t 12 -L 2 -0 jelly2 hsl.fastq
./jellyfish count -m28 -C-s 3G -t 12 -L 2 -0 jelly2 hs2.fastq
./jellyfish count -m55 -C-s 3G-t 12 -L 2 -0 jelly2 hs2.fastq

KAnalyze KAnalyze (ver. 0.9.5) does not allow to couktmers fork > 32, so only a single value of was used in the tests. Since
KAnalyze documentation does not say how to divide the tteeamdong “k-mer step” and “split step” we allocated 6 threatbth steps
(- I and- d parameters).
Command lines:
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -1 6 fv.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -1 6 gg.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -1 6 nb.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -1 6 hsl.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -1 6 hs2.fastq

DSK DSK (ver. 1.6066) was executed with default parametersiiegins 6 GB limit of RAM. Theé:-mers occurring less than 2 times were
excluded.
Command lines:

./dsk32 fv.fastq 28 -t
./dsk64 fv.fastq 55 -t
./dsk32 gg.fastq 28 -t
./ dsk64 gg.fastq 55 -t
./dsk32 nb.fastq 28 -t -m 6144 -0 o_dsk
./ dsk64 nb.fastq 55 -t -m 6144 -0 o_dsk
./dsk32 hsl.fastq 28 -t 2 -m 6144 -0 o_dsk
./ dsk64 hsl.fastq 55 -t 2 -m 6144 -0 o_dsk
./dsk32 hs2.fastq 28 -t 2 -m 6144 -0 o_dsk
./ dsk64 hs2.fastq 55 -t 2 -m 6144 -0 o_dsk

-m 6144 -0 o_dsk
-m 6144 -0 o_dsk
-m 6144 -0 o_dsk
-m 6144 -0 o_dsk

NNNNNDDN

Turtle The program scTurtle (ver. 0.3) was used to calculatétheers and their counts. The documentation says that theenmfithreads
should be a prime, so for our 12-virtual cores system we udethrbads. The expected numberksiers was set to be about 10% larger
than the exact value (calculated by KMC).
Command lines:
./scTurtle32 -f fv.fastq -o turtle -k 28 -t 11 -n 400000000
./scTurtle64 -f fv.fastq -o turtle -k 55 -t 11 -n 400000000
./scTurtle32 -f gg.fastq -o turtle -k 28 -t 11 -n 1150000000
./scTurtle64 -f gg.fastq -o turtle -k 55 -t 11 -n 1150000000
./scTurtle32 -f nb.fastq -o turtle -k 28 -t 11 -n 1100000000
./scTurtle64 -f nb.fastq -o turtle -k 28 -t 11 -n 1100000000
./scTurtle32 -f hsl.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle64 -f hsl.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle32 -f hs2.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle64 -f hs2.fastq -o turtle -k 28 -t 11 -n 3000000000

17

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

MSPKmerCounter MSPKmerCounter (ver. 0.10.0) was used with minimizer lari@0) and number of bins (1000) suggested in the original
paper.
Command lines:
java -jar ./Partition.jar -in fv.fastg -k 28 -L 353 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in fv.fastg -k 55 -L 353 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in gg.fastq -k 28 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in gg.fastg -k 55 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in nb.fastg -k 28 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in nb.fastq -k 55 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in hsl.fastq -k 28 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in hsl.fastq -k 55 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in hs2.fastq -k 28 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in hs2.fastgq -k 55 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

KMC 1 KMC was executed with setting thatmers occurring less than 2 times should not be counted. @temeterp (prefix length)
was set to 5 for all data sets except the smallest one.
Command lines:

./kncl -v -nll6 -k28 -p4 fv.fastq res tenp
.lkncl -v -nl6 -k55 -p4 fv.fastq res tenp
./kncl -v -nl6 -k28 -p5 gg.fastq res tenp
./kncl -v -nl6 -k55 -p5 gg.fastq res tenp
.lkntl -v -nl6 -k28 -p5 nb.fastq res tenp
./kncl -v -nll6 -k55 -p5 nb.fastq res tenp
./kncl -v -nll6 -k28 -p5 hsl.fastq res tenp
.lkntl -v -nl6 -k55 -p5 hsl.fastq res tenp
./kncl -v -nl6 -k28 -p5 hs2.fastq res tenp
./kncl -v -nl6 -k55 -p5 hs2.fastq res tenp

