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Abstract

Motivation: A basic problem of broad public and scientific interest is to use the DNA of an individ-

ual to infer the genomic ancestries of the parents. In particular, we are often interested in the

fraction of each parent’s genome that comes from specific ancestries (e.g. European, African,

Native American, etc). This has many applications ranging from understanding the inheritance of

ancestry-related risks and traits to quantifying human assortative mating patterns.

Results: We model the problem of parental genomic ancestry inference as a pooled semi-Markov

process. We develop a general mathematical framework for pooled semi-Markov processes and

construct efficient inference algorithms for these models. Applying our inference algorithm to

genotype data from 231 Mexican trios and 258 Puerto Rican trios where we have the true genomic

ancestry of each parent, we demonstrate that our method accurately infers parameters of the

semi-Markov processes and parents’ genomic ancestries. We additionally validated the method on

simulations. Our model of pooled semi-Markov process and inference algorithms may be of

independent interest in other settings in genomics and machine learning.

Contact: jazo@microsoft.com

1 Introduction

Recent developments in DNA technology bring personal genomics

to reality. This opens up unprecedented possibilities for individuals

to learn about their genomic history (e.g. ancestry, family history)

as well as their genomic future (e.g. disease risk). A particular aspect

of personal genomics that has garnered significant public and

medical interest is the ability to precisely quantify the ancestry com-

position of one’s genome (Royal and Kittles, 2004; Royal et al.,

2010).

Consider a Mexican individual as an example. Her genome con-

sists of alternating blocks of DNA sequences, where each block has

African, European or Native American ancestry. The length and fre-

quency distributions of blocks from different ancestries reflect the

patterns of admixtures over the last several centuries. A substantial

fraction of humans today are offsprings of historical mixing between

distinct populations and their genomes are such mosaics of ancestry

blocks (Hellenthal et al., 2014).

The ability to quantify genomic ancestries has important bio-

medical implications. For example, African ancestry is a risk factor

for asthma. This partially explains the high prevalence of asthma in

African American as well as Puerto Ricans with larger African gen-

omic ancestry (Vergara et al., 2013). In addition, genomic ancestry

gives insights into many social science questions, and expands the

common notions of ethnicity and race (Bryc et al., 2015; Hochschild

and Sen, 2015).

Given the genome of an individual, recent machine learning

methods can accurately determine the fraction of this person’s gen-

ome that originates from each ancestry (Alexander et al., 2009;

Pritchard et al., 2000). However, for many applications in biomed-

ical and social science research, it is important to go beyond the indi-

vidual’s ancestry and to infer the genomic ancestries of the parents

(since most genetic datasets do not have genotype information from

the parents). In studies of ancestry linked risk factors, genomic an-

cestry information of parents can be used to investigate how risks

propagate through generations. In social science applications, paren-

tal genomic ancestry can be used to understand genetic basis of

human mate selection, a subject of substantial recent interest. Latino

parents, e.g. were shown to have significant correlations in their

genomic ancestries (Risch et al., 2009).
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However, current methods cannot be used to infer the genomic

ancestry of each of the two parents of an individual given only the

DNA of the individual. Inferring parental genomic ancestry is chal-

lenging since the observed DNA are unordered pools of the DNA

from the two parents. We show that this problem of parental

genomic ancestry inference can be well modeled as a pooled semi-

Markov process. To the best of our knowledge, this is the first

method that can accurately infer the parameters of the parental

ancestries in admixed populations.

We applied the efficient algorithms we have developed for

pooled semi-Markov process to infer parental ancestry. On experi-

mental data from 231 Mexican families and 258 Puerto Rican fami-

lies for whom we know the true genomic ancestry of each parent,

we show that our method provides accurate estimates of parental

genomic ancestry. Our method applies to any common genotyping

data from an individual; importantly, no family or phasing informa-

tion is needed, and hence it is broadly applicable to existing genetic

data. Although in this article, we focus on the application of infer-

ring genomic ancestry, we believe that many other settings can also

be modeled as pooled semi-Markov process. For example in a tumor

sample, there are many clonal subpopulations of cells, each with its

own copy number aberrations which can be modeled as a semi-

Markov process (Wu et al., 2014). When we sequence the tumor in

clinics, we typically obtain a pooled collection of reads from the

various subpopulations.

