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Abstract

Motivation: Loops in proteins are often involved in biochemical functions. Their irregularity and

flexibility make experimental structure determination and computational modeling challenging.

Most current loop modeling methods focus on modeling single loops. In protein structure predic-

tion, multiple loops often need to be modeled simultaneously. As interactions among loops in spa-

tial proximity can be rather complex, sampling the conformations of multiple interacting loops is a

challenging task.

Results: In this study, we report a new method called multi-loop Distance-guided Sequential chain-

Growth Monte Carlo (M-DISGRO) for prediction of the conformations of multiple interacting loops in

proteins. Our method achieves an average RMSD of 1.93 Å for lowest energy conformations of 36

pairs of interacting protein loops with the total length ranging from 12 to 24 residues. We further

constructed a data set containing proteins with 2, 3 and 4 interacting loops. For the most challeng-

ing target proteins with four loops, the average RMSD of the lowest energy conformations is

2.35 Å. Our method is also tested for predicting multiple loops in b-barrel membrane proteins. For

outer-membrane protein G, the lowest energy conformation has a RMSD of 2.62 Å for the three

extracellular interacting loops with a total length of 34 residues (12, 12 and 10 residues in each

loop).

Availability and implementation: The software is freely available at: tanto.bioe.uic.edu/m-DiSGro.

Contact: jinfeng@stat.fsu.edu or jliang@uic.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein loops are key structural regions involved in recognition and

binding of small molecules and proteins. In structure prediction,

accurately predicted loop regions can provide valuable information

for understanding the function and dynamics of the proteins.

Prediction of loop structures, or loop modeling, has received consid-

erable attention in the past (Fiser et al., 2000; Jacobson et al., 2004;
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Michalsky et al., 2003; Subramani and Floudas, 2012; van Vlijmen

and Karplus, 1997; Zhang et al., 2007a; Zhao et al., 2011; Zhu

et al., 2006;). Among these, database search methods can make ac-

curate loop prediction if templates of loop fragments to a query pro-

tein are found at a high level of confidence (Choi and Deane, 2010;

Michalsky et al., 2003). With the rapid expansion of the PDB, frag-

ment-based approaches are very effective for modeling loop struc-

tures (Fernandez-Fuentes et al., 2006a; Fernandez-Fuentes and Fiser,

2006b; Fernandez-Fuentes et al., 2010). Nevertheless, fragment

based loop modeling approaches are blind to the local environment

of loops, and currently are not applicable for modeling multiple

loops that are interacting with each other. In such cases, it is neces-

sary to use template-free methods to predict loop structures. Recent

advances have enabled template-free prediction of loops with high

accuracy (Canutescu and Dunbrack, 2003; Coutsias et al., 2004;

Fiser et al., 2000; Jacobson et al., 2004; Tang et al., 2014; Zhao

et al., 2011; Zhu et al., 2006).

Most previous loop modeling studies have focused on predicting

structure of a single loop. In reality, multiple loops often need to be

modeled for a particular protein target, where loops in spatial prox-

imity can interact in complex ways (Housset et al., 1991; Zaccardi

et al., 2014). An example of interacting loops can be found in the

bovine pancreatic trypsin inhibitor (BPTI, pdb 6pti), where loop A

(residues 7–16) interacts with loop B (35–46). A single substitution

in loop B (Y35G, pdb 8pti) results in substantial changes to the

conformations of both loop A and loop B (Housset et al., 1991). In

this case, the conformations of the two loops are stabilized by their

interactions.

Interacting loops are also found in membrane proteins. For ex-

ample, in the b-barrel assembly machinery A protein, the extracellu-

lar loops interact with one another, and form a dome over the top of

the b-barrel domain (Noinaj et al., 2013). Given that the transmem-

brane strands of many b-barrel membrane proteins can be predicted

(Naveed et al., 2012), accurate loop structure prediction will facili-

tate the prediction of full structures of this important class of mem-

brane proteins.

