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Poland
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Building the histogram of occurrences of every k-
symbol long substring of nucleotide data is a standard step in
many bioinformatics applications, known under the name of k-mer
counting. Its applications include developing de Bruijn graph genome
assemblers, fast multiple sequence alignment and repeat detection.
The tremendous amounts of NGS data require fast algorithms for
k-mer counting, preferably using moderate amounts of memory.
Results: We present a novel method for k-mer counting, on
large datasets at least twice faster than the strongest competitors
(Jellyfish 2, KMC 1), using about 12 GB (or less) of RAM memory. Our
disk-based method bears some resemblance to MSPKmerCounter,
yet replacing the original minimizers with signatures (a carefully
selected subset of all minimizers) and using (k, x)-mers allows to
significantly reduce the I/O, and a highly parallel overall architecture
allows to achieve unprecedented processing speeds. For example,
KMC 2 allows to count the 28-mers of a human reads collection with
44-fold coverage (106 GB of compressed size) in about 20 minutes,
on a 6-core Intel i7 PC with an SSD.
Availability: KMC 2 is freely available at http://sun.aei.polsl.pl/kmc.
Contact: sebastian.deorowicz@polsl.pl

1 INTRODUCTION
One of common preliminary steps in many bioinformatics
algorithms is the procedure ofk-mer counting. This primitive
consists in counting the frequencies of allk-long strings in the given
collection of sequencing reads, wherek is usually more than 20,
and has applications in de novo assembly using de Bruijn graphs,
correcting reads and repeat detection, to name a few areas. More
applications can be found, e.g., in (Marçais and Kingsford, 2011),
with references therein.
K-mer counting is arguably one of the simplest (both

conceptually and programmatically) tasks in computational biology,
if we do not care about efficiency. The number of existing papers on
this problem suggests however that efficient execution of this task,
with reasonable memory use, is far from trivial. The most successful
of early approaches was Jellyfish (Marçais and Kingsford, 2011),
maintaining a compact hash table (HT) and using lock-free
operations to allow parallel updates. The original Jellyfish version

∗to whom correspondence should be addressed

(as presented in (Marçais and Kingsford, 2011)) required more than
100 GB of memory to handle human genome data with 30-fold
coverage. BFCounter (Melsted and Pritchard, 2011) employsthe
classic compact data structure, Bloom filter (BF), to reducethe
memory requirements due to preventing most single-occurrencek-
mers (which are usually results of sequencing errors and formost
applications can be discarded) from being added to a hash table.
Although BF is a probabilistic mechanism, BFCounter applies it in
a smart way, which does not produce counting errors. Unfortunately,
BFCounter is single-threaded and its performance is not competitive
(see also the experimental results in (Deorowiczet al., 2013)).
DSK (Rizket al., 2013) and KMC (Deorowiczet al., 2013) are two
disk-based algorithms. On a high level, they are similar andpartition
the set ofk-mers into disk buckets, which are then separately
processed. DSK is more memory frugal and may process human
genome data in as little as 4 GB of RAM, while KMC is faster
but typically uses about 11–16 GB of RAM. Turtle (Royet al.,
2014) bears some similarities to BFCounter. The standard Bloom
filter is there replaced with its cache-friendly variant (Putzeet al.,
2009) and the hash table is replaced with a sorting and compaction
algorithm (which, accidentally, resembles a component of KMC),
apart from adding parallelism and a few smaller modifications.
Finally, MSPKmerCounter (Li and Yan, 2014) is another disk-based
algorithm, based on the concept of minimizers, described indetail
in the next section.

In this paper we present a new version of KMC, one of the fastest
and most memory efficient programs. The new release borrows
from the efficient architecture of KMC 1 but reduces the disk usage
several times (sometimes about 10 times) and improves the speed
usually about twice. In consequence, our tests show that KMC2
is the fastest (by a far margin) algorithm for countingk-mers, with
even smaller memory consumption than its predecessor.

There are two main ideas behind these improvements. The firstis
the use of signatures ofk-mers that are a generalization of the idea
of minimizers(Robertset al., 2004a,b). Signatures allow significant
reduction of temporary disk space. Theminimizerswere used for
the first time for thek-mer counting in MSPKmerCounter, but our
modification significantly reduces the main memory requirements
(up to 3–5 times) as well as disk space (about 5 times) as compared
to MSPKmerCounter. The second main novelty is the use of(k, x)-
mers (x > 0) for reduction of the amount of data to sort. Simply
speaking, instead of sorting some amount ofk-mers we sort a much
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smaller portion of(k + x)-mers and then obtain the statistics for
k-mers in the postprocessing phase.

2 METHODS

2.1 Minimizers of k-mers
Most k-mer counting algorithms start in the same way: they process
each read from left to right and extract allk-mers from them, one by
one. Although the destination fork-mers (hash table in Jellyfish, Bloom
filter in BFCounter, disk in DSK and KMC 1) and other details differ in
particular solutions, the first step remains essentially the same. There is high
redundancy in such approach as consecutivek-mers sharek − 1 symbols.

An obvious idea of reducing the redundancy is to store (in some way) a
number of consecutivek-mers (ideally even a complete read) in one place.
Unfortunately, to collect the statistics we need to find all copies of each
unique k-mer, which is not an easy task when the copies are stored in
many places. A clever solution to these problems is based on the concept
of minimizers (Robertset al., 2004a,b). Aminimizerof a k-mer is such of
its m-mers (m < k) that no other lexicographically smallerm-mer can
be found. The crucial observation is that usually many consecutive k-mers
have the same minimizer, so in memory or in a file on disk they can be
represented as one sequence of more thank symbols, significantly reducing
the redundancy.

The idea of minimizers was adopted recently fork-mer counting (Li and Yan,
2014). Since in genomic data the read direction is rarely known, k-
mer counters usually do not distinguish between directk-mers and their
reverse complements, and collect statistics forcanonical k-mers. The
canonicalk-mer is lexicographically smaller of the pair: thek-mer and its
reverse complement. Therefore, Li and Yan in their MSPKmerCounter use
canonical minimizers, i.e., the minima of all canonicalm-mers from the
k-mer. They process the reads one by one and look for contiguous areas
containingk-mers having the same canonical minimizer; they dub these
areas as “superk-mers”. Then, the resulting superk-mers are distributed into
one of severalbins (disk files) according to the related canonical minimizer
(more precisely, according to its hash value; in this way thenumber of
resulting bins is kept within reasonable limits). In the second stage each bin
is loaded into main memory (one by one), allk-mers are extracted from the
superk-mers, and then counted using a hash table; after processinga bin the
entries from the hash table are dumped to disk and the hash table memory
reclaimed. Since each bin contains only a small fraction of all k-mers present
in the input data, the amount of memory necessary to process the bin is much
smaller that in the case of whole input data.

This elegant idea allows to significantly reduce the disk space compared
to storing eachk-mer separately (as KMC 1 and DSK do). Unfortunately, it
has the following drawbacks:

1. The distribution of bin sizes is far from uniform. In particular, the
bin associated with the minimizer AA...A is usually huge. Other
minimizers with a few As in their prefix also tend to produce large
bins.

2. When a minimizer starts with a few As, then it often impliesseveral
new superk-mers spanning a singlek-mer only. To given an example,
with m = 7 and AAAAAAC as the minimizer: when the minimizer
falls off the sliding window, so the currentk-mer starts with AAAAAC,
then AAAAACX (for some X) will likely be the new minimizer; but
unfortunately for yet another window AAAACXY (for some Y) also
has a fair chance to be a minimizer, etc.

As the amount of main memory needed by MSPKmerCounter is directly
related to the number ofk-mers in the largest bin, especially the former
issue is important. It will be shown in the experimental section that the file
corresponding to the minimizer AA...A can be really large.