1.1 Contributions
Our main contributions are:

1. We set up the mathematical framework of pooled semi-Markov

processes and construct efficient, scalable inference algorithms.

2. Using this framework of pooled semi-Markov processes, we de-

velop a method to infer the parameters of the parental ancestries

in admixed populations. This is important because it allows for

a better understanding of how certain disease risks are associ-

ated with ancestries.

3. We demonstrate the accuracy of our method on a real genotype

dataset of 489 families where we can measure the true genomic

ancestry of each parent. We further validate it using simulations.

1.2 Related work
Semi-Markov models have been well studied in literature and have

many applications ranging from economics to biology (Ross, 1999).

A related class of models for sequential data is factorial HMMs

(FHMMs) (Ghahramani and Jordan, 1997). FHMMs model outputs

that are function of several hidden states where each hidden state

evolves according to an independent Markov model. Because exact

inference in FHMMs is intractable, a number of approximate infer-

ence procedures have been developed. The pooled semi-Markov

process differs from FHMM in significant ways. First, the holding

time in each HMM state is geometrically distributed, while we allow

for arbitrary distributions. Second, the pooling model introduces

hard combinatorial constraints that make standard variational infer-

ence inapplicable.

There is a large body of work on the inference of local ancestry

in admixed populations, in which the ancestry of each position in

the genome is inferred. These methods typically use hidden Markov

chain models, (e.g. Price et al., 2009; Pritchard et al., 2000;

Sankararaman et al., 2008a; Tang et al., 2006) variants such as

switch HMMs (Sankararaman et al., 2008b) and factorial HMMs

(Baran et al., 2012). Principal component analysis (PCA) has been

shown to correlate well with global ancestry, and variants of PCA

have been proposed (Yang et al., 2012). In the case of African-

Americans, these models have been applied to show that African-

Americans today are an admixture of African and European

ancestries in the ratio 0.8:0.2 over the last 6–10 generations (Smith

et al., 2004). Further, it has been shown that local ancestry can be

accurately inferred in African-Americans. A limitation of these

approaches is that they do not distinguish between the maternal and

the paternal contributions to the genetic ancestry. Methods, such as

Hapmix (Price et al., 2009), estimate the unordered pair of local an-

cestry states at each position but do not assign the local ancestry to

each parental haplotype and hence do not tell us the genomic ances-

tries of each parent.

2 Methods

2.1 Pooled semi-Markov processes
A semi-Markov process generalizes continuous time Markov process

to settings where the holding time in a state may not be exponen-

tially distributed. We recall the generative procedure for sampling

from a semi-Markov process of K states.

Definition: Let f denote the probability density function of a

random variable parametrized by k (k could represent either a scalar

or a vector depending on the form of the density function). To

sample from a K-state semi-Markov process parametrized by

fkk; akgK
k¼1;

X
ak ¼ 1, we do the following:

1. i 1.

2. Sample the state of the first block, /1 � DiscreteðfakgÞ.
3. Sample the length of the first block, L1 � f ðk/1

Þ.
4. Repeat while

Xi

j¼1
Li < L, where L is a specified length:

• i iþ 1
• Sample the state of block i, /i � Discreteðfâkg/i�1

Þ, where

âk ¼ ak

1�a/i�1
if k 6¼ /i�1 and â/i�1

¼ 0.

• Sample the length of block i, Li � f ðk/i
Þ.

We call f ðkkÞ the holding distribution of state k and a jump is a tran-

sition between two consecutive blocks. For our applications it is suf-

ficient to work with this parametrization of the transitions using

ak’s. All results can be extended to general semi-Markov process.

The output sample is a chain of length L composed of blocks of

distinct states. For the last block, we cut it off so that it stops at L.

For x 2 ½0;L�, we denote by /ðxÞ the state of the block that x

belongs to, i.e. /ðxÞ ¼ /i if x is in block i.

If f is the exponential distribution, then the corresponding

semi-Markov process is equivalent to a continuous time Markov

chain. For state k, the holding time is the time spent in that

state and is an exponentially distributed random variable with

rate kk. If we observe the states /ðxÞ for an individual semi-

Markov process and L is sufficiently long, then it is straightfor-

ward to perform maximum likelihood inference of the parameters

fkk; akg. In genetics and other applications however, we do not

observe each individual process but a pool of multiple semi-

Markov processes where the identity of which process a given

state is from is lost.