Conventional methods for modeling interacting loops are to gen-

erate single loops sequentially one loop after another. However,

these methods are prone to be trapped at local energy minima

formed by intra-loop interactions, since it cannot effectively model

the complex interactions among the loops in spatial proximity. To

resolve this issue, several methods have been developed that can

model two interacting loops (Danielson and Lill, 2010; Rosenbach

and Rosenfeld, 1995). In Rosenbach and Rosenfeld (1995), a

method for simultaneous prediction of the structure of multiple

loops based on the bond-scaling-relaxation loop-closure algorithm

was reported. For two loops of lengths of five to seven residues in

spatial proximity, their results showed that more accurate predic-

tions can be made than modeling individual loop sequentially.

Danielson and Lill (2010) developed the CorLps method, in which

an energetically feasible ensemble of individual loops are generated

using the loopyMod method (Soto et al., 2008) disregarding the

presence of other loops. Although successful in predicting a number

of interacting loop pairs, this method does not work well when both

loops have �9 residues. Methods have also been developed to model

loops in certain protein classes (e.g. antibodies, Sellers et al., 2010),

using information specific to these classes of proteins. To the best of

our knowledge, none of these existing methods can effectively pre-

dict three or more interacting loops.

In this study, we describe the multi-loop Distance-guided chain-

Growth Monte Carlo method (M-DISGRO) for simultaneously mod-

eling of two or more interacting loops. Based on chain-growth

Monte Carlo sampling, which has been applied to a number of stud-

ies of proteins (Liang et al., 2002; Lin et al., 2011; Tang et al., 2014;

Zhang and Liu, 2006; Zhang et al., 2007b), M-DISGRO simultan-

eously constructs multiple loops, and does not require completeness

of one loop before growing another loop. This sampling strategy

randomizes the order of the residues being sampled to generate

more diverse loop conformations, making it less likely to over-sam-

ple conformations in certain local energy minima. Consequently, in-

ter-loop interactions are taken into account more effectively

compared with sampling one loop at a time. In addition, loop

growth is guided by empirical end-to-end distance functions and

backbone dihedral angle distributions, allowing effective explor-

ation of low-energy conformational space (Liu, 2008; Liu and Chen,

1998; Tang et al., 2014; Wong, 2013; Zhang et al., 2007a). To im-

prove the sampling of long loops, we further introduce a strategy of

regrowing loops using fragments.

This article is organized as follows. We first describe the M-

DISGRO method in detail. We then present results for loop predic-

tion of soluble proteins using two different test data sets, followed

by results on predicting multiple interacting loops in b-barrel mem-

brane proteins. We show that M-DISGRO has significant advantages

in modeling native-like multi-loop compared with CorLps reported

in Danielson and Lill (2010). The performance is further improved

when loop fragments are used.

2 Methods

2.1 Multi-loops distance-guided chain-growth Monte

Carlo (m-DiSGro)
Based on our previous DiSGro method for sampling single loops,

our task in this study is to model n�2 loops in spatial proximity in

protein structures (Tang et al., 2014). M-DISGRO simultaneously

samples conformations of the n loops. At each step of the chain

growth process, a residue i in a chosen loop p is added upon comple-

tion of the previous residues in all of the n loops. Here loop p is

chosen randomly from the n loops, regardless of loop lengths. The

newly added residue is represented by three consecutive backbone

atoms during the growth process: C atom of residue i, N atom of

Fig. 1. Schematic illustration of placing Ci and Niþ1 atoms. Atom Ci has to be

on the circle QC. The position xC;i of the Ci atom of residue i is determined by

dCi ;Ct
, which is based on known distance dCAi ;Ct

and the conditional distribu-

tion of pðdCi ;Ct
jdCAi ;Ct

Þ. Once dCi ;Ct
is sampled, Ci can be placed on two pos-

itions with equal probabilities. Here xC;i is the selected position of Ci. C 0i is

placed at the position xC0 ;i alternative to xC;i . Similarly, the Niþ1 atom has to

be on the circle QN and its position xN;iþ1 is determined by dNiþ1 ;Ct
in a similar

fashion
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residue iþ1, and CA atom of residue iþ1 (Fig. 1). The coordinates

of the three atoms, Ci, Niþ1 and CAiþ1, are denoted as xC;i; xN;iþ1

and xCA;iþ1, respectively. Here xC;i and xN;iþ1 are determined by

sampling the dihedral angles ð/;wÞ. We describe this sampling pro-

cess in detail in Section ‘Sampling backbone atoms’. The x dihedral

angles that determine the coordinate of CA atoms are sampled from

a normal distribution with a mean of 180� and SD of 4�. Side-chains

are built upon completion of backbone placement of all loops. The

generated conformations of the loops are scored and ranked by our

atom-based distance-dependent empirical potential function. Our

potential function is an empirical function following (Li et al., 2003;