KMC2 KMC was executed with setting thatmers occurring less than 2 times should not be counted. ateeterp (minimizer length)
was set to 7 for all data sets.
Command lines (main tests):

.Iknc2 -v -nl2 -k28 -p7 fv.fastq res tenp
.lknc2 -v -nl2 -k28 -p7 fv.fastq res tenp
.lknc2 -v -nb -k28 -p7 fv.fastq res tenp
.Iknc2 -v -nb -k28 -p7 fv.fastq res tenp
.lknc2 -v -nl2 -k28 -p7 gg.fastq res tenp
.lknc2 -v -nl2 -k28 -p7 gg.fastq res tenp
.Iknc2 -v -nb -k28 -p7 gg.fastq res tenp
.lknc2 -v -nb -k28 -p7 gg.fastq res tenp
.lknc2 -v -nl2 -k28 -p7 nb.fastq res tenp
.Iknc2 -v -nl2 -k28 -p7 nb.fastq res tenp
.lknc2 -v -nb -k28 -p7 nb.fastq res tenp

18

KMC 2: Fast and resource-frugal k-mer counting

./lknc2 -v -6 -k28 -p7 nb.fastq res tenp

./lknc2 -v -ml2 -k28 -p7 hsl.fastq res tenp
.lknc2 -v -ml2 -k28 -p7 hsl.fastq res tenp
.lknc2 -v -6 -k28 -p7 hsl.fastq res tenp
./knc2 -v -6 -k28 -p7 hsl.fastq res tenp
.lknc2 -v -ml2 -k28 -p7 hs2.fastq res tenp
./Iknc2 -v -ml2 -k28 -p7 hs2.fastq res tenp
.lknc2 -v -6 -k28 -p7 hs2.fastq res tenp
.lknc2 -v -6 -k28 -p7 hs2.fastq res tenp

Command lines (gzipped files):
knc2 -v -ml2 -k28 -p7 @s2 files res tenp
.Iknc2 -v -ml2 -k55 -p7 @s2 files res tenp
wherehs2_fi | es contains list of gzipped FASTQ files b2 data set.

Command lines (thread tests):
taskset -c O ./knt2 -v -nl2 -k28 -p7 -t2 @g_files res tenp
taskset -c O ./knt2 -v -nl2 -k28 -p7 -t2 @g_files res tenmp
.Iknc2 -v -ml2 -k55 -p7 -t2 @g_files res tenp
Akm2 -v -nl2 -k28 -p7 -t2 @g_files res tenp
.Ilknc2 -v -ml2 -k55 -p7 -t2 @g_files res temp
.Iknc2 -v -ml2 -k28 -p7 -t3 @g_files res tenp
.Iknc2 -v -ml2 -k55 -p7 -t3 @g_files res tenp
Iknc2 -v -ml2 -k28 -p7 -t4 @g_files res temp
./Iknc2 -v -ml2 -k55 -p7 -t4 @g_files res tenp
Iknc2 -v -ml2 -k28 -p7 -t5 @g_files res temp
.Iknc2 -v -ml2 -k55 -p7 -t5 @g_files res temp
.Iknc2 -v -ml2 -k28 -p7 -t6 @g_files res tenp
.Iknc2 -v -ml2 -k55 -p7 -t6 @g_files res temp
.Iknc2 -v -ml2 -k28 -p7 -t8 @g_files res temp
./Iknc2 -v -ml2 -k55 -p7 -t8 @g_files res tenp
.Iknc2 -v -ml2 -k28 -p7 -t10 @g_files res tenmp
./lknc2 -v -ml2 -k55 -p7 -t10 @g_files res tenmp
Akm2 -v -nl2 -k28 -p7 -t12 @g_files res tenp
.Iknc2 -v -ml2 -k55 -p7 -t12 @g_files res tenmp
wheregg_fi | es contains list of gzipped FASTQ files gig data set.
Since KMC 2 does not allow to specify less than 2 threads tcsoreathe speed of KMC for a single thread scenario we allowves¢ a
single core by using the linuaskset command.

5.4 Results
The results for additional data sets (the ones that are phtdad in the main part of the paper) are given below.

19

Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, Aghieszka Debudaj-Grabysz

Table 8. k-mers counting results fdt. vesca MSPKC fails, probably due to the variable length of readhédataset.

