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Abstract

Summary: We previously developed dmGWAS to search for dense modules in a human protein–

protein interaction (PPI) network; it has since become a popular tool for network-assisted analysis

of genome-wide association studies (GWAS). dmGWAS weights nodes by using GWAS signals.

Here, we introduce an upgraded algorithm, EW_dmGWAS, to boost GWAS signals in a node- and

edge-weighted PPI network. In EW_dmGWAS, we utilize condition-specific gene expression pro-

files for edge weights. Specifically, differential gene co-expression is used to infer the edge

weights. We applied EW_dmGWAS to two diseases and compared it with other relevant methods.

The results suggest that EW_dmGWAS is more powerful in detecting disease-associated signals.

Availability and implementation: The algorithm of EW_dmGWAS is implemented in the R package

dmGWAS_3.0 and is available at http://bioinfo.mc.vanderbilt.edu/dmGWAS.

Contact: zhongming.zhao@vanderbilt.edu or peilin.jia@vanderbilt.edu

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

Over the past decade, genome-wide association studies (GWAS)

have successfully uncovered many susceptibility loci for common

diseases. However, the identified loci only explain a small portion of

the genetic risk (Jia et al., 2011). It is challenging to uncover the re-

maining risky loci as their association signals are likely to be moder-

ate or weak. One potential solution to this challenge is to

incorporate other functional information, such as protein–protein

interaction (PPI) networks, to investigate joint association signals

beyond single markers (Jia et al., 2012).

We previously developed a network-assisted approach,

dmGWAS, to address this problem (Jia et al., 2011). dmGWAS

applies a greedy algorithm to search for dense modules in a PPI net-

work in which nodes are weighted by using GWAS signals. After its

initial release, dmGWAS received much attention from the research

community and has become quite popular for network-assisted ana-

lysis of GWAS signals.

Motivated by the strong demand, we enhanced dmGWAS by

integrating and enabling gene expression profiles to assign edge

weights, and denoted the new algorithm EW_dmGWAS.

Differential gene co-expression (DGCE), which measures the change

of gene co-expression between case and control samples, is one im-

portant feature of transcriptional information, reflecting cellular dy-

namics and contributing to pathogenesis (Yu et al., 2013). Thus, we

utilize DGCE to infer the weight of each edge and combine the asso-

ciation signals of its two nodes to assess the overall disease risk of

network modules within the human PPI network.

2 Methods

In brief, EW_dmGWAS integrates GWAS signals and gene expres-

sion profiles to extract dense modules from a background PPI net-

work. Node weights are derived from GWAS signals and edge

weights are derived from gene expression profiles. The module score

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2591

Bioinformatics, 31(15), 2015, 2591–2594

doi: 10.1093/bioinformatics/btv150

Advance Access Publication Date: 24 March 2015

Applications Note

1
1
1
1
,2,
http://bioinfo.mc.vanderbilt.edu/dmGWAS
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv150/-/DC1
i
-
m
http://www.oxfordjournals.org/


is a combination of node weight and edge weight. The aim of

EW_dmGWAS is to locally identify the modules with maximum

scores.

2.1 Defining node weight
To determine disease association at the gene level, we first mapped

the Single Nucleotide Polymorphism (SNP) P-values from GWAS

onto gene-based P-values. Then, we defined node weight by

nodeweight vð Þ ¼ u�1 1� pð Þ, where p denotes the gene-based P-

value of node v, and u is the standard normal distribution function.

2.2 Defining edge weight
We used the change of gene co-expression between case and control

samples to infer edge weight. Specifically, let rcase and rcontrol repre-

sent the Pearson’s correlation coefficient (PCC) of gene expression

in case and control samples, respectively, and let ncase and ncontrol

represent the sample size, respectively. We first used the Fisher

transformation [Equation (1)] and then Fisher’s test of difference be-

tween two conditions [Equation (2)] to define a new statistic X:

F xð Þ ¼ 1

2
ln

1þ x

1� x
; (1)

X ¼ F rcaseð Þ � F rcontrolð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ncase�3þ 1
ncontrol�3

q : (2)

The newly defined statistic X approximately follows the stand-

ard normal distribution (Hou et al., 2014). Accordingly, we defined

edge weight as edge weight eð Þ ¼ u�1 1� 2� 1� u jXjð Þð Þ½ �.