Miyazawa and Jernigan, 1996; Pokarowski et al., 2005; Zhang et

al., 2005; Zhou and Zhou, 2002). Explicit water molecules are not

considered, and there is no specific solvation energy calculation be-

yond what is implicit in the empirical potential function. Details of

side-chain construction and the atomic potential function are

described in Tang et al. (2014).

Unlike the CorLps method, which is based on ensembles of

individual loops with complete structures (Danielson and Lill,

2010), M-DISGRO does not require completeness of one loop before

growing another loop. It generates multiple loops by randomly se-

lecting one residue to grow from all incomplete loops. All previously

built residues in different loops immediately become part of the

structural environment and contribute to the calculation of the co-

ordinates of future atoms. When compared with methods based on

sampling one whole loop at a time, our method can generate more

diverse conformations of multiple loops, and can effectively avoid

being trapped at some local energy minima.

2.2 Loop fragment libraries
During the chain growth process, a partial conformation may have

to adopt a state with very high (or infinite) energy, making further

growth fruitless. For example, it may be impossible to add any

atoms due to lack of available space and loops may fail to close. M-

DISGRO would have to terminate the whole chain-growth process

upon such a failure. This is costly if failure occurs when a significant

or the full portion of other loops have been built.

To increase the efficiency of sampling, we develop a fragment-

based regrowth method to repair failed loops in M-DISGRO, as the

near-native regions can be more efficiently explored by using frag-

ments to generate an adequate number of native-like loop conform-

ations. The overall procedure of M-DISGRO with fragments is

outlined in Figure 2.

For a protein with n loops to be sampled, we first build n loop

fragment libraries, one for each loop. Conformations in each library

are sampled independently in the absence of the other n � 1 loops.

All loop fragments are generated using the DiSGro single loop pre-

diction method (Tang et al., 2014). Conformations of the individual

loops generated are then ranked by the atom-based distance-

dependent empirical potential function described in Tang et al.

(2014). For each individual loop, the top-50 energetically favorable

loop conformations are retained to form the loop fragment library

specific to this loop.

During the chain-growth process, when a failure occurs in loop p

which begins at residue s and ends at residue t with a length of

(t � sþ 1), a randomly selected fragment f of length (t � s� 3) from

its loop fragment library, is used to replace the residues from s to

ðt � 4Þ of loop p. As we apply the Coutsias-Seok-Jacobson-Dill

(CSJD) analytical closure method (Coutsias et al., 2004) at the resi-

due ðt � 2Þ to close the loop, the replacement of residues s to ðt � 2Þ
will lead to a high occurrence of highly similar loop conformations.

In order to introduce the necessary diversity in loop conformations

while at the same time achieving high sampling efficiency, we only

replace the residues s to ðt � 4Þ with residues from fragment f. The

multi-loop chain-growth process is then continued until the rest of

the residues of all loops, including residues ðt � 3Þ to t of loop p, are

fully built. This fragment strategy is only used for loops of length

�5. For short loops of length �4, the success rate of completing

loops without fragments is already sufficient.

2.3 Sampling backbone atoms
The procedure to sample backbone atoms is the same as that of the

single loop method DiSGro (Tang et al., 2014). Below we give a

brief description for completeness. Let Ct be the C-terminal anchor

atom in the end residue t of a loop. We describe the sampling pro-

cedure for (Ci, Oi, Niþ1 and CAiþ1) atoms as an example (Fig. 1).