Definition: Suppose we have M independent semi-Markov

processes, each of length L. The j-th process is parametrized by

fkj
k; a

j
kg

K

k¼1
and the state of the j-th process in position x is denoted

by /jðxÞ. The pooled semi-Markov process (abbreviated as PSMP) is

obtained by the assignment of each x 2 ½0;L� to the K-dimensional

vector of counts, UðxÞ, such that the k-th entry is number of
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elements in f/jðxÞgMj¼1 that equals to k. We call UðxÞ; x 2 ½0;L�, the

observations of the pooled semi-Markov process. The model is para-

metrized by H � fkj
k;a

j
kg

j¼1;:::;M

k¼1;:::K
.

We focus on continuous holding distributions f such that with

probability 1 each process has a finite number of jumps in ½0;L�. Let

N denote the sum of the number of jumps across all M processes.

Then the continuous observations of the pooled semi-Markov pro-

cess can be concisely described by the finite set X ¼ fUi;LigN
i¼1,

where Ui is the counts vector observed at the i-th block across the

M processes, and Li is the length of this block. Note that for con-

tinuous distributions, the probability that two blocks of two differ-

ent semi-Markov chains end at the same point x is zero, thus with

probability one Ui and Uiþ1 differ by one transition. When it is clear

from context, we also use the equivalent representation

UðxÞ ¼ f/jðxÞgM

j¼1.

Under a pooled semi-Markov process, the likelihood of the par-

ameters H is

PðXjHÞ ¼
ð

1
XM

j¼1
eð/jðxÞÞ ¼ UðxÞ;8x 2 ½0;L�

h i

YM

j¼1
dPð/jjfkj

k; a
j
kgk¼1;...;KÞ

where eð/jðxÞÞ is the unit vector with 1 in the /jðxÞth entry and

dPð/jÞ is the measure induced by the jth semi-Markov process.

In the above integral, the set of hard constraints

1
XM

j¼1
eð/jðxÞÞ ¼ UðxÞ;8x 2 ½0;L�

h i
are finite (there being a single

constraint for each of the N blocks). Nevertheless, these constraints

make it intractable to exactly compute the likelihood in general. We

develop efficient approximations below.

Example: An application of the pooled semi-Markov process nat-

urally arises in the field of population genetics. The diploid genome

of an individual consists of one transmitted genome from each par-

ent (the two segments in Fig. 1). The transmitted genome of each

parent is a sequence of intervals, where each interval has a different

genomic ancestry–(E)uropean, (A)frican, (N)ative American, etc.

For example, if the mother is African American, then the genome

that she passes on to the offspring is a mosaic of blocks of state A of

some length distribution and state E of a possibly a different length

distribution, and similarly for the father. Hence the genome passed

from the mother to the offspring is well-modeled by a semi-Markov

process (Donnelly, 1983; Gravel, 2012). When we genotype the off-

spring, say the one in Figure 1, we can infer that first region has an-

cestry AA and the second region has ancestry EA (using method

described in the next section); however, we do not know whether

the E part come from parent 1 or parent 2, and thus the information

about the parents’ ancestry is lost. Given the pooled observations of

the ancestries (e.g. AA, AE, EE) at every point in the genome, the

goal is to infer the parameters fkj
k; a

j
kg

K

k¼1
for both parents. The k’s

parametrizes the length distribution of each ancestry state in a par-

ent and the a’s capture the frequency of the ancestry states. With

estimates for these parameters, we can infer the global ancestry of

each parent, i.e. the fraction of the individual’s genome that is

European, Native American or African, as well as the number of

generations since the admixture.

2.2 Algorithms for inference
We first consider the parameter estimation problem for pooled semi-

Markov processes with exponential holding distributions (which are

equivalent to continuous time Markov processes). Exponential hold-

ing distribution captures many of the genetic datasets of interests

and can often be used as a reasonable approximation to other more

complex distributions. We treat this problem in a Bayesian setting in

which we place a prior on the parameter vector H � fkj
k;a

j
kg

j¼1;:::;M

k¼1;:::K

and for a given observation X � fUi;LigN
i¼1, we compute the poster-

ior probability Pr ðHjXÞ. We approximate the posterior using a

Markov chain Monte Carlo (MCMC). To compute the likelihood as

part of the MCMC, we developed a dynamic programming algo-

rithm. In the next section, we show that this method gives accurate

posterior estimates of the parameters of the model on genotype data

from Mexican and Puerto Rican families.