2.3 Defining module score
To quantitatively evaluate the density of highly weighted nodes and

edges within a module, we defined the module score S by

S ¼ k

X
e2E

edgeweightðeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
No: of E
p þ 1� kð Þ

X
v2V

nodeweight vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
No: of V
p ; (3)

where E and V represent the edges and nodes of the module, and k
is a parameter between 0 and 1 to balance GWAS and gene expres-

sion signals.

2.4 Module search
We implemented a greedy algorithm to search for dense modules as

follows.

1. Assign a seed module M and calculate the module score Sm of

M. Initially, the seed module is a single gene.

2. Examine all the first order neighbors of M, and identify the

neighbor node Nmax that generates the maximum increment of

the module score.

3. Add Nmax to the current module M if the score increment is

greater than Sm � r, where r is a parameter that decides the mag-

nitude of increment.

4. Repeat steps 1–3 until no more neighbors can be added.

2.5 Normalization of module score
In order to evaluate the significance of the identified modules, we

used a randomization-based method to obtain the background dis-

tribution of the module scores. Specifically, for a module M with K

nodes, we randomly generated a sub-network with the same size,

and calculated the score Smð p Þ of this sub-network. We repeated

this process 10 000 times and denoted the mean and standard

deviation of Smð p Þ as l and r. The module score was normalized

by SN ¼ ðSm � lÞ=r, and SN was used to determine the significance

of the identified modules.

3 Implementation and application

The algorithm of EW_dmGWAS is implemented in the R package

dmGWAS_3.0 and is available at http://bioinfo.mc.vanderbilt.edu/

dmGWAS. It takes three types of data as input: a list of genes with

association P-values, gene expression profiles in both case and con-

trol samples, and a human PPI network. For mapping SNP P-values

from GWAS onto gene based P-values, multiple tools are available

(Ballard et al., 2010). In our implementation, we utilized versatile

gene-based association study (VEGAS) (Liu et al., 2010) for this pur-

pose. r and k are two parameters that need to be determined in

EW_dmGWAS. r is suggested to be 0.1, as was used in our previous

version (Jia et al., 2011). For k, we proposed the following ap-

proach. We randomly extracted 10 000 sub-networks from the

background network and then obtained the magnitude ratios (mr)

by comparing the edge weight part and the node weight part of the

sub-networks:

mr ¼ j

X
e2E

edgeweight eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
No: of E
p =

X
v2V

nodeweight vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
No:of V
p j: (4)

k was estimated by 1=ð1 þ medianðmrÞÞ (Ma et al., 2011).

Alternatively, in our R package, we leave the options open for users

to provide other values of r and k according to their expertise. The

output of EW_dmGWAS is a list of identified modules, ordered by

the normalized module score SN.

We demonstrated EW_dmGWAS in breast cancer (BC) and

schizophrenia (SCZ), respectively. As a comparison, we applied

three other methods, including the previous version of dmGWAS,

the guilt-by-rewiring (GBR) method (Hou et al., 2014) and

MetaRanker 2.0 (Pers et al., 2013), to the same datasets. GBR and

MetaRanker 2.0 are similar to EW_GWAS in that they both incorp-

orate GWAS signals and gene expression profiles to identify candi-

date disease genes (Supplementary Note). The BC GWAS data were

obtained from the National Cancer Institute Cancer Genetics

Markers of Susceptibility project (CGEMS) (Hunter et al., 2007),

and gene expression data were downloaded from The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov/). The SCZ

GWAS data were obtained from the Genetic Association

Information Network (GAIN) (Jia et al., 2012), and gene expression

data were downloaded from the public Gene Expression Omnibus

(GEO) database (GSE21138). The PPI network was obtained from

the Protein Interaction Network Analysis (PINA) platform (Wu

et al., 2009). Details of the data and analyses are provided in the

Supplementary Note.