Ci is generated first, followed by Niþ1. Denote the distance jxC;t

�xCA;ij between xCA;i and xC;t as dCAi ;Ct
, and the distance jxC;i � xC;t

j between xC;i and xC;t as dCi ;Ct
. As the bond length lCAi ;Ci

, and the

bond angle hC;i are fixed, Ci will be located on a circle QC (Fig. 1):

QC ¼ fx 2 R
3j such that jjx� xCA;ijj ¼ lCAi ;Ci

;

and ðx� xCA;iÞ � ðxCA;i � xN;iÞ ¼ cos hC;ig
: (1)

Given a fixed dCi ;Ct
, Ci can be placed on two positions xC;i and xC0 ;i

on circle QC, xC;i and xC0 ;i are labeled as Ci and C0i, respectively. As

the probability for placing Ci on either position is equal, we ran-

domly select one position to place atom Ci.

Sampling from the empirical distributions of dCi ;Ct
and mapping

back to Ci should encourage the growth of loops to connect to the

terminal Ct atom. Further analysis of the empirical distribution of

dCi ;Ct
given dCAi ;Ct

shows that dCAi ;Ct
can be very informative for

sampling dCi ;Ct
in some cases. This leads us to design a strategy of

Fig. 2. The flowchart of M-DISGRO using fragments. In this example, three

interacting loops (L1–L3) are to be modeled. Loop fragment libraries for them

are constructed separately using the single loop method DiSGro (Tang et al.,

2014). At each step of the chain growth process, a residue is added to a ran-

domly chosen loop of L1-L3. This is repeated until all loops are completed.

Here newly added residues are shown in red online and grey in print. In this

example, a residue (red/grey circle) is added to L2 in step 1. Another residue

(red/grey circle) is added to L3 in step 2. When a failure occurs (L3 in this ex-

ample), a loop fragment is drawn from the corresponding library to replace

the failed conformation. This process of adding residues is continued until

the three missing loops are fully constructed
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sampling xCi
based on the conditional distribution of

pðdCi ;Ct
jdCAi ;Ct

Þ. Atom Niþ1 is generated in a similar way as Ci.

Details can be found in Tang et al. (2014).

The trial positions of (Ci, Niþ1; CAiþ1) are then subject to a fil-

tering procedure using an empirically derived backbone dihedral

angle distribution. One filtered trial is selected according to its prob-

ability calculated using an atomic distance-dependent empirical po-

tential function. The coordinate of Oi atom is determined by (Ni,

CAi, Ci). See Tang et al. (2014) for more details.

3 Results

3.1 Test sets
To assess the accuracy of M-DISGRO and facilitate direct comparison

with the CorLps method reported in Danielson and Lill (2010), we

use their test set, which we name as the CorLps Set. It is obtained

from high-resolution (1.53 Å) structure of trypsin (pdb 1utk) (Leiros

et al., 2004). It contains 36 pairs of interacting loops, including 7

pairs of 6–6-residue loops, 10 pairs of 6–9-residue loops, 3 pairs of

9–9-residue loops, 9 pairs of 6–12-residue loops, 5 pairs of 9–

12-residue loops and 2 pairs of 12–12-residue loops.

We have also developed a new data set of 2-, 3- and 4-interacting

loops, called MultiSet, to assess the effectiveness of M-DISGRO in

more complex situations. Proteins in this set are taken from (Fiser et

al. (2000) and Soto et al. (2008). In total, MultiSet contains twenty

2-interacting loops, eleven 3-interacting loops and eight 4-interact-

ing loops (see Table 2). We use a strict criterion to select interacting

loops: all loops must be spatially close and interact with each other.

For example, each of the four loops has to be interacting with the

other three loops in a four-loop target. We use the edge simplices

from the alpha-shape computed from the protein structures to detect

interactions among neighboring loops (Edelsbrunner and Mücke,

1994; Li et al., 2003; Liang et al., 1998). Using alpha-shape elimin-

ates spurious neighbor interactions that are not in physical contact

(Ouyang and Liang, 2008; Zhang et al., 2005). Here we use the

solvent radius of 0.5 Å following (Singh and Thornton, 1993). In

MultiSet, loops have lengths ranging from 4 to 16. To construct a

challenging data set of two interacting loops, both loops have to be

at least 10-residue long. For three- and four-loop target proteins,

only those with at least one long loop (length�10) are included.