For the non-exponential case, the dynamic programming algo-

rithm needs to keep track of all the possible lengths for which a

block of ancestry extends. This becomes expensive when the number

of blocks, N, is large. Hence, we develop a more general stochastic-

Expectation-Maximization (EM) algorithm to perform maximum

likelihood inference on general pooled semi-Markov chains, as

described in the next subsection. Note that there is an inherent sym-

metry in terms of which process we label as 1, 2, etc. that is not iden-

tifiable. Here we assume that the processes are labeled according to

some arbitrary but fixed order, and the goal is to recover the param-

eters up to permutation of labels.

2.3 MCMC inference algorithm for pooled

Markov process
For given observations X � fUi;LigN

i¼1 and parameters

H � fkj
k; a

j
kg

j¼1;:::;M

k¼1;:::;K
, we use dynamic programming to compute the

exact likelihood of the parameters, PðXjHÞ. For each i ¼ 1; :::;N,

we keep track of all the distinct ordered states that are permutations

of the observation Ui ¼ f/j
ig

M

j¼1. For example, if Ui ¼ fA;Eg, then

the consistent ordered states are (A, E), where state A is generated

by process 1, and (E, A), where state A is generated by process 2.

Note that we denote ordered states by ðÞ and unordered states by fg.
For a given unordered set Ui, we denote by fpðUiÞjp 2 Sig all the dis-

tinct ordered tuples that are consistent with Ui. Here Si is the permu-

tations of ½1; :::;M� that give rise to distinct tuples. For each pðUiÞ,
let PiðpðUiÞjHÞ be the probability of observing fU1; :::;Ui�1; pðUiÞg
in a pooled Markov chain parametrized by H. In other words, this is

the probability of seeing the unordered observation up to i�1 and

then observing the ordered tuple pðUiÞ. There are in the worst case

KM such PiðpðUiÞjHÞ for each i.

1. For i¼1, if the ordered state is pðU1Þ ¼ ð/1
1; :::;/

M
1 Þ, then

P1ðpðU1ÞjHÞ ¼
YM

j¼1
aj

/j
1

kj

/j
1

exp ð�kj

/j
1

L1Þ.

2. Given all the probabilities Pi�1ðpðUi�1ÞjHÞ, we have

PiðpðUiÞjHÞÞ ¼
X

p̂2 Si�1ðpÞ
Pi�1ðp̂ðUi�1ÞjHÞPðp̂ðUi�1Þ ! pðUiÞjHÞ

where Si�1ðpÞ are all the tuples that are one edit distance from p
(since we know exactly one jump in one process has occurred be-

tween block i�1 and i almost surely) and consistent with Ui�1,

and pðp̂ðUi�1Þ ! pðUiÞjHÞ is the probability for transitioning

from p̂ðUi�1Þ to pðUiÞ, which can be computed analytically as a

product of exponentials and aj
k’s.

Fig. 1. Illustration of pooled semi-Markov process. A and E are the states and

have different length distributions in the two semi-Markov processes
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For example, suppose the states are E and A, and the observation at

i is {E, E}. In this case there is just one tuple, (E, E), consistent with

it, and

PiððE;EÞjHÞ ¼ Pi�1ððE;AÞjHÞe�k1
ELi k2

Ee�k2
ELi

þPi�1ððA;EÞjHÞk1
Ee�k1

ELi e�k2
ELi :

In the first term of the right hand side, e�k1
ELi is the contribution

from continuing E with E in the first chain, and k2
Ee�k2

ELi comes

from continuing A with E in the second chain. And similarly for the

second term of the right-hand side. Because there are two states in

each chain, a’s do not appear.

Given this method for computing the likelihood of any observed

data X for parameters H ¼ fkj
k; a

j
kg

K

k¼1
, we use adaptive MCMC to

compute the posterior distribution over H. The advantage of this

approach is that we obtain full posterior distributions of H, and for

several human populations, it gives accurate estimations (next

section). A drawback is that computing the exact likelihood is

expensive when the state space is large or when there are many

chains—the run time is OðKMÞ.