Both EW_dmGWAS and dmGWAS reported a list of dense mod-

ules as output. As suggested in our previous study (Jia et al., 2011),

we chose the candidate genes residing in the top 1% of modules for

evaluation. For the BC dataset, EW_dmGWAS and dmGWAS re-

ported 128 and 100 candidate genes, respectively. The output of

both GBR and MetaRanker 2.0 is a list of prioritized genes. We

therefore chose the top 128 genes prioritized by the two methods for

comparison. We collected 517 genes (as of August, 2014) from the

Cancer Gene Census category (CGC, http://cancer.sanger.ac.uk/can

cergenome/projects/census/) as a benchmark to evaluate the candi-

date genes reported by the different methods. Among the candidate

genes identified by each method, EW_dmGWAS, dmGWAS, GBR

and MetaRanker 2.0 identified 14, 1, 4 and 3 CGC genes,
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respectively (Supplementary Table S2), suggesting EW_dmGWAS is

more powerful in identifying disease-related genes (all P-values <

0.05, binomial test). We further performed the pathway enrichment

analysis of candidate genes (Table 1) using WebGestalt (Zhang

et al., 2005). Among the significant pathways (adjusted P-value <

0.01), candidate genes reported by EW_dmGWAS were found to be

enriched in the most cancer related pathways, including ‘pathways

in cancer’, ‘ErbB signaling pathway’ and ‘Jak-STAT signaling path-

way’. Candidate genes reported by dmGWAS are only enriched in

one significant pathway (‘metabolic pathway’), which is not directly

related to BC. ‘Pathways in cancer’ is also enriched in the candidate

genes identified by GBR and MetaRanker 2.0. However, the candi-

date genes within ‘pathways in cancer’ are fewer compared with

those identified by EW_dmGWAS.

For the SCZ dataset, EW_dmGWAS, dmGWAS, GBR and

MetaRanker 2.0 reported 65, 105, 65 and 65 candidate genes, re-

spectively. We utilized the 38 manually curated SCZ core genes as a

benchmark to evaluate the results. These 38 genes have been com-

monly considered as candidate genes in expert reviews or have

shown significant results in meta-analysis studies (Jia et al., 2010).

Although the candidate genes reported by dmGWAS, GBR and

MetaRanker 2.0 do not overlap with the 38 SCZ core genes,

EW_dmGWAS reported 2 SCZ core genes (Supplementary Table

S3, all P-values < 0.05, binomial test). Table 2 summarizes the en-

riched pathways in the SCZ dataset. Interestingly, two SCZ related

pathways are enriched in the candidate genes identified by

EW_dmGWAS, including ‘Endocytosis’ and ‘Neuroactive ligand-re-

ceptor interaction’. Recent studies have shown that ‘Neuroactive lig-

and-receptor interaction’ plays an important role in the

antipsychotic treatment response (Adkins et al., 2012), while

‘Endocytosis’ has been implicated as the common pathophysiology

underlying SCZ (Zhao et al., 2014). In contrast, no interesting path-

ways were found to be enriched in the candidate genes reported by

dmGWAS, GBR and MetaRanker 2.0.

Collectively, these results demonstrate that gene expression data

are an informative complement to GWAS signals to dissect the

underlying genetic architecture, and EW_dmGWAS is a powerful

network tool for genetic association studies in the research

community.

Acknowledgements

We thank the numerous users for their valuable feedback.

Funding

National Institutes of Health Grants (R01LM011177, R01MH095621,

P50CA095103, P50CA098131 and P30CA068485), Ingram Professorship

Funds (to Z.Z.), and 2010 National Alliance for Research in Schizophrenia

and Affective Disorders Yong Investigator Award (to P.J.).

Conflict of Interest: none declared.

References

Adkins,D.E. et al. (2012) SNP-based analysis of neuroactive ligand-receptor

interaction pathways implicates PGE2 as a novel mediator of antipsychotic

treatment response: data from the CATIE study. Schizophr. Res., 135,

200–201.

Ballard,D.H. et al. (2010) Comparisons of multi-marker association methods

to detect association between a candidate region and disease. Genet.

Epidemiol., 34, 201–212.

Hou,L. et al. (2014) Guilt by rewiring: gene prioritization through network

rewiring in genome wide association studies. Hum. Mol. Genet., 23,

2780–2790.