Multiple interacting loops are present across different protein fami-

lies. Based on the classification scheme of loops of the Archdb

(Bonet et al., 2013), 42.9% of long loops (�10) and 48.6% of loops

in the MultiSet have already been classified, suggesting modeling

multiple loops will be applicable to a large number of proteins.

The test set of loops in b-barrel membrane proteins contains four

proteins satisfying the following criteria: (i) no in-plug structure is

present; (ii) no incorrect loop structures are included; and (iii) loops

are of length 2–17 residues. Our test set contains both extracellular

and periplasmic loops, which are modeled separately. This test set is

called b-Barrel Set (see Table 3).

3.2 Multi-loop structure prediction on CorLps Set
We first test M-DISGRO using the CorLps Set. The sampled loop con-

formations are ranked based on their energy values calculated using

Table 1. Comparison of REmin of loop conformations generated by

CorLps, M-DISGRO, and M-DISGRO with fragment using the CorLps

Set

Lengths of

loop pairs

REmin (Å)

CorLps s-DiSGro M-DISGRO M-DISGROþ frag

6–6 (7) 2.35 1.61 1.14 1.19

6–9 (10) 3.39 2.37 2.00 1.57

9–9 (3) 4.38 3.47 2.14 1.64

6–12 (9) 4.43 4.01 2.67 2.53

9–12 (5) 5.47 4.55 2.94 2.41

12–12 (2) 6.97 4.65 3.32 2.87

all (36) 4.02 3.15 2.22 1.93

REmin, average RMSD of the lowest energy conformations compared with

native loop conformation resolved experimentally. Lengths of Loop Pairs (X-

Y): the pairs of interacting loops with lengths X and Y. The number of loop

pairs is listed in parentheses.

Table 2. The average RMSD of the lowest energy conformations of

loops in the MultiSet

PDB Loop 1 Loop 2 Loop 3 Loop 4 REmin (Å)

w/o frag w/frag

Four loops

1aoz 106–115 221–225 252–259 507–510 1.35 0.93

1frd 34–49 56–67 74–86 90–94 3.61 4.29

1hnj 109–113 141–150 156–159 273–278 1.52 1.11

1ixh 85–96 106–113 120–130 186–190 2.97 2.89

1nwp 36–48 65–79 84–90 112–121 3.53 2.77

1oth 87–90 141–145 155–168 263–273 4.43 2.75

2dri 8–14 39–42 64–69 89–98 1.38 1.09

2mnr 216–228 239–251 262–275 291–299 3.23 2.96

Average 2.75 2.35

Three loops

1bhe 194–203 216–225 248–252 2.09 1.39

1cgt 136–140 192–204 229–235 2.02 1.03

1ctt 63–73 89–102 251–256 2.99 3.23

1ddt 23–27 65–78 167–174 2.96 2.10

1ed8 198–202 233–239 245–255 1.30 2.26

1el5 79–88 230–242 257–263 2.96 3.16

1nln 44–53 70–75 109–119 2.80 2.47

1nls 11–23 98–102 201–208 2.14 1.94

1oyc 117–123 192–196 245–259 2.50 2.50

1p1m 105–108 277–288 364–369 2.25 2.18

1php 192–200 217–220 317–327 1.52 1.21

Average 2.32 2.13

Two loops

1ads 38–50 256–265 1.39 1.14

1art 159–169 190–201 3.55 5.18

1cb0 60–73 190–199 3.58 2.35

1ctm 77–90 133–144 3.85 2.31

1lcf 100–112 232–247 3.09 2.63

1ms9 306–316 333–342 4.00 3.45

1nar 87–97 192–201 1.93 1.61

1nfp 49–64 89–99 3.60 3.45

1nhq 32–43 50–62 5.73 2.86

1nox 42–51 96–105 1.83 1.63

1ojq 88–99 141–151 2.32 2.17

1pgs 51–61 83–95 3.41 3.35

1rcf 36–48 72–81 2.06 2.24

1srp 41–55 138–150 4.66 3.64

1thg 96–106 163–174 2.26 1.72

2exo 127–139 203–213 3.75 2.96

2olb 77–89 176–190 4.95 3.04

2pia 30–42 99–112 3.36 1.89

4enl 138–147 391–402 1.85 1.43

8acn 444–458 635–644 3.94 3.23

Average 3.26 2.61

REmin by M-DISGRO and M-DISGRO with fragment are listed.