2.2 From minimizers to signatures
To overcome the aforementioned problems we resign from “pure”
minimizers and prefer to use the term ofsignaturesof k-mers. Essentially, a
signature can be anym-mer ofk-mer, but in this paper we are interested in
such signatures that solve both of the problems mentioned above. Namely,
good signatures of lengthm should satisfy the following conditions:

1. The size of the largest bin should be as small as possible.

2. The number of bins should be neither too large nor too small.

3. The sum of bin sizes should be as small as possible.

Point 1 is obvious as it limits the maximum amount of needed memory.
Point 2 protects from costly operations on a large number of files (open,
close, append, etc.) in case of too many bins but also from load balancing
difficulties on a multi-core system when the number of bins issmall. The
last point refers to the disk space, so minimizing it reducesthe total I/O.

Obtaining optimal signatures, i.e., such that cannot be improved in
any of the listed aspects, seems hard, so a compromise must befound.
Since the origin of both problems are runs of As (especially as signature
prefixes), we propose to use as signatures canonical minimizers, but only
such that do not start with AAA, neither start with ACA, neither contain
AA anywhere except at their beginning. We note that in earlier works
on minimizers (Robertset al., 2004a,b; Wood and Salzberg, 2014) similar
problems were spotted (in different applications) and somewhat different
solutions were presented.

As the experiments show (cf. experimental section of the paper), such
a modification significantly reduces the size of the largest bin and also
reduces the total number of superk-mers, therefore both the main memory
and temporary disk use is much smaller compared to using justcanonical
minimizers.

2.3 (k, x)-mers
In the memory-frugalk-mer counters (DSK, KMC 1, MSPKmerCounter) all
the inputk-mers are split into parts to reduce the amount of RAM memory
necessary to store all thek-mers in explicit form. Then, thek-mers are
sorted, inserted into a hash table or Bloom filter. Nevertheless, often the
size of the largest part (bin) can be a problem, i.e., affectsthe peak RAM
use. Also, there is a need to explicitly process (sort, insert into some data
structure) each singlek-mer.

Below we show that it is possible to reduce the amount of memory
necessary for collecting the statistics even more and also speed up the sorting
process by processing a significant part ofk-mers implicitly. To this end,
we need to introduce(k, x)-mers that are(k + x′)-mers in the canonical
form, wherex′ = 0, 1, . . . , x (for some smallx) such that allk-mers within
(k, x)-mer are in canonical form.

The idea is that instead of breaking superk-mers intok-mers (for sorting
purposes), we break them into as few as possible(k, x)-mers in such way
that no two neighbors share the samek-mer, but eachk-mer present in a
superk-mer is present in some of(k, x)-mers. As preliminary experiments
on real data show, with settingx = 3 the number of(k, x)-mers becomes
about twice smaller than the number ofk-mers. This means that the main
memory is reduced almost twice. At the same time, the sortingspeed is
improved.

2.4 Sketch of the algorithm
Similarly to its predecessor, KMC 2 has two phases: distribution and sorting.
In the distribution phase, the reads are read from FASTQ/FASTA files.
Each read is scanned to find (partially overlapping) regions(superk-mers)
sharing the same signature (Fig. 1). These superk-mers are sent to bins
(disk files) related to signatures. The number of possible signatures,4m,
can be, however, quite large, e.g., 16,384 for typical valuem = 7. Thus,
to reduce the number of bins to at most 512, some signatures are merged
(i.e., the corresponding sequences are sent to the same bin). To decide which
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Minimizers
CGTTGATCAATTTG
CGTTGATC
GTTGATCAAT

GATCAATT
ATCAATTTG

Read
Minimizer: rev comp(CGTT) = AACG
Minimizer: rev comp(TGAT) = ATCA
Minimizer: AATT
Minimizer: rev comp(ATTT) = AAAT

Signatures
CGTTGATCAATTTG
CGTTGATC
GTTGATCAAT

GATCAATTTG

Read
Signature: rev comp(CGTT) = AACG
Signature: rev comp(TGAT) = ATCA
Signature: AATT

Fig. 1. A toy example of splitting a read into superk-mers. The assumed
parameters are:k = 8, m = 4.

Super k-mer
ACGCGACGATGAACTGCCATCTCACA

Successive (k, 1)-mers
ACGCGACGATGAACT
GCAGTTCATCGTCGCG rev comp(CGCGACGATGAACTGC)
CGACGATGAACTGCCA
ACGATGAACTGCCATC
AGATGGCAGTTCATC rev comp(GATGAACTGCCATCT)
ATGAACTGCCATCTCA
GAACTGCCATCTCACA

Sorted (k, 1)-mers
ACGCGACGATGAACT
AGATGGCAGTTCATC
ACGATGAACTGCCATC
ATGAACTGCCATCTCA
CGACGATGAACTGCCA
GAACTGCCATCTCACA
GCAGTTCATCGTCGCG

R0

RA

RC

RG

R1

Fig. 2. Splitting a superk-mer into(k, 1)-mers followed by sorting them.
The assumed parameters are:k = 15, m = 4. The rangeRT is empty (thus
not shown).

signatures to merge, in a preprocessing stage KMC 2 reads a small fraction
of the input data, builds a histogram of found signatures, and finally merges
the least frequent signatures.

In the sorting phase, KMC 2 reads a file, extracts the(k, x)-mers from
superk-mers and performs radix sort algorithm on them. Then, it calculates
the statistics fork-mers. In real implementationx can be 0, 1, 2, or 3, but for
presentation clarity we will describe how to collect the statistics ofk-mers
from (k, 1)-mers.

It is important to notice where in the sorted array of(k, 1)-mers some
k-mer can be found. There are 6 possibilities:

1 it can be just ak-mer,

2 it can be a prefix of some(k + 1)-mer,

3–6 it can be a suffix of(k + 1)-mer preceded by A, C, G, or T.

Therefore, we conceptually split the array of(k, 1)-mers into 5 non-
overlapping, sorted subarrays: one (R0) containingk-mers and four (RA,
RC ,RG,RT ) containing(k+1)-mers starting with A, C, G, T. There is also
one extra subarray (R1) containing all(k+1)-mers, i.e., a concatenation of
RA, RC , RG andRT (Fig. 2).

FASTQ reader FASTQ reader

FASTQ parts queue

Splitter Splitter

Bin chunks queue

Disk writer

Disk

Bin reader

Bins queue

Sorter Sorter

Sorted and compacted
bins queue

Completer

Fig. 3. A scheme of the parallel KMC algorithm

Now to collect the statistics ofk-mers we scan these 6 subarrays in
parallel. So, we have 6 pointers somewhere inR∗ We compare the pointed
elements, find the lexicographically smallest canonicalk-mer among them
(from RX for X being a letter we take the suffix of(k + 1)-mer) and store
it in the resulting array of statistics ofk-mersP if it is different than the
recently addedk-mer toP . Otherwise, we just increase the counter related
to thisk-mer inP . Since, we scan the arraysR∗ in a linear fashion, the time
complexity of this “merging” subphase is linear.

The overall KMC 2 algorithm is presented in Fig. 3. Several FASTQ
readers send input data chunks into a queue, handled then by splitters which
dispatch superk-mers with the same signature to the same bin chunk. The
queue of these chunks is in turn processed with a disk writer,which dumps
the bin to disk. In the next phase, the bins, read from disk to aqueue in the
memory, are sorted and compacted by multiple sorter threads. Finally, the
completer stores the sorted bins in the output database on disk.

The final database ofk-mers is stored in compact binary form. The
KMC 2 package contains: thek-mer counter, dump program that allows
to produce the textual list ofk-mers together with their counters, C++
API designed to allow to use the database directly in variousapplications.
Thek-mer counter allows to specify various parameters, e.g., the threshold
below which thek-mer is discarded (e.g., in some applications thek-mers
appearing only once are treated as erroneous), the maximal amount of
memory used in the processing. More details on the API, the database format
and the search algorithm in the database are given in the Supplementary
material.

2.5 Additional features
KMC 2, like its former version, allows to refrain from counting too rare
or too frequentk-mers. It is done during “merging” substage, in which
the total number of occurrences of eachk-mer is known. The software
also supports quality-aware counters, compatible with thepopular error-
correction package Quake (Kelleyet al., 2010). In this mode, the counter
for thek-mer is incremented by the probability that all symbols of thek-mer
are correct (calculated according to the base quality values). To allow this,
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Table 1. Characteristics of the datasets used in the experiments.