2.4 Stochastic EM inference algorithm for general

pooled semi-Markov process
For general semi-Markov processes with non-exponential holding

times, the dynamic programing would have to keep track of the last

ordered state as well as its length, making it prohibitively expensive

to compute the likelihood. We therefore propose a stochastic EM

algorithm to perform parameter inference in general pooled

semi-Markov processes. For each block i, the observation is the

unordered set of states f/i
jg

M

j¼1
. Let Z be an M-by-N matrix where

Z½j; i� 2 ½1; :::;M� denote the process that generated the state /i
j at

block i. Z is the matrix of the latent variables.

2.4.1 E-step

Given the current values of the parameters H and observations X, it

is in general intractable to compute the posterior pðZjX;HÞ.
However we can generate samples fZsg from pðZjX;HÞ using an

efficient sequential procedure using the expansion

PðZjX;HÞ ¼ PðZ½:;1�jX;HÞPðZ½:; 2�jZ½:; 1�;X;HÞ

:::PðZ½:;N�jZ½:;N � 1�;X;HÞ:

For the base case, let U1 ¼ f/1
1; :::;/

M
1 g, then

pðZ½:; 1�jX;HÞ ¼ pðZ½:; 1�jU1;HÞ /
YM

j¼1
aZ½j;1�

/j
1

subject to the contraint that Z½:; 1� is a permutation of ½1; :::;M�. This

can be sampled efficiently using rejection sampling. The vector Z½:; i�
is one edit distance from Z½:; i� 1�, so that given Z½:; i� 1� there are

at most KM-feasible values for Z½:; i�. If vector W differs from

Z½:; i� 1� in index j, then pðWjZ½:; i� 1�;X;HÞ can be computed as a

function of the length of the current state for the j-th semi-Markov

process and the aj
k’s. Therefore we can explicitly compute the condi-

tional probability of Z½:; i� given Z½:; i� 1� for all values of Z½:; i�. To

sample Z½:; i� we just sample from these conditional probabilities.

2.4.2 M-step

Given samples Zs of the latent variables, we compute the max-

imum likelihood H by maximizing
Y

s

pðX;ZsjHÞ. Given Z, the par-

ameters kj
k and aj

k are independent for different j 2 ½1; :::;M�. For

that r-th semi-Markov process, the optimization problem is

arg max
Y

s

pðf/j
is:t:Zs½j; i�¼rg; fLig j kr;arÞ. For standard distribu-

tions, this optimization can be solved analytically.

We iterate the E and M steps until convergence.

3 Results

3.1 Mexican and Puerto Rican trios
We used 231 Mexican mother-father-child trios and 258 Puerto

Rican trios from the Genetics of Asthma in Latino Americans

(GALA) study (Risch et al., 2009) For each trio, we have the geno-

types of the two parents and the offspring across the entire genome.

The trios were genotyped using the Affymetrix 6.0 GeneChip Array,

which provides measurements of the genome at over 900 000 pos-

itions, called single nucleotide polymorphisms. Subjects were filtered

based on call rates >95%, consistency between reported and genetic

sex, and the absence of any unexpected identity by descent (IBD) or

by state. Familial relationships were confirmed using measures of

IBD and Mendelian inconsistencies.

We used LAMP-LD, a commonly used method, to infer the local

ancestry state at each position in the genome in each individual

(Baran et al., 2012). LAMP-LD uses a generative model in which the

genome is divided into non-overlapping windows. An admixed gen-

ome is generated as an emission within each window from a HMM

with
�K

2

�
states, where K is the number of ancestral populations.

Transitions between the hidden states occur between adjacent win-

dows. LAMP-LD computes a Viterbi decoding of the pairs of local

ancestries along the genome. Since Puerto-Ricans and Mexicans

have mixed ancestry with (E)uropean, (A)frican, and (N)ative

American ancestries, LAMP-LD assigns to each position in the gen-

ome one of 6 states: EE, NN, AA, EA, EN and NA, depending on

the ancestry of that position (e.g. NA corresponds to the case where

one copy originated in Africa and the other in America).