Loops are designated by the beginning and the end residue positions.
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our atom-based distance-dependent empirical potential function

(Tang et al., 2014) instead of the DFIRE empirical potential func-

tion as in Danielson and Lill (2010). For each loop pair, the RMSD

of the lowest energy conformation to the native structure REmin

among 10 000 trial conformations is reported. Our results are all re-

ported as global backbone RMSD, calculated using the N, CA, C

and O atoms of the backbone. The conformation of a loop is ob-

tained by superimposing its two ends on the flanking secondary

structures, while the deviation is calculated using the backbone

atoms of the loop structure.

From the results summarized in Table 1, we find that M-DISGRO

performs significantly better than CorLps. Compared with CorLps,

M-DISGRO has a REmin of 1.14 versus 2.35 Å for 6–6-residue loop pairs,

2.00 versus 3.39 Å for 6–9-residue loop pairs, 2.14 versus 4.38 Å for

9–9-residue loop pairs, 2.67 versus 4.43 Å for 6–12-residue loop pairs,

2.94 versus 5.47 Å for 9–12-residue loop pairs and 3.32 versus 6.97 Å

for 12–12-residue loop pairs, respectively. Overall, the value of REmin

is reduced significantly using M-DISGRO compared with CorLps.

When fragments are used, M-DISGRO further improves REmin to

1.57 from 2.00 Å for 6–9-residue loop pairs, 1.64 from 2.14 Å for

9–9-residue loop pairs, 2.53 from 2.67 Å for 6–12-residue loop

pairs, 2.41 from 2.94 Å for 9–12-residue loop pairs and 2.87 from

3.32 Å for 12–12-residue loop pairs, respectively. Only for 6–6-

residue loop pairs, M-DISGRO with fragment has a slightly larger

REmin of 1.19 Å. These results indicate that using loop fragment li-

brary is effective in improving the modeling accuracy when loops

are nine residues or longer.

We also report results using a single independent loop modeling

method s-DiSGro for comparison. A maximum number of 10 000

loop combinations are generated by initially combining the top-100

ranked single loop conformations of each loop region, similar to

CorLps, except single loop conformations are generated here by the

DiSGro method (Tang et al., 2014) instead of the loopyMod (Soto

et al., 2008) used in CorLps. s-DiSGro performs much worse in

modeling multiple interacting loops compared with M-DISGRO, with

or without fragments (3.15 versus 1.93/2.22 Å), but shows improved

accuracy compared with CorLps method (3.15 versus 4.02 Å).

The average REmin of 36 interacting loop pairs are 1.93 Å

(M-DISGRO with fragment), 2.22 Å (M-DISGRO without fragment),

3.15 Å (s-DiSGro) and 4.02 Å (CorLps). Overall, M-DISGRO with

fragment shows significantly improved accuracy in modeling mul-

tiple interacting loops.

M-DISGRO is also much faster than CorLps. The reported compu-

tational time of CorLps is about 900 cpu minutes for two 12-residue

interacting loops on a single core of a Intel Xeon 2.66 GHz quad-

core machine (Danielson and Lill, 2010). The computation cost for

M-DISGRO without fragment is only 14 cpu minutes on a single

2 GHz AMD Opteron processor. M-DISGRO with fragment takes a

slightly longer time of 17 min, as loop fragment libraries specific to

the loops need to be constructed on the fly.

3.3 Multi-loop structure prediction on MultiSet
We then test M-DISGRO on the MultiSet. Results are summarized in

Table 2.