Organism Genome No. FASTQ No. Gzipped Avg. read
length bases file size files size length

F. vesca 210 4.5 10.3 11 3.5 353
G. gallus 1,040 34.7 115.9 15 25.9 100
M. balbisiana 472 56.9 197.1 2 49.1 101
H. sapiens1 3,093 86.0 223.3 6 70.8 100
H. sapiens2 3,093 135.3 312.9 48 105.8 101

No of bases are in Gbases. File sizes are in Gbytes (1Gbyte =109 bytes). Approximate
genome lengths are in Mbases according tohttp://www.ncbi.nlm.nih.gov/genome/ .

the qualities must be stored in temporary disk files for each base of a superk-
mer. To our knowledge, the only otherk-mer counters with this functionality
are KMC 1 and Jellyfish 1 (but not the current version 2). KMC 2 handles
not only sequencing reads (FASTQ), but also genomes (FASTA). Finally, we
note that KMC 2 can work in RAM-only mode in which the bins are simply
stored in the main memory, which may be convenient for large datacenters.

3 RESULTS
The implementation of KMC 2 was compared against the best, interms of
speed and memory efficiency, competitors: Jellyfish 2 (whichis significantly
more efficient than the version described in (Marçais and Kingsford, 2011)),
DSK, Turtle, MSPCounter, KAnalyze and KMC 1. Each program was tested
for two values ofk (28 and 55) and in two hardware configurations: using
conventional disks (HDD) and using a solid-state disk (SSD). We used
several datasets (Table 1) of varying size; two of them are human data with
large coverage. The experiments were run on a machine equipped with an
Intel i7 4930 CPU (6 cores clocked at 3.4 GHz), 64 GB RAM, and 2 HDDs
(3 TB each) in RAID 0 and single SSD (1 TB). The programs were run with
the number of threads equal to the number of virtual cores (6× 2 = 12), to
achieve maximum speed.

The comparison, presented in Tables 2–4 and Supplementary Tables
1–2, includes total computation time (in seconds), maximumRAM use,
maximum disk use. RAM and disk use are given in GBs (1 GB =230 B).
Time is wall-clock time in seconds. A test running longer than 10 hours was
interrupted. Other reasons for not finishing a test were excessive memory
consumption (limited by the total RAM, i.e., 64 GB) or excessive disk use
(over 650 GB, chosen for our 1 TB SSD disk; note that the largest input
dataset,H. sapiens2, occupies 312.9 GB on the same disk).

Several conclusions can easily be drawn from the presented tables. Two
of the competitors, KAnalyze and MSPKC, are clearly the slowest; for
this reason, KAnalyze was tested only on the SSD. KAnalyze also uses a
large amount of temporary disk space, which was the reason westopped its
execution on the two human datasets (fork = 28 only, as KAnalyze does not
support large values ofk). MSPKC, on the other hand, theoretically allows
the parameterk to exceed 32, but in none of our datasets it finished its work
for k = 55; for the smallest dataset (F. vesca) it failed probably because
of variable-length reads, on the other datasets we stopped it after more than
10 hours of processing. The only asset of KAnalyze and MSPKC we have
found is their moderate memory use.

DSK is not very fast either. Still, it consistently uses the smallest amount
of memory (6 GB was always reported) and is quite robust, as itpassed all
the tests.

Jellyfish 2 is not very frugal in memory use, and this is the reason on our
machine it passed the test fork = 55 only for two datasets (F. vescaandM.
balbisiana). Still, for k = 28 it passed all the tests, being one of the fastest
programs, often outperforming KMC 1.

Table 2. k-mers counting results forG. gallus.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

SSD
Jellyfish 2 33 0 880 out of memory
KAnalyze 9 270 11,071 unsupportedk
DSK 6 101 1,325 6 94 1,836
Turtle 48 0 1,004 out of memory
MSPKC 17 114 3,382 out of time (> 10 hours)
KMC 1 13 101 868 12 173 1,792
KMC 2 (12GB) 12 25 408 12 18 503
KMC 2 (6GB) 6 25 431 6 18 562

HDD
Jellyfish 2 33 0 915 out of memory
DSK 6 101 3,600 6 94 4,206
Turtle 48 0 1,058 out of memory
MSPKC 17 114 4,853 out of time (> 10 hours)
KMC 1 11 101 1,320 12 173 2,036
KMC 2 12 25 587 12 18 656

Table 3. k-mers counting results forM. balbisiana.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

SSD
Jellyfish 2 17 0 1,080 26 0 853
KAnalyze 9 354 8,249 — — —
DSK 6 164 2,356 6 138 2,962
Turtle 46 0 1,484 out of memory
MSPKC 10 185 8,729 out of time (> 10 hours)
KMC 1 13 165 1,229 15 279 2,622
KMC 2 (12GB) 12 41 755 12 29 834
KMC 2 (6GB) 6 41 685 6 29 895

HDD
Jellyfish 2 17 0 1,115 26 0 881
DSK 6 164 6,216 6 138 7,228
Turtle 46 0 1,498 out of memory
MSPKC 10 185 12,152 out of time (> 10 hours)
KMC 1 13 165 2,194 15 279 3,367
KMC 2 12 41 960 12 29 1,041

Turtle is rather fast as well (slower than Jellyfish though),but even more
memory hungry; we could not have run it on the two largest datasets. Turtle
and Jellyfish are memory-only algorithms, all the other onesare disk-based.
This is the reason why changing HDD to a much faster SSD does not affect
the performance of these two counters significantly (yet it is non-zero due to
faster input reading from the SSD).

KMC 2 on the SSD was tested twice for eachk: with standard memory
use (12 GB) and with reduced memory use (6 GB). These settingsare a
“suggestion” rather than a rigid limitation, as a large maximum bin size may
force KMC 2 to use more memory, Such a phenomenon was seen several
times especially in the memory-reduced runs. This also means that our goal
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Table 4. k-mers counting results forH. sapiens2.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

SSD
Jellyfish 2 62 0 3,212 out of memory
KAnalyze out of disk (> 650GB) unsupportedk
DSK 6 263 5,487 6 256 7,732
Turtle out of memory out of memory
MSPKC out of time (> 10 hours) out of time (> 10 hours)
KMC 1 17 396 2,998 out of disk (> 650GB)
KMC 2 (12GB) 12 101 1,615 13 70 2,038
KMC 2 (6GB) 6 101 1,706 13 70 2,446

HDD
Jellyfish 2 62 0 3,231 out of memory
DSK 6 263 18,493 6 256 22,432
KMC 1 17 396 4,898 out of disk (> 650GB)
KMC 2 12 101 2,259 13 70 2,640

to match DSK in memory use in the memory-reduced mode was not quite
accomplished, yet we note that reducing the memory resultedin processing
time longer by only 5%–20%.

KMC 2 with its standard memory use is a clear winner in processing
time, on the human datasets being about twice faster than Jellyfish 2 or
KMC 1. These speed differences concern the SSD experiments,as on the
HDD the gap diminishes (but is still significant). This can beexplained by
I/O (especially reading the input data) being the bottleneck in several phases
of KMC 2 processing.

It is worth examining how switching a conventional disk to a SSD affects
the performance of disk-based software. It might seem natural that the
biggest time reduction (in absolute time, not percentage gain) should be seen
in those programs which use more disk space. To some degree itis true (e.g.,
KMC 1 gains more than KMC 2) but DSK is a “counter-example”: e.g., on
H. sapiens2 it gains a whopping 13,006 s which is almost seven times the
reduction for KMC 1, seemingly surprising as DSK uses less disk space. Yet,
a probable explanation is that DSK works in several passes, so its total I/O
is actually quite large for large datasets.

Interestingly, for disk-based algorithms the disk use of KMC 2 is typically
reduced when switching fromk = 28 to k = 55. This can be explained by a
smaller number ofk-mers per read, and in case of KMC 2 also by a smaller
number of superk-mers per read.