In these datasets, we observed that the genomes of each of the

parents are well approximated by exponential length distribution

and hence by a Markov process. The genome of the child can then

be modeled as a pooled Markov process, with M¼2 and K¼3.

Note that in general, the genomes of the parents themselves cannot

be modeled as a Markov process but as a semi-Markov process

(Gravel, 2012). However in these data the exponential distribution

proved to be a good approximation, likely because admixture

occurred many generations ago in these samples and have been con-

tinuing ever since.

For the validation experiment, we take as input the observed

local ancestry blocks of each offspring, and use the MCMC algo-

rithm described earlier, with uniform priors, to infer the posterior

distribution over the parameters of the model. In these data, the

MCMC estimates are more accurate than estimates from the sto-

chastic EM (not shown). There are six k parameters and four inde-

pendent a parameters. The global European (or African, Native

American) genomic ancestry of an individual is defined to be the

proportion of the total genome that is identified to be of European

(or African, Native American) descent. For each set of parameters,

we infer the global ancestry proportion of the corresponding parent

by running a Markov chain with these parameters to equilibrium

and computing the fractions. Then we compare the inferred global

genomic ancestry of each parent with the true genomic ancestry of

the parent computed explicitly by running LAMP-LD.

Genomes of Mexican samples contain primarily European

(average of 43%) and Native American (49%) ancestries, and a

small amount of African ancestry. In contrast, Puerto Ricans gen-

omes contain mostly European (62%) and African (23%) ancestries,
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with a minor component of Native American. Moreover the two

populations have distinct demographic histories leading to different

statistical properties of their ancestries, corresponding to different

distributions of k0s and a0s (Bryc et al., 2010). Hence these two data-

sets are complementary in exploring the performance of our ap-

proach under different conditions.

Table 1 contains the r2 between our estimated genomic ances-

tries using PSMP and the true genomic ancestries in the 462

Mexican (MX) parents and 516 Puerto Rican (PR) parents. We

report the r2 for each of the ancestry states: European (E), Native

American (N), African (A). In Mexican trios, our estimated propor-

tions of European and Native American ancestries agree very well

with the ground truth (coefficient of determination r2¼0.84 for

both). It performs worse in estimating the African proportion, likely

because African blocks are only observed a few times in most sam-

ples. In Puerto Rican trios, our estimates for the European and

African ancestries closely match the ground truth. It performs worse

for the less frequent Native American ancestry (Figs. 2 and 3).

In addition to accurately estimating the global genomic ances-

tries of each parent, our method also infers finer grained informa-

tion. In particular, since the holding distributions are exponential,

1=k gives the average block length of each ancestry type in a parent.

From standard coalescent models of population genetics, these

length scales inform us the number of generations since the inter-

breeding of these populations in the family history of that individ-

ual. We compare the inferred length scales for each parent and

ancestry type with the ground truth measured on the transmitted

allele. In Mexicans, there’s strong correlation between length esti-

mates from our method and the ground truth for European and

Native American ancestries (r2 of 0.73 and 0.75, respectively). The

estimate is less accurate for the less frequent African block lengths

(r2¼0.25). For Puerto Ricans, we find the strongest agreement in

the block lengths of Africans (r2¼0.75), followed by Europeans

(r2¼0.54) and Native Americans (r2¼0.45).

3.1.1 Scalability

Our algorithms treat the samples independently and can be run

in parallel on all the samples. For each human sample, it required

�5 min on a standard desktop.

3.2 Comparison to benchmarks
In practice, it is often assumed that the genomic ancestry of the

offspring is a good approximation of the ancestry of the parents.

This only works if the genomic ancestries of the two parents are very

similar, since the offspring’s ancestry essentially averages the par-

ents’. This assumption is especially problematic in admixed popula-

tions (Latinos, African Americans, etc.) where the two parents may

have very different ancestries. We tested this assumption in our trios,

where we use the empirically measured genomic ancestry of the off-

spring as estimations of the parents’ ancestries. The correlation with

the true genomic ancestries is reported in the second row of Table 1,

and it is significantly worse than the results of the pooled semi-

Markov process. For more heterogeneous populations, we expect the

offspring to be even worse estimators of the parent’s ancestry.