Hunter,D.J. et al. (2007) A genome-wide association study identifies alleles in

FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat.

Genet., 39, 870–874.

Jia,P. et al. (2010) SZGR: a comprehensive schizophrenia gene resource. Mol.

Psychiatry., 15, 453–462.

Jia,P. et al. (2011) dmGWAS: dense module searching for genome-wide associ-

ation studies in protein-protein interaction networks. Bioinformatics, 27,

95–102.

Table 1. Enriched KEGG pathways of candidate genes in the BC

dataset

Enriched KEGG pathway Number

of genes

Adjusted

P-value*

dmGWAS

Metabolic pathway 11 4.40� 10�5

EW_dmGWAS

Pathways in cancer 10 8.22� 10�7

RIG-I-like receptor signaling pathway 6 1.11� 10�6

Neurotrophin signaling pathway 7 1.71� 10�6

Tight junction 7 2.23� 10�6

Hepatitis C 7 2.48� 10�6

ErbB signaling pathway 6 3.78� 10�6

Endocytosis 7 3.80� 10�5

Adherens junction 5 4.08� 10�5

GnRH signaling pathway 5 2.00� 10�4

Leukocyte transendothelial migration 5 4.00� 10�4

Focal adhesion 6 5.00� 10�4

Jak-STAT signaling pathway 5 1.50� 10�3

Calcium signaling pathway 5 3.00� 10�3

Chemokine signaling pathway 5 4.50� 10�3

GBR

Regulation of actin cytoskeleton 6 7.40� 10�5

Neurotrophin signaling pathway 5 7.40� 10�5

Axon guidance 5 7.40� 10�5

Pathways in cancer 6 5.00� 10�4

MetaRanker 2.0

Purine metabolism 5 3.00� 10�4

Pathways in cancer 6 6.00� 10�4

Metabolic pathways 9 6..40� 10�3

*P-values were adjusted by Bonferroni correction.

Table 2. Enriched KEGG pathways of candidate genes in the SCZ

dataset

Enriched KEGG pathway Number

of genes

Adjusted

P-value*

dmGWAS

Metabolic pathway 17 2.16� 10�9

EW_dmGWAS

Protein processing in

endoplasmic recticulum

7 1.83� 10�8

Endocytosis 5 2.07� 10�5

Neuroactive ligand-receptor

interaction

5 5.83� 10�5

GBR&

– – –

MetaRanker 2.0

– – –

*P-values were adjusted by Bonferroni correction. &No significant results.

EW_dmGWAS module search for GWAS signals and gene expression 2593

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv150/-/DC1
p
p
,
'
breast cancer
to 
,
While 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv150/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv150/-/DC1
p
,
is 


Jia,P. et al. (2012) Network-assisted investigation of combined causal signals

from genome-wide association studies in schizophrenia. PLoS Comput.

Biol., 8, e1002587.

Liu,J.Z. et al. (2010) A versatile gene-based test for genome-wide association

studies. Am. J. Hum. Genet., 87, 139–145.

Ma,H. et al. (2011) COSINE: COndition-SpecIfic sub-NEtwork identification

using a global optimization method. Bioinformatics, 27, 1290–1298.

Pers,T.H. et al. (2013) MetaRanker 2.0: a web server for prioritization of gen-

etic variation data. Nucleic Acids Res., 41, W104–W108.

Wu,J. et al. (2009) Integrated network analysis platform for protein–protein

interactions. Nat. Methods, 6, 75–77.

Yu,H. et al. (2013) Dynamic protein interaction modules in human hepatocel-

lular carcinoma progression. BMC Syst. Biol., 7 (Suppl 5), S2.

Zhang,B. et al. (2005) WebGestalt: an integrated system for exploring gene sets

in various biological contexts. Nucleic Acids Res., 33, W741–W748.

Zhao,Z. et al. (2014) Transcriptome sequencing and genome-wide association

analyses reveal lysosomal function and actin cytoskeleton remodeling in

schizophrenia and bipolar disorder. Mol Psychiatry. [Epub ahead of print].

2594 Q.Wang et al.


	btv150-M1
	btv150-M2
	btv150-M3
	btv150-M4
	btv150-TF1
	btv150-TF2