We also measured how the input format (raw, gzipped) and media (HDD,
SSD) affects the performance of our solution on the largest dataset,H.
sapiens2 (Table 5). As expected, using the SSD reduces the time by 25%–
40%, and reading the input from compressed form also has a visible positive
impact. We note in passing that replacing gzip with, e.g., bzip2 (results
not shown here) would not be a wise choice, since the improvement in
compression cannot offset much slower bzip2’s decompression.

Table 6 compares signatures with minimizers onG. gallus. We can see
that using our signatures diminishes the average number of superk-mers in a
read by about 10–15 percent. Also the number ofk-mers in the largest (disk)
bin is significantly reduced, sometimes more than twice. These achievements
directly translate to smaller RAM and disk space consumption.

How (k, x)-mers affect bin processing is shown in Table 7 for two
datasets. It is easy to see that the number of strings to sort is more than
halved forx = 3, yet the speedup is more moderate, due to the extra split
phase and sorting over longer strings. Still,(k, 3)-mers vs. plaink-mers

Table 5. Influence of input data format on thek-mers counting
times of KMC 2 forH. sapiens2.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

Non-gzipped input files
KMC 2HDD 12 101 2,259 13 70 2,640
KMC 2SSD 12 101 1,615 13 70 2,038
KMC 2SSD 6 101 1,706 13 70 2,446

Gzipped input files
KMC 2HDD 12 101 2,004 13 70 2,495
KMC 2SSD 12 101 1,217 13 70 1,607
KMC 2SSD 7 101 1,495 13 70 1,909

Table 6. Comparison of signatures and minimizers forG. gallusdataset.

Minimizers Signatures
Length Avg. in No.k-mers Min. Avg. in No.k-mers Min.

read largest bin memory read largest bin memory

k = 28
5 6.935 3,361 26.5 6.045 1,904 18.1
6 7.519 1,231 10.9 6.385 625 5.9
7 7.919 641 5.5 6.728 283 2.6
8 8.304 371 3.1 7.143 328 3.0

k = 55
5 2.669 3,940 62.0 2.477 2,257 38.3
6 2.915 1,513 24.7 2.591 819 13.9
7 3.038 801 12.8 2.642 280 5.5
8 3.117 467 7.3 2.678 330 6.4

‘Avg. in read’ is the average no. of superk-mers per read. ‘No.k-mers largest bin’ is the
number (in millions) ofk-mers in the largest bin. ‘Min. memory’ is the amount of memory
(in Gbytes) necessary to process thek-mers in the largest bin, i.e., the lower bound of the
memory requirements. The size of temporary disk space is determined by the average
number of minimizers/signatures in a read. For example, thedisk space requirements for
minimizer/signature length 7 are: 25.4 GB (signatures,k = 28), 28.6 GB (minimizers,
k = 28).

reduce the total time by more than 20% (and even 38% forH. sapiens2 and
k = 55).

The impact ofk on processing time and disk space is presented in
Figures 4 and 5, respectively. Longerk-mers result in even longer super
k-mers, which minimizes I/O, but makes the sorting phase longer. For
this reason, the disk space consumption shrinks smoothly with growingk
(Fig. 5), but the effect on processing time (Fig. 4) is not so clear. Still,
countingk-mers fork ≥ 32 is generally slower than for smaller values
of k.

From Fig. 6 we can see that using more memory accelerates KMC 2, but
the effect is mediocre (only about 10% speedup when raising the memory
consumption from 16 GB to 40 GB). The reasons behind the speedup are
basically 2-fold:(i) the extra RAM allows to use a larger number of sorter
threads (which is more efficient than few sorters with more internal threads
per sorter), and(ii) occasional large bins disallow to run other sorters at the
same time if memory is limited.
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Table 7. Impact of(k, x)-mers on bin processing and overall KMC 2
processing, forG. gallusandH. sapiens2. 12 GB RAM set, gzipped
input. “Sorted fraction” is the ratio of the number of(k, x)-mers to the
number ofk-mers.

k = 28 k = 55
x Split Sort Total Sorted Split Sort Total Sorted

time time time fraction time time time fraction

G. gallus
0 102 159 261 1.000 98 381 479 1.000
1 127 131 258 0.646 104 284 388 0.639
2 127 119 246 0.539 104 265 369 0.527
3 127 112 239 0.491 106 240 346 0.479

H. sapiens ERA015743
0 672 867 1539 1.000 399 2188 2587 1.000
1 664 669 1333 0.648 448 1480 1928 0.638
2 644 614 1258 0.541 455 1176 1630 0.526
3 644 573 1217 0.495 439 1168 1607 0.478

For H. sapiens2 the largest bin was too large to fit the assumed amount of RAM
in two cases, and the RAM consumption of KMC 2 was 25 GB for(55, 0)-mers,
18 GB for(55, 1)-mers, 15 GB for(55, 2)-mers, and 13 GB for(55, 3)-mers.
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1,000

2,000

k

T
im

e
[s

]

12 GB RAM

24 GB RAM

Fig. 4. Dependence of KMC 2 processing time onk for H. sapiens2 dataset
(k = 22, 25, 28, 32, 40, 50, 60, 70)

Finally, we analyze the scalability and CPU load of our software (Fig. 7).
As expected, the highest speed is achieved when the number ofthreads
matches the number of (virtual) CPU cores (12). Still, the time reduction
between 1 and 12 threads is only by factor 3 or less, when the input data
are in non-compressed FASTQ. Using the compressed input broadens the
gap to factor 6.4 fork = 28 and 4.9 fork = 55. The corresponding gaps
between 1 and 6 threads (i.e., equal to the number ofphysicalcores) are:
2.3 and 2.5 (k = 28 andk = 55) with non-compressed input, and 4.9
and 3.9 (k = 28 andk = 55) with gzipped input. The latter experiment
tells more about the scalability of our tool, since the performance boost from
Intel hyper-threading technology can be hard to predict, varying from less
than 10% (Schuepbachet al., 2013, Tab. 1) to about 60% (Sebastiãoet al.,
2012, Tab. II) in real code.

4 CONCLUSION
Although the dominating trend in IT solutions nowadays is the
cloud, the progress in bioinformatic algorithms shows thateven
home computers, equipped with multi-core CPUs, several gigabytes
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Fig. 5. Dependence of KMC 2 temporary disk usage onk for H. sapiens2
dataset
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Fig. 6. Dependence of KMC 2 processing time on maximal available RAM
and type of disk forH. sapiens2 dataset. There are 4 results fork = 55
and 13 GB RAM. These results are for set 6 GB, 8 GB, 10 GB, 12 GB as
maximal RAM usage. However, the largest bin enforced to spend at least
13 GB of RAM

of RAM and a few fast hard disks (or one SSD disk) get powerful
enough to be applied for real “omics” tasks, if their resources are
loaded appropriately.

The presented KMC 2 algorithm is currently the fastest
k-mer counter, with modest resource (memory and disk)
requirements. Although the used approach is similar to the one
from MSPKmerCounter, we obtain an order of magnitude faster
processing, due to the following KMC features: replacing the
original minimizers with signatures (a carefully selectedsubset of
all minimizers), using(k, x)-mers and a highly parallel overall
architecture. As opposed to most competitors, KMC 2 worked
stably across a large range of datasets and test settings.

In real numbers, we show that it is possible to count the 28-
mers of a human reads collection with 44-fold coverage (106 GB
of compressed size) in about 20 minutes, on a 6-core Intel Core i7
PC with an SSD. With enough amounts of available RAM it is also
possible to run KMC 2 in memory only. In our preliminary testsit
almost did not help compared to an SSD (up to 5% speedup) but
may be an option in datacenters, with plenty of RAM but possibly
using network HDDs with relatively low transfer. In this scenario a
memory-only mode should be attractive.
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Fig. 7. Dependence of KMC 2 processing time and CPU usage on the set
number of threads forG. gallusdataset.