For the eight proteins with four-interacting loops, the average

REmin by M-DISGRO with and without fragment are 2.35 and 2.75 Å,

respectively. M-DISGRO with fragment is close to the accuracy level

of sub-angstrom (1.04 Å) for three target proteins containing only

one loop with more than 10 residues. The remaining five target pro-

teins are challenging, as they have at least two long loops with

length �10. For these five target proteins, M-DISGRO with fragment

has an REmin of 3.13 Å. Of these five, three of them have three long

loops. For example, the structure of mandelate racemase (pdb 2mnr)

has four loops of length 13, 13, 14 and 9, respectively. The REmin by

M-DISGRO with fragment is 2.96 Å. Another example is azurin (pdb

1nwp), which has four loops of length 7, 10, 13 and 15, respectively.

It is challenging to model a 15-residue loop in an inexact environ-

ment when three other interacting loops also need to be modeled as

well. The total length of these loops is 45 residues. As can be seen

from Figure 3a, M-DISGRO with fragment achieves good accuracy

for 1nwp, with an REmin of 2.77 Å.

For the eleven 3-loop target proteins, REmin by M-DISGRO with

and without fragment are 2.13 and 2.32 Å, respectively. For the

seven 3-loop target proteins with only one loop longer than 10 resi-

dues, M-DISGRO with fragment has an average REmin of 1.86 Å. The

REmin of the rest of the three-loop target proteins with at least two

long loops are 2.52 Å by M-DISGRO with fragment.

For the twenty 2-loop target proteins, REmin values are 2.61 and

3.26 Å with and without using fragments, respectively. This two-

loop data set is challenging, as both loops have lengths �10-residue.

Among the three- and four-loop target proteins, short loops can be

modeled fairly easily with high accuracy, which contribute to the

overall improved RMSD. In thirteen of the twenty 2-loops target

proteins, M-DISGRO with fragment achieves good accuracy of

REmin�3 Å, with six of them of RMSD�2 Å. Even when there is a

loop of length�15, M-DISGRO with fragment also gives good REmin.

An example is lactoferrin (pdb 1lcf), which has a 16- and a 13-resi-

due loops. The RMSD of the lowest energy conformation is 2.63 Å.

Table 3. The RMSD of the lowest energy conformations, REmin by

M-DISGRO with fragment using b-Barrel Set

Location PDB Loop 1 Loop 2 Loop 3 Loop 4 M-DISGRO

Extra-cellular

loops

1p4t 18–23 51–60 95–105 136–139 1.54

1qj8 14–21 51–57 94–98 132–135 1.26

1thq 75–81 112–122 143–152 2.08

2� 9 k 97–106 138–149 177–188 2.62

Average 1.88

Peri-plasmic

loops

1p4t 37–40 71–78 119–122 0.92

1qj8 31–37 71–77 115–121 1.71

1thq 60–66 93–101 133–136 1.83

2� 9 k 80–83 123–126 162–165 196–204 0.93

Average 1.35

Fig. 3. Examples of prediction results of interacting loops of soluble proteins

and b-barrel membrane proteins using M-DISGRO with fragment. The lowest

energy modeled loops by M-DISGRO with fragment is in red/dark. The native

loops are in white/light. (a) Four interacting loops of azurin (pdb 1nwp, resi-

dues 36–48, 65–79, 84–90 and 112–121). The total length of the four loops is

45. The REmin is 2.77 Å. (b) Three extracellular loops of OmpG protein (pdb

2�9 k, residues 97–106, 138–149 and 177–188). The total length of the three

loops is 34. The REmin of this three-loop target is 2.62 Å. There exists a short a-

helical secondary structure element of four residues which is correctly

predicted
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Overall, M-DISGRO with fragment achieves good accuracy in mod-

eling multi-loops in the MultiSet. It also achieves an improved accuracy

compared with M-DISGRO without fragment, with an average REmin of

2.35 versus 2.75 Å for eight 4-loop, 2.13 versus 2.32 Å for eleven 3-

loop and 2.61 versus 3.26 Å for twenty 2-loop target proteins.

