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Abstract

A major roadblock towards accurate interpretation of single cell RNA-seq data is large technical

noise resulted from small amount of input materials. The existing methods mainly aim to find dif-

ferentially expressed genes rather than directly de-noise the single cell data. We present here a

powerful but simple method to remove technical noise and explicitly compute the true gene ex-

pression levels based on spike-in ERCC molecules.

Availability and implementation: The software is implemented by R and the download version is

available at http://wanglab.ucsd.edu/star/GRM.

Contact: wei-wang@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-seq is a promising technology with broad applica-

tions and discerning biological noise from technical noise is critical

for correctly interpreting the data (Jaitin et al., 2014). Recently, stat-

istical methods are developed to model the technical noise from

spike-in ERCC molecules, whose concentrations are presumably

same across the samples, and then identify differentially expressed

genes, whose variations across samples are significantly larger than

technical noise (Brennecke et al., 2013). A limit for such an ap-

proach is that the true gene expression level is not explicitly calcu-

lated, which is needed for many analyses based on quantification of

transcriptions.

Here we propose a novel strategy to normalize and de-noise sin-

gle cell RNA-seq data. This method calculates RNA concentrations

from the sequencing reads, which is opposite to the other published

methods that model sequencing reads from RNA concentrations; it

is much simpler than the existing methods but importantly it allows

to remove technical noise and explicitly compute gene expression.

Specifically, we fit a gamma regression model (GRM) between the

sequencing reads (RPKM, FPKM or TPM) and the concentration

of spike-in ERCC molecules. The trained model is then used to

estimate the de-noised molecular concentration of the genes from

the reads. GRM shows great power of reducing technical noise and

superior performance compared to several popular normalization

methods such as FPKM (Tu et al., 2012), TMM (Robinson and

Oshlack, 2010) and FQ (Bullard et al., 2010) in analyzing single cell

RNA-seq data.

2 Results

2.1 Fit a GRM from read counts to RNA concentrations
Spike-in ERCCs can be added equally to each sample during

the library preparation to calibrate measurements of single cell

RNA-seq. A natural approach is to train a model to compute read

counts such as FPKM from the concentrations of ERCC

(FPKM¼ function concentrationð Þ). This model is then used to

calculate the expression level or molecular concentration of

each gene from its FPKM using the reversed relationship
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(concentration¼ function FPKMð Þ). However, substantial technical

noise in single cell RNA-seq makes it non-trivial to construct such a

model(Grun et al., 2014). In addition, it can be challenging to

analytically or numerically solve the reverse model. We therefore

propose to fit the “reverse” model directly (concentration¼
function FPKMð Þ) using ERCCs. This way, gene expression levels

can be directly computed from FPKM. Such a strategy is novel

and much simpler than the published methods that model noise

distribution without explicitly computing the de-noised gene expres-

sion levels.

We choose to use gamma distribution to model the distribution

of molecular concentrations because of its flexibility to fit diverse

shapes. As the values of molecular concentration (10�2–104) and

FPKM (always 0–104–5) vary in a large range, we first perform log

transformation of these data, x ¼ log ðFPKMÞ (log-R) and

y ¼ logðconcentration) (log-C). Instead of fitting a GRM between x

and y directly, we model the non-linearity of single cell signals using

a polynomial function lðxÞ ¼
Xn

i¼0
bix

i. The model is the

following:

y � Gamma y; l xð Þ;uð Þ

with the probability density function:

f ðyÞ ¼ 1

yCðuÞ ð
uy

lðxÞÞ
uexp � uy

lðxÞ

� �

The parameters are determined using maximum likelihood esti-

mation. The optimal value of n is determined by an empirical search:

we train multiple models with n¼1 to n¼4 and select n with small-

est average technical noise of ERCCs.

Using the regression model trained from spike-in ERCCs in one

single cell sample, we compute the true expression levels of genes

from their FPKMs by calculating the expectation of a given FPKM,

ŷgene ¼ E ygene

� �
¼ l̂ xgene

� �
¼
Xn

i¼0
b̂ ix

i
gene.

2.2 Successful de-noise of single cell RNA-seq data
To demonstrate the effectiveness of our strategy, we need a dataset

that has a gold standard of cataloguing single cells and such a data-

set is still rare. Treutlein et al. (2014) performed single cell experi-

ments at four different developmental stages (GEO GSE52583).

This dataset includes 198 individual mouse lung cells derived from

four different developmental stages: E14.5 (45 samples), E16.5 (27

samples), E18.5 (80 samples) and adult (46 samples).

We first perform gamma regression on all the spike-in ERCCs.

Our model achieves an average Pearson correlation between the pre-

dicted and true concentrations of 0.866 over all the 198 samples

(Fig. 1a), significantly higher than a value of 0.119 if using a linear

regression model fit between log-R and log-C. We measure the noise

for the spike-in ERCCs across all the samples using CV2, which is

defined as the variance divided by the square of mean(Brennecke

et al., 2013; Fig. 1b, Supplementary Table S1). After de-noise, on

average the CV2 value is reduced 70%, from 1.301 to 0.408, with

the largest reduction of 90% (from 0.584 to 0.056). These results

suggest that our strategy can drastically reduce technical noise.

We next apply the model fit in each single cell to remove tech-

nical noise of the genes in the same single cell. Treutlein et al. se-

lected 124 Sftpc-positive cells to monitor the mature process of

alveolar type 2 (AT2) cells at the four developmental stages (Sftpc is

the marker of AT2 cells). Four distinct groups of cells are expected

to be found corresponding to the four developmental stages.

Treutlein et al. selected 10 946 genes that were observed in more

than two samples and had a variance of transcript level

(log2(FPKM)) across all the sample larger than 0.5. If all the cells

are clustered using these genes by hierarchical clustering, single cells

from different stages are mixed (Supplementary Fig. S1(a)). After

de-noise, distinct clusters corresponding to the four developmental

stages are observed (Fig. 1d). Furthermore, the dendrogram of the

hierarchical clustering correctly represent the developmental dis-

tance between the single cells. Namely, the adult cells are most dis-

tant from embryonic ones of E14.5, E16.5 and E18.5. E14.5 and

E16.5 are most similar to each other and form the early progenitor

branch, which is connected to E18.5. This hierarchy is consistent

with the development of AT2 cells (Fig. 1c). Similarly, when PCA is

applied to all the data, the de-noised data clearly show significantly

better separation between the single cells derived from different de-

velopmental stages (Supplementary Fig. S2(a)–(e)).

Taken together, the significant lower noise in ERCCs and

achievement of more biologically meaningful clusters in the AT2 cell

development indicate that our de-noise strategy can successfully re-

move technical noise in single cell RNA-seq.

3 Conclusion

We present here a simple but powerful method for removing tech-

nical noise of single cell RNA-seq data. This method is distinct from

the existing approaches as it derives the relationship between RNA

concentrations and sequencing read counts from ERCC molecules

and then applies this relationship to calculate gene expression from

read counts. We demonstrated the success of normalization and

noise reduction of single cell RNA-seq data by showing significantly

improved clustering of single cells after denoise. Furthermore, this

method is general and also applicable to bulk RNA-seq data with

spike-in ERCCs.
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Fig. 1. (a) The correlation between the true and predicted molecular concen-

trations for the spike-in ERCCs in one sample. (b) Noise represented by CV2

before and after de-noise using GRM. (c) The dendrogram of the hierarchical

clustering of de-noised data correctly correspond to the four developmental

stages. (d) Hierarchical clustering on 124 Sftpeþ single cells after de-noise
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