We expect to successfully apply KMC 2 for a few problems
related tok-mers, e.g., finding nullomers (Faldaet al., 2014).
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KMC 2: Fast and resource-frugal k-mer counting

1 KMC USAGE
KMC 2 program constructs a database of statistics for input set of FASTQ files. This database can then be used from other software: directly
via KMC API (described in Section 2) or by reading a textual file containing a list ofk-mers and their related counters. This textual file
can be obtained for a database by KMC-dump program, that is presented in Section 3 as a sample application of our KMC API. Section 4
describes the database format in detail for those interested in the low-level access to the data. Section 5 contains additional experimental
results and a description of the parameters of execution of the examined programs. Section 6 contains description of howthe automatic
setting of parameters of KMC works.

As this document is in part a technical documentation of KMC,some parts of it (e.g., API, command-line parameters) are highly similar
to the supplement of our previous paper: S. Deorowicz, A. Debudaj-Grabysz, Sz. Grabowski: Disk-basedk-mer counting on a PC,BMC
Bioinformatics, 14, 160 (2013). The mentioned paper described the previousversion of the current tool, i.e., KMC 1.

Below we describe in detail the parameters and options of theKMC command-line tool, in version 2.0.
The general syntax is:

kmc [options]<input file name> <output file name> <working directory>
or:
kmc [options]<@input file names> <output file name> <working directory>

where the parameters are:

• input file name — a single file in FASTQ format (gzipped or not),

• @input file names — a file name with list of input files in FASTQ format (gzipped or not),

• output file name — the output database file; if such a file exists, it will beoverwritten.

The configuration options comprise:

• -v — verbose mode (shows all parameter settings); default: false,

• -k<len> — k-mer length,k from 1 to MAX K; default: 25,

• -m<size> — max amount of RAM in GB (from 4 to 1024); default: 12,

• -p<par> — set signature length (from 5 to 7); default: 7,

• -f[a/q/m] — input in FASTA format (-fa), FASTQ format (-fq) or multi FASTA (-fm); default: FASTQ,

• -q[value] — use Quake’s compatible counting with [value] representing lowest quality; default: 33,

• -ci<value> — excludek-mers occurring less than<value> times; default: 2,

• -cs<value> — maximal value of a counter; default: 255,

• -cx<value> — excludek-mers occurring more of than<value> times; default: 1e9,

• -b — turn off transformation ofk-mers into canonical form,

• -r — turn on RAM-only mode,

• -sf<value> — number of FASTQ reading threads,

• -sp<value> — number of splitting threads,

• -so<value> — number of sorter threads,

• -sr<value> — number of threads per single sorter,

• -t<value> — total number of threads.

The parameters-sf<value>, -sp<value>, -so<value>, and-sr<value> concern the internal work of KMC, i.e., their settings may
affect the program’s processing speed, but won’t change itsoutput. Not setting at least one parameter from this group makes KMC ignore
them all. The parameter-t<value> sets total number of threads (including fastq readers, splitters, sorters and threads per single sorter, but
NOT including disk writer, bin reader and main KMC thread). If -t<value>, -sf<value>, -sp<value>, -so<value>, and-sr<value>
are specified the-t<value> is ignored. Setting the parameter-r causes all computations are performed using RAM memory, without using
disk space (memory usage may exceed limit).

Here are some usage examples.
kmc -k27 -m24 NA19238.fastq NA.res\data\kmc tmp dir\
kmc -k27 -q -m24 @files.lst NA.res\data\kmc tmp dir\
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2 API
In this section we describe two classes, CKmerAPI and CKMCFile. They can be used to obtain access to the databases produced by KMC
program.

2.1 CKmerAPI class
This class represents ak-mer. Its key methods are:

• CKmerAPI(uint32 length = 0) — constructor, that creates the array kmerdata of appropriate size,

• CKmerAPI(const CKmerAPI &kmer) — copy constructor,

• char get symbol(unsigned int pos) — returnsk-mer’s symbol at a given position (0-based),

• std::string to string() — convertsk-mer to string, using the alphabet ACGT,

• void to string(char *str) — convertsk-mer to string, using the alphabet ACGT; the function assumes that enough memory was
allocated,

• void to string(str::string &str) — convertsk-mer to string, using the alphabet ACGT,

• bool from string(std::string &str) — converts string (from alphabet ACGT) tok-mer,

• CKmerAPI() — destructor, releases the content ofkmer data array,

• overloaded operators: =, ==,<.

2.2 CKMCFile class
This class handles ak-mer database. Its key methods are:

• CKMCFile() — constructor,

• bool OpenForRA(std::string file name) — opens two files: filename with added extension “.kmcpre” and “.kmcsuf”, reads their
whole content to enable random access (in memory), and then closes them,

• bool OpenForListing(std::string file name) — opens the file filename with added extension “.kmcpre” and allows to read thek-mers
one by one (whole database is not loaded into memory),

• bool ReadNextKmer(CKmerAPI &kmer, float &count) — reads nextk-mer to kmer and updates its count; the return value is bool;
true as long as not eof-of-file (available only when databaseis opened in listing mode),

• bool Close() — if the file was opened for random access, the allocated memory for its content is released; if the file was opened for
listing, the allocated memory for its content is released and the “.kmer” file is closed,

• bool SetMinCount(uint32 x) — set the minimum counter value fork-mers; if ak-mer has count below x, it is treated as non-existent,

• uint32 GetMinCount(void) — returns the value (uint32) set with SetMinCount,

• bool SetMaxCount(uint32 x) — set the maximum counter value fork-mers; if ak-mer has count above x, it is treated as non-existent,

• uint32 GetMaxCount(void) — returns the value (uint32) set with SetMaxCount,

• uint64 KmerCount(void) — returns the number ofk-mers in the database (available only for databases opened in random access
mode),

• uint32 KmerLength(void) — returns thek-mer length in the database (available only for databases opened in random access mode),

• bool RestartListing(void) — sets the cursor for listingk-mers from the beginning of the file (available only for databases opened in
listing mode). The methodOpenForListing(std::string file name) invokes it automatically, but it can be also called by a user,

• bool Eof(void) — returns true if allk-mers have been listed,

• bool CheckKmer(CKmerAPI &kmer, float &count) — returns true if kmer exists in the database and set its countif the answer is
positive (available only for databases opened in random access mode),

• bool IsKmer(CKmerAPI &kmer) — returns true if kmer exists (available only for databases opened in random access mode),

• void ResetMinMaxCounts(void) — sets mincount and maxcount to the values read from the database,

• bool Info(uint32 & kmer length, uint32 & mode, uint32 & counter size, uint32 & lut prefix length, uint32 & signature len,
uint32 & min count, uint32 & max count, uint64 & total kmers) — gets current parameters from thek-mer database,

• CKMCFile() — destructor.
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3 EXAMPLE OF API USAGE
Thekmc dump application (Figs. 8 and 9) shows how to list and printk-mers with at leastmin count and at mostmax count occurrences in
the database. Fig. 8 presents parsing the command-line parameters, including-ci<value> and-cx<value>. Input and output file names are
also expected. The code in Fig. 9 is for actual database handling. This database is represented by aCKMCFile object, which opens an input
file for k-mer listing (the methodbool OpenForListing(std::string file name) is invoked). The parameter of the methodSetMinCount
(SetMaxCount) must be not smaller (not greater) than the corresponding parameter-ci (-cx) with which KMC was invoked (otherwise,
nothing will be listed). The listedk-mers are in the form like:
AAACACCGT\t<value>
where the first part is thek-mer in natural representation, which is followed by a tab character, and its associated value (integer or float).
(Such format is compatible with Quake, a widely used tool forsequencing error correction.) Note that, if needed, one caneasily modify the
output format, changing the lines 39 and 41 in Fig. 9.