Table 9. k-mers counting results fdi. sapiensl.

k=28 k =55
Algorithm RAM Disk Time RAM Disk Time
SSD
Jellyfish 2 9 0 133 39 0 243
KAnalyze 9 33 345 unsupported:
DSK 6 12 141 6 13 298
Turtle 17 0 133 26 0 175
MSPKC failed failed
KMC 1 13 17 84 17 41 243
KMC 2 (12GB) 7 4 45 12 3 59
KMC 2 (6GB) 6 4 33 6 3 60
HDD
Jellyfish 2 9 0 133 39 0 245
DSK 6 12 147 6 13 308
Turtle 17 0 135 26 0 178
KMC 1 11 17 120 17 41 245
KMC 2 7 4 58 12 3 61
k=28 k=155
Algorithm RAM Disk Time RAM Disk Time
SSD
Jellyfish 2 62 0 2,013 out of memory
KAnalyze out of disk & 650 GB) unsupported:
DSK 6 192 3,485 6 236 4,475
Turtle out of memory out of memory
MSPKC 17 286 10,032 out of time & 10 hours)
KMC 1 17 251 1,930 17 426 3,788
KMC 2 (12GB) 12 64 1,010 12 44 1,251
KMC 2 (6GB) 6 64 1,013 8 44 1,397
HDD
Jellyfish 2 62 0 2,209 out of memory
DSK 6 192 10,667 6 236 13,550
MSPKC 17 286 13,444 out of time ¢& 10 hours)
KMC 1 17 251 3,296 17 426 5,136
KMC 2 12 64 1,417 12 44 1,651

20

KMC 2: Fast and resource-frugal k-mer counting

6 AUTOMATIC SETTING OF PARAMETERS IN KMC

The automatic setting of parameters mechanism tries toa#dhe available resources (i.e., CPU cores) in the besttpe way. The optimal
number of threads for the parts of the algorithm is, howevard to obtain, since it depends on many things, like the cesgion method of
input files, the speed of disks, etc. Thus, our automatic ar@sh is obviously suboptimal, nevertheless, experimgmsy that it performs
reasonably well. If the results are unsatisfactory, the KRM@ser can specify these parameters from command line.

The most important factor of the mechanism is the numberaifable cores (possibly overridden if the user specifiesth v parameter).
FASTQ readers, splitters, sorters and sorting threadsipglessorter are the most important threads of KMC 2. To sebxatt number of
those threadsll -s? parameters must be specified (if one is omitted, the resteof fis ignored).

The automatic setting of parameters for the first stage wask®sllow. If the input files are in plain text format (not corepsed), there is
one FASTQ reader thread. Otherwise the number of FASTQ rehdeads is equal to the number of large input files (“largefams here
the ones whose size is greater than 5% of the size of the tdiiggsbut not more than half of the number of cores. Aftett tie number of
“free” cores (not assigned yet) is set as the number of sgithreads. In the second stage the memory requiremengsébrbin are known
and the following steps are performed. Bins are sorted by $iee in a hon-increasing order. The number of sorter tfsés calculated as
| M2/ Bio |, whereMs is total amount of memory available for the second stddje,is the size of the bin for whicti0% of bins are bigger.
The number of sorting threads per single sorter is equaltatimber of cores divided by the number of sorter thread$héasesult may not
be integer, some sorters have one sorting thread more tharspe.g., if there are 7 sorters and 10 threads to alla@at&ters would run 2
sorting threads and 4 sorters only 1 sorting thread).

21

	1 Introduction
	2 Methods
	2.1 Minimizers of k-mers
	2.2 From minimizers to signatures
	2.3 (k, x)-mers
	2.4 Sketch of the algorithm
	2.5 Additional features
	3 Results
	4 Conclusion
	Funding:
	1 KMC usage
	2 API
	2.1 CKmerAPI class
	2.2 CKMCFile class
	3 Example of API usage
	4 Database format
	4.1 The .kmc_pre file structure
	4.2 The.kmc_suf file structure
	5 Experimental results
	5.1 Test platforms
	5.2 Datasets
	5.2.1 F. vesca
	5.2.2 G. gallus
	5.2.3 M. balbisiana
	5.2.4 H. sapiens 1
	5.2.5 H. sapiens 2

	5.3 Parameters of programs
	5.4 Results

	6 Automatic setting of parameters in KMC