3.4 Multi-loop structure prediction of b-Barrel

membrane proteins
We also assess M-DISGRO in predicting loop conformations of b-bar-

rel membrane proteins. Results are summarized in Table 3. For

extracellular loops, the average RMSD of the lowest energy loop

conformations REmin of the four proteins by M-DISGRO with frag-

ment is 1.88 Å. Among these, 2 of the 4 extracellular loops in the

Neisserial surface protein A, NspA (pdb 1p4t) are longer than 10

residues (Vandeputte-Rutten et al., 2003). The predicted extracellu-

lar loop structures have an REmin of 1.54 Å. The outer membrane

protein G, OmpG (pdb 2�9 k) has three long extracellular loops of

length 10, 12 and 12, respectively. The REmin of this three-loop tar-

get protein is 2.62 Å. Noticeably, there is a short helix in the middle

of the 12-residue (138–149) loop. M-DISGRO with fragment success-

fully predicts this short helical secondary structural element without

any explicit additional secondary structure information (Fig. 3b).

The periplasmic loops are usually short turns connecting

b-strands. Most of them have lengths <10-residue. Prediction of

these periplasmic loops is not as challenging as prediction of extra-

cellular loops. The average RMSD REmin of the lowest energy peri-

plasmic loop conformations of the four proteins by M-DISGRO with

fragment is 1.35 Å. For the four interacting loops at the periplasmic

end of OmpG, REmin is only 0.93 Å.

4 Conclusion and Discussion

In this study, we present a multi-loop chain-growth Monte Carlo

method (M-DISGRO) for modeling interacting loops. Our method

samples multiple loops by growing one residue at a randomly se-

lected loop in each step. The calculation of the positions of newly

added atoms is determined by the coordinates of previous placed

atoms in all loops. This method is capable of exploring large con-

formational space of multi-loop effectively, without frequently being

trapped in narrow or dead space. With further incorporation of loop

fragment libraries, even failed loops can be efficiently regrown. M-

DISGRO has significant advantages in predicting multiple interacting

loops over previous methods, such as the CorLps method

(Danielson and Lill, 2010), as interacting information among loops

are taken into account during the simultaneous chain-growth

process.

M-DISGRO can model multiple interacting loops simultaneously

and efficiently, especially for those target proteins with long loops.

For a set of 36 interacting loop pairs, M-DISGRO with and without

fragment have better average REmin of 1.93 and 2.22 Å, compared

with CorLps of 4.02 Å. For 12–12-residue loop pairs, the REmin by

M-DISGRO with fragment is 2.87 Å, and the average computing time

is only 17 min. Furthermore, our method is the first that considers

three- and four-interacting loops explicitly. It successfully predicts

these loop structures, with an REmin of 2.13 Å for three-loop target

proteins, and 2.35 Å for four-loop target proteins. Preliminary re-

sults on building loops in b-barrel membrane proteins suggest that

our method can be extended to model multiple loops of other com-

plex membrane proteins.

Our study shows that by randomizing the order of residues to be

sampled, we can generate more diverse sets of loop conformations,

which helps to increase the overall sampling effectiveness. However,

it is possible that there exist specific orders by which loop residues

are to be sampled that are especially effective for certain proteins.

For example, residues in more constrained environment may need to

be sampled first. One approach towards this is to look-ahead and

further sample a number of states that can be grown into in the next

step for each loop, and then select one state to place the next residue

according to either energy or other specific bias criterion. Those

sampled but unused states can be reused in future steps. This ap-

proach has been successfully applied to side chain conformations of

proteins (Zhang and Liu, 2006) and reaction network sampling

(Cao and Liang, 2013).

There are several directions for further improvement. The single

loop method DiSGro is an important component of M-DISGRO.

DiSGro is also the limiting step for the accuracy of modeled multiple

interacting loops, especially when there are long loops. We envision

that this can be improved by sampling dipeptide segment instead of

sampling individual residue currently implemented in DiSGro. It

will likely lead to improved sampling efficiency further and enable

longer loops to be modeled (Zhao et al., 2011). Our work is also

related to modeling loops in a flexible environment (Sellers et al.,

2008; Subramani and Floudas, 2012), as other loops can be re-

garded as the flexible environment of the loop currently being mod-

eled. Furthermore, the atom-based distance-dependent empirical

potential function taken from Ref (Tang et al., 2014), can be im-

proved by using nonlinear kernel for training (Hu et al., 2004), or

by optimization using rapid iterations through a physical conver-

gence function (Thomas and Dill, 1996).
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