For performance reasons, the KMC package contains two variants of the dump program. The first one, presented below, is the
kmc dump sample program. The second variant,kmc dump, is essentially the same, the only difference is the way the counters are
printed. Instead of thefprintf function we used much faster way of converting numbers into the textual form. Thus, in real applications the
kmc dump variant should be used.
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1 #include <iostream>

2 #include ” . . / kmc api / k m c f i l e . h ”
3

4 void p r i n t i n f o ( void ) ;
5

6 i n t tmain ( i n t argc , char∗ argv [ ] )
7 {

8 CKMCFile kmer database ;
9 i n t i ;

10 uin t32 mi n coun t to se t = 0;
11 uin t32 max count to set = 0;
12 s td : : s t r i n g i npu t f i l e name ;
13 s td : : s t r i n g ou tpu t f i l e name ;
14

15 FILE ∗ o u t f i l e ;
16 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 / / Parse i npu t parameters
18 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 i f ( argc < 3)
20 {

21 p r i n t i n f o ( ) ;
22 return EXIT FAILURE ;
23 }

24

25 for ( i = 1; i < argc ; ++ i )
26 {

27 i f ( argv [ i ] [ 0 ] == ’− ’ )
28 {

29 i f ( strncmp ( argv [ i ] , ”−c i ” , 3) == 0)
30 mi n coun t to se t = a t o i (& argv [ i ] [ 3 ] ) ;
31 else i f ( strncmp ( argv [ i ] , ”−cx ” , 3) == 0)
32 max count to set = a t o i (& argv [ i ] [ 3 ] ) ;
33 }

34 else
35 break ;
36 }

37

38 i f ( argc − i < 2)
39 {

40 p r i n t i n f o ( ) ;
41 return EXIT FAILURE ;
42 }

43

44 i npu t f i l e name = std : : s t r i n g ( argv [ i + + ] ) ;
45 ou tpu t f i l e name = std : : s t r i n g ( argv [ i ] ) ;
46

47 i f ( ( o u t f i l e = fopen ( ou tpu t f i l e name . c s t r ( ) , ”wb” ) ) == NULL)
48 {

49 p r i n t i n f o ( ) ;
50 return EXIT FAILURE ;
51 }

52

53 setvbuf ( o u t f i l e , NULL , IOFBF , 1 << 24) ;
54

55 . . .

Fig. 8. First part ofkmc dump sample application

12



KMC 2: Fast and resource-frugal k-mer counting

1 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 / / Open kmer database f o r l i s t i n g and p r i n t kmers w i t h i n min count and max count
3 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 i f ( ! kmer database . OpenForList ing ( i npu t f i l e name ) )
6 {

7 p r i n t i n f o ( ) ;
8 return EXIT FAILURE ;
9 }

10 else
11 {

12 uin t32 kmer length ;
13 uin t32 mode ;
14 uin t32 coun te r s i ze ;
15 uin t32 l u t p r e f i x l e n g t h ;
16 uin t32 s i g n a t u r e l e n ;
17 uin t32 min count ;
18 uin t32 max count ;
19 uin t64 to ta l kmers ;
20

21 kmer database . I n f o ( kmer length , mode , coun te r s i ze , l u t p r e f i x l e n g t h , s i gna tu re l en ,
22 min count , max count , t o ta l kmers ) ;
23

24 f l o a t counter ;
25 s td : : s t r i n g s t r ;
26

27 CKmerAPI kmer ob jec t ( kmer length ) ;
28

29 i f ( m i n coun t to se t )
30 i f ( ! ( kmer database . SetMinCount ( m i n coun t to se t ) ) )
31 return EXIT FAILURE ;
32 i f ( max count to set )
33 i f ( ! ( kmer database . SetMaxCount ( max count to set ) ) )
34 return EXIT FAILURE ;
35

36 while ( kmer database . ReadNextKmer ( kmer object , counter ) )
37 {

38 kmer ob jec t . t o s t r i n g ( s t r ) ;
39

40 i f ( mode )
41 f p r i n t f ( o u t f i l e , ”%s\ t%f\n ” , s t r . c s t r ( ) , counter ) ;
42 else
43 f p r i n t f ( o u t f i l e , ”%s\ t%d\n ” , s t r . c s t r ( ) , ( i n t ) counter ) ;
44 }

45

46 f c l ose ( o u t f i l e ) ;
47 }

48

49 return EXIT SUCCESS;
50 }

51

52 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

53 / / P r i n t execut ion opt ions
54 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

55 void p r i n t i n f o ( void )
56 {

57 s td : : cout << ”KMC dump ver . ” << KMC VER << ” ( ” << KMC DATE << ” )\n ” ;
58 s td : : cout << ”\nUsage :\nkmc dump [ opt ions ] <kmc database><o u t p u t f i l e >\n ” ;
59 s td : : cout << ” Parameters :\n ” ;
60 s td : : cout << ”<kmc database> − kmer counter ’ s output\n ” ;
61 s td : : cout << ” Options :\n ” ;
62 s td : : cout << ”−c i<value> − p r i n t k−mers occurr ing less than <value> t imes\n ” ;
63 s td : : cout << ”−cx<value> − p r i n t k−mers occurr ing more of than <value> t imes\n ” ;
64 } ;

Fig. 9. Second part ofkmc dump sample application
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4 DATABASE FORMAT
The KMC application creates output files with two extensions:

• .kmc pre — with information onk-mer prefixes (plus some other data),

• .kmc suf — with information onk-mer suffixes and the related counters.

All integers in the KMC output files are stored in LSB (least significant byte first) byte order.

4.1 The.kmc pre file structure
The .kmc pre file contains, in order, the following data:

• [marker],

• [prefixes],

• [map],

• [header],

• [header position],

• [marker] (another copy, to signal the file is not truncated).

[marker] 4 bytes with the letters: KMCP.

[header position] The integer consisting of the last 4 bytes in the file (before end KMCP marker). It contains the relative position of the
beginning of the field [header]. After opening the file, one should do the following:

1. Read the first 4 bytes and check if they contain the letters KMCP.

2. Read the last 4 bytes and check if they contain the letters KMCP.

3. Jump to position 8 bytes back from end of file and read the header positionx.

4. Jump to positionx+ 8 bytes back from end of file and read the header.

5. Read [data].

[header] The header contains fields describing the file .kmcpre:

• uint32 kmer length — k-mer length,

• uint32 mode — mode: 0 (occurrence counters) or 1 (quality-aware counters),

• uint32 counter size — counter field size: for mode 0 it is 1, 2, 3, or 4; for mode 1 it isalways 4,

• uint32 lut prefix length — the length (in symbols) of the prefix cut off fromk-mers; it is invariant of the scheme that 4 divides
(kmer length − lut prefix length),

• uint32 signature length — the length (in symbols) of the signature,

• uint32 min count — minimum number ofk-mer occurrences to write in the database (if the counter is smaller, thek-mer data are not
written),

• uint32 max count — maximum number ofk-mer occurrences to write in the database (if the counter is greater, thek-mer data are not
written),

• uint64 total kmers — total number ofk-mers in the database,

• uint32 tmp[7] — not used in the current version,

• uint32 KMC VER — version of KMC software (for KMC 2 this value is equal to 0x200).

[map]
There is an array ofuint32 elements, of size4signature length + 1. This array is used to identify position of proper prefixes’ array stored in
[prefixes] region. For example, if the queriedk-mer isATACGACAAATG andsignature length = 5, its signature isACGAC (as it is the
smallest5-mer which satisfies conditions of being a signature). DNA symbols are encoded as follows:A → 0, C → 1, G → 2, T → 3, so
ACGAC is equal to 97 (since0 · 28 + 1 · 26 + 2 · 24 + 0 · 22 + 1 · 20 = 97). In this case we look into “map” at position 97 to get the id of
related prefixes’ array.
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[prefixes]
This region contains a number of prefixes’ arrays (typicallyhundreds of them) ofuint64 elements. Each array is of size4lut prefix length .
The last prefixes’ array is followed by an additionaluint64 element being a guard to make the reading process simpler. The total number
of prefixes’ arrays can be easily calculated (as start and endposition are given, size of one array is also known). The element at positionx
in prefixes’ array for given signatures points to a record in .kmcsuf file. This record contains the first suffix ofk-mer with prefixx and
signatures (the position of the last record can be obtained by decreasing the value atx+ 1 in prefixes’ array by 1).

Using the example from the previous section, the start position of prefixes’ array fork-merATACGACAAATG should be calculated as:
4 + 97 · 4lut prefix length · 8 (marker+ equivalent ofACGAC signature· no. of elements in each array· size of element in prefix array). The
next step is to cut off the prefix of length equal tolut prefix length from the queriedk-mer. Let us assumelut prefix length = 4, and then
the prefix isATAC whose equivalent is 49. The element at position49 in the related prefixes’ array (pointed by signature97) is the position
of the first record in.kmc suf file which contains ak-mer with prefixATAC and with signatureACGAC. Let us suppose this position is
1523, then we look at position50 in prefixes’ array (say, it contains 1685). This means that.kmc suf file stores the suffixes ofk-mers with
prefix ATAC and signatureACGAC in the records from1523 to 1685 − 1. Having got this range, we can now apply binary search for the
suffix GACAAATG.

4.2 The.kmc suf file structure
The .kmc suf file contains, in order, the following data:

• [marker],

• [data],

• [marker] (another copy, to signal the file is not truncated).

Thek-mers are stored with their leftmost symbol first, packed into bytes. For example,CCACAAAT is represented as0x51 (for CCAC),
0x03 (for AAAT). Integers are stored according to the LSB (little endian) byte order, floats are stored in the same way as they are stored in
the memory.

[marker] 4 bytes with the letters: KMCS.

[data] An arrayrecord t records[total kmers].
total kmers is taken from the.kmc pre file.
record t is a type representing ak-mer. Its first field is thek-mer suffix string, stored on(kmer length− lut prefix length)/4 bytes. The

next field iscounter size, with the number of bytes used by the counter, which is eithera1 . . . 4-byte integer, or a4-byte float.
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5 EXPERIMENTAL RESULTS

5.1 Test platforms
K-mer Counter (KMC), was implemented in C++11, using gcc compiler (version 4.8.3) for the linux build and Microsoft Visual Studio 2013
for the Windows build.

The configuration of the test machine was:

• CPU: Intel i7 4930 (6-cores clocked at 3.4 GHz),

• RAM: 64 GB RAM (clocked at 1833 MHz),

• HDD: 2 drives Seagate Constellation ES.3 3 TB each in RAID 0; buffered transfers reported byhdparm -t: 355 MB/s.

• SSD: Samsung 840 Evo 1 TB; buffered transfers reported byhdparm -t: 510 MB/s.

5.2 Datasets
5.2.1 F. vesca The files were downloaded from the following URLs:
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072006.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030576/SRR072007.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072008.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030577/SRR072009.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072013.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072014.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030578/SRR072029.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072005.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072010.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072011.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA020/SRA020125/SRX030575/SRR072012.fastq.bz2

Then they were decompressed to a singlefv.fastq file.

5.2.2 G. gallus The files were downloaded from the following URLs:
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030308/SRX043656/SRR105788 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030308/SRX043656/SRR105788 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030309/SRX043656/SRR105789 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030312/SRX043656/SRR105792 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA030/SRA030314/SRX043656/SRR105794 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036382/SRX043656/SRR197985 2.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986 1.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA036/SRA036383/SRX043656/SRR197986 2.fastq.bz2

Then they were decompressed to a singlegg.fastq file. The files were also re-compressed to gzip format for the experiments withk-mer
counting of gzipped files.

5.2.3 M. balbisiana The files were downloaded from the following URLs:
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA098/SRA098922/SRX339427/SRR956987.fastq.bz2
ftp://ftp.ddbj.nig.ac.jp/ddbj database/dra/fastq/SRA098/SRA098922/SRX339427/SRR957627.fastq.bz2

Then they were decompressed to a singlemb.fastq file.

5.2.4 H. sapiens1 The files were downloaded from the following URL:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/sequence read/

Then they were decompressed to a singlehs1.fastq file.

5.2.5 H. sapiens2 The FASTQ files (48 files) were downloaded from the following URL:
http://www.ebi.ac.uk/ena/data/view/ERA015743

Then they were decompressed to a singlehs2.fastq file. The filehs2 files contains list of gzipped files of this individual.
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5.3 Parameters of programs
Jellyfish Jellyfish (ver. 2.1.3) requires to give as a parameter the expected number of countedk-mers. In all experiments we set this value
to be about 10% larger than the number ofk-mers reported by KMC.

Command lines:
./jellyfish count -m 28 -C -s 300M -t 12 -L 2 -o jelly2 fv.fastq
./jellyfish count -m 55 -C -s 400M -t 12 -L 2 -o jelly2 fv.fastq
./jellyfish count -m 28 -C -s 1200M -t 12 -L 2 -o jelly2 gg.fastq
./jellyfish count -m 55 -C -s 1200M -t 12 -L 2 -o jelly2 gg.fastq
./jellyfish count -m 28 -C -s 1G -t 12 -L 2 -o jelly2 mb.fastq
./jellyfish count -m 55 -C -s 1200M -t 12 -L 2 -o jelly2 mb.fastq
./jellyfish count -m 28 -C -s 3G -t 12 -L 2 -o jelly2 hs1.fastq
./jellyfish count -m 55 -C -s 3G -t 12 -L 2 -o jelly2 hs1.fastq
./jellyfish count -m 28 -C -s 3G -t 12 -L 2 -o jelly2 hs2.fastq
./jellyfish count -m 55 -C -s 3G -t 12 -L 2 -o jelly2 hs2.fastq

KAnalyze KAnalyze (ver. 0.9.5) does not allow to countk-mers fork > 32, so only a single value ofk was used in the tests. Since
KAnalyze documentation does not say how to divide the threads among “k-mer step” and “split step” we allocated 6 threads for both steps
(-l and-d parameters).

Command lines:
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -l 6 fv.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -l 6 gg.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -l 6 mb.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -l 6 hs1.fastq
java -jar ./kanalyze.jar count -d 6 -f fastq -k 28 -l 6 hs2.fastq

DSK DSK (ver. 1.6066) was executed with default parameters thatmeans 6 GB limit of RAM. Thek-mers occurring less than 2 times were
excluded.

Command lines:
./dsk32 fv.fastq 28 -t 2 -m 6144 -o o_dsk
./dsk64 fv.fastq 55 -t 2 -m 6144 -o o_dsk
./dsk32 gg.fastq 28 -t 2 -m 6144 -o o_dsk
./dsk64 gg.fastq 55 -t 2 -m 6144 -o o_dsk
./dsk32 mb.fastq 28 -t 2 -m 6144 -o o_dsk
./dsk64 mb.fastq 55 -t 2 -m 6144 -o o_dsk
./dsk32 hs1.fastq 28 -t 2 -m 6144 -o o_dsk
./dsk64 hs1.fastq 55 -t 2 -m 6144 -o o_dsk
./dsk32 hs2.fastq 28 -t 2 -m 6144 -o o_dsk
./dsk64 hs2.fastq 55 -t 2 -m 6144 -o o_dsk

Turtle The program scTurtle (ver. 0.3) was used to calculate thek-mers and their counts. The documentation says that the number of threads
should be a prime, so for our 12-virtual cores system we used 11 threads. The expected number ofk-mers was set to be about 10% larger
than the exact value (calculated by KMC).

Command lines:
./scTurtle32 -f fv.fastq -o turtle -k 28 -t 11 -n 400000000
./scTurtle64 -f fv.fastq -o turtle -k 55 -t 11 -n 400000000
./scTurtle32 -f gg.fastq -o turtle -k 28 -t 11 -n 1150000000
./scTurtle64 -f gg.fastq -o turtle -k 55 -t 11 -n 1150000000
./scTurtle32 -f mb.fastq -o turtle -k 28 -t 11 -n 1100000000
./scTurtle64 -f mb.fastq -o turtle -k 28 -t 11 -n 1100000000
./scTurtle32 -f hs1.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle64 -f hs1.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle32 -f hs2.fastq -o turtle -k 28 -t 11 -n 3000000000
./scTurtle64 -f hs2.fastq -o turtle -k 28 -t 11 -n 3000000000
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MSPKmerCounter MSPKmerCounter (ver. 0.10.0) was used with minimizer length (10) and number of bins (1000) suggested in the original
paper.

Command lines:
java -jar ./Partition.jar -in fv.fastq -k 28 -L 353 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in fv.fastq -k 55 -L 353 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in gg.fastq -k 28 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in gg.fastq -k 55 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in mb.fastq -k 28 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in mb.fastq -k 55 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in hs1.fastq -k 28 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in hs1.fastq -k 55 -L 100 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

java -jar ./Partition.jar -in hs2.fastq -k 28 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count32.jar -t 12 -k 28 -NB 1000

java -jar ./Partition.jar -in hs2.fastq -k 55 -L 101 -NB 1000 -p 10 -t 12
java -jar ./Count64.jar -t 12 -k 55 -NB 1000

KMC 1 KMC was executed with setting thatk-mers occurring less than 2 times should not be counted. The parameter-p (prefix length)
was set to 5 for all data sets except the smallest one.

Command lines:
./kmc1 -v -m16 -k28 -p4 fv.fastq res temp
./kmc1 -v -m16 -k55 -p4 fv.fastq res temp
./kmc1 -v -m16 -k28 -p5 gg.fastq res temp
./kmc1 -v -m16 -k55 -p5 gg.fastq res temp
./kmc1 -v -m16 -k28 -p5 mb.fastq res temp
./kmc1 -v -m16 -k55 -p5 mb.fastq res temp
./kmc1 -v -m16 -k28 -p5 hs1.fastq res temp
./kmc1 -v -m16 -k55 -p5 hs1.fastq res temp
./kmc1 -v -m16 -k28 -p5 hs2.fastq res temp
./kmc1 -v -m16 -k55 -p5 hs2.fastq res temp

KMC 2 KMC was executed with setting thatk-mers occurring less than 2 times should not be counted. The parameter-p (minimizer length)
was set to 7 for all data sets.

Command lines (main tests):
./kmc2 -v -m12 -k28 -p7 fv.fastq res temp
./kmc2 -v -m12 -k28 -p7 fv.fastq res temp
./kmc2 -v -m6 -k28 -p7 fv.fastq res temp
./kmc2 -v -m6 -k28 -p7 fv.fastq res temp
./kmc2 -v -m12 -k28 -p7 gg.fastq res temp
./kmc2 -v -m12 -k28 -p7 gg.fastq res temp
./kmc2 -v -m6 -k28 -p7 gg.fastq res temp
./kmc2 -v -m6 -k28 -p7 gg.fastq res temp
./kmc2 -v -m12 -k28 -p7 mb.fastq res temp
./kmc2 -v -m12 -k28 -p7 mb.fastq res temp
./kmc2 -v -m6 -k28 -p7 mb.fastq res temp
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./kmc2 -v -m6 -k28 -p7 mb.fastq res temp

./kmc2 -v -m12 -k28 -p7 hs1.fastq res temp

./kmc2 -v -m12 -k28 -p7 hs1.fastq res temp

./kmc2 -v -m6 -k28 -p7 hs1.fastq res temp

./kmc2 -v -m6 -k28 -p7 hs1.fastq res temp

./kmc2 -v -m12 -k28 -p7 hs2.fastq res temp

./kmc2 -v -m12 -k28 -p7 hs2.fastq res temp

./kmc2 -v -m6 -k28 -p7 hs2.fastq res temp

./kmc2 -v -m6 -k28 -p7 hs2.fastq res temp

Command lines (gzipped files):
./kmc2 -v -m12 -k28 -p7 @hs2_files res temp
./kmc2 -v -m12 -k55 -p7 @hs2_files res temp
wherehs2_files contains list of gzipped FASTQ files ofhs2 data set.

Command lines (thread tests):
taskset -c 0 ./kmc2 -v -m12 -k28 -p7 -t2 @gg_files res temp
taskset -c 0 ./kmc2 -v -m12 -k28 -p7 -t2 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t2 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t2 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t2 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t3 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t3 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t4 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t4 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t5 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t5 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t6 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t6 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t8 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t8 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t10 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t10 @gg_files res temp
./kmc2 -v -m12 -k28 -p7 -t12 @gg_files res temp
./kmc2 -v -m12 -k55 -p7 -t12 @gg_files res temp
wheregg_files contains list of gzipped FASTQ files ofgg data set.

Since KMC 2 does not allow to specify less than 2 threads to measure the speed of KMC for a single thread scenario we allowed to use a
single core by using the linuxtaskset command.

5.4 Results
The results for additional data sets (the ones that are not included in the main part of the paper) are given below.
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Table 8. k-mers counting results forF. vesca. MSPKC fails, probably due to the variable length of reads inthe dataset.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

SSD
Jellyfish 2 9 0 133 39 0 243
KAnalyze 9 33 345 unsupportedk
DSK 6 12 141 6 13 298
Turtle 17 0 133 26 0 175
MSPKC failed failed
KMC 1 13 17 84 17 41 243
KMC 2 (12GB) 7 4 45 12 3 59
KMC 2 (6GB) 6 4 33 6 3 60

HDD
Jellyfish 2 9 0 133 39 0 245
DSK 6 12 147 6 13 308
Turtle 17 0 135 26 0 178
KMC 1 11 17 120 17 41 245
KMC 2 7 4 58 12 3 61

Table 9. k-mers counting results forH. sapiens1.

k = 28 k = 55
Algorithm RAM Disk Time RAM Disk Time

SSD
Jellyfish 2 62 0 2,013 out of memory
KAnalyze out of disk (> 650GB) unsupportedk
DSK 6 192 3,485 6 236 4,475
Turtle out of memory out of memory
MSPKC 17 286 10,032 out of time (> 10 hours)
KMC 1 17 251 1,930 17 426 3,788
KMC 2 (12GB) 12 64 1,010 12 44 1,251
KMC 2 (6GB) 6 64 1,013 8 44 1,397

HDD
Jellyfish 2 62 0 2,209 out of memory
DSK 6 192 10,667 6 236 13,550
MSPKC 17 286 13,444 out of time (> 10 hours)
KMC 1 17 251 3,296 17 426 5,136
KMC 2 12 64 1,417 12 44 1,651
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6 AUTOMATIC SETTING OF PARAMETERS IN KMC
The automatic setting of parameters mechanism tries to allocate the available resources (i.e., CPU cores) in the best possible way. The optimal
number of threads for the parts of the algorithm is, however,hard to obtain, since it depends on many things, like the compression method of
input files, the speed of disks, etc. Thus, our automatic mechanism is obviously suboptimal, nevertheless, experimentsshow that it performs
reasonably well. If the results are unsatisfactory, the KMC2 user can specify these parameters from command line.

The most important factor of the mechanism is the number of available cores (possibly overridden if the user specifies it with -t parameter).
FASTQ readers, splitters, sorters and sorting threads per single sorter are the most important threads of KMC 2. To set anexact number of
those threads,all -s? parameters must be specified (if one is omitted, the rest of them is ignored).

The automatic setting of parameters for the first stage worksas follow. If the input files are in plain text format (not compressed), there is
one FASTQ reader thread. Otherwise the number of FASTQ reader threads is equal to the number of large input files (“large” means here
the ones whose size is greater than 5% of the size of the largest file), but not more than half of the number of cores. After that the number of
“free” cores (not assigned yet) is set as the number of splitting threads. In the second stage the memory requirements foreach bin are known
and the following steps are performed. Bins are sorted by their size in a non-increasing order. The number of sorter threads is calculated as
⌊M2/B10⌋, whereM2 is total amount of memory available for the second stage,B10 is the size of the bin for which10% of bins are bigger.
The number of sorting threads per single sorter is equal to the number of cores divided by the number of sorter threads (as the result may not
be integer, some sorters have one sorting thread more than others, e.g., if there are 7 sorters and 10 threads to allocate,3 sorters would run 2
sorting threads and 4 sorters only 1 sorting thread).
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