The pooled semi-Markov process explicitly models the spatial

correlation of nearby states. A simpler algorithm is to assume that

all the observations are independent. The accuracy of this simpler

model is reported in the third row of Table 1. It performs worse

Table 1. Ancestry estimation accuracy r2

MX E MX N MX A PR E PR N PR A

PSMP 0.84 0.84 0.35 0.72 0.5 0.75

Offspring 0.76 0.75 0.33 0.63 0.43 0.66

Independent 0.83 0.82 0.27 0.58 0.18 0.41

The first three columns correspond to the Euroean (E), Native American (N)

and African (A) ancestries of the Mexican individuals. The last three columns

correspond to the European, Native American and African ancestries of the

Puerto Rican individuals.

Fig. 2. Comparisons of the estimated genomic ancestry of each parent with the ground truth. The top row is for Mexican samples, each dot corresponding to one

parent: European proportions (left), Native American proportions (middle) and African proportions (right). The bottom row is for Puerto Rican samples: European

proportions (left), Native American proportions (middle) and African proportions (right)
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than the pooled semi-Markov process in all the categories and is

especially poor in Puerto Ricans.

3.3 Simulations
3.3.1 Random trios

As an additional validation, we tested our algorithm on simulated

Mexican male–female–offspring trios. In the actual trios, using the

genotype of the three individuals, we inferred the transmitted allele

from each parent to the offspring. To generate a random trio, we then

randomly selected a male and a female parent and computationally

combined their transmitted alleles to form a new offspring. This

creates realistic offspring genotypes while preserving the complex

demography encoded in the parents’ transmitted alleles. Using this

process, we simulated 100 new trios for which we knew the true gen-

omic ancestry of each individual. As before, we applied our method to

the offspring data to infer the ancestries of the parents. Comparison of

the inferred ancestries with the ground truth showed very good agree-

ment (Fig. 4). For the European, Native American and African ances-

tries, we achieved r2 of 0.9, 0.89 and 0.77, respectively.

3.3.2 Non-exponential chains

We also investigated how well we can do inference on pooled semi-

Markov processes where the distributions are very different from ex-

ponential, as these could be relevant for other demographic models

and applications. We consider the particular case where the block

lengths of each state are Gaussian distributed. We use the more gen-

eral stochastic EM algorithm given above to perform inference.

In the experiments, we varied K ¼ 2; :::; 6 and M ¼ 2; :::; 5. For

each combination of K and M, we simulate 50 pools of semi-

Markov processes. We consider unit variant Gaussians with mean

kk. For each process, we sampled a uniformly from the K-dim sim-

plex and sample kk uniformly from [5, 10]. Different processes in

the same pool have different a’s and k’s. Each observed dataset is

created by pooling M different Gaussian semi-Markov processes. To

better match the quantity and noise of realistic genomic data, we use

only the first N¼500 blocks of the pooled semi-Markov process

as observations. This is the input into our stochastic EM algorithm.

To evaluate the estimation, we compute the r2 between the esti-

mated k’s and the true k’s and between the estimated and true a’s,

across all pools and all processes. The results are summarized in

Fig. 3. Comparisons of the estimated and true average block length of each ancestry type. The top row is for Mexican samples, each dot is one parent: average

European block length (left), average Native American block length (middle) and average African block length (right). The bottom row is the average block length

in Puerto Ricans for European (left), Native American (middle) and African (right) ancestries

Fig. 4. On simulated Mexican trios, comparisons of the estimated genomic ancestry of each parent with the ground truth. Each dot corresponds to one parent.

The x-value shows the actual ancestry of the parent and the y-value shows the inferred ancestry. European, Native American and African ancestries are shown in

the left, middle and right panels, respectively

Inferring parental genomic ancestries i195



Figure 4. For M¼2, 3, we obtain accurate estimations for even large

numbers of states, with r2>0.8. The accuracy of inference declines

as the number of processes in a pool increases. In these more com-

plex models, we can improve our accuracy by collecting larger num-

ber of observations (N) from each pool (Fig. 5).

4 Discussion

We developed an efficient method to infer the genomic ancestry of

the parents from the genotype of an offspring. We applied our

method to genotype data of 231 Mexican and 258 Puerto Rican in-

dividuals to infer the parents’ ancestries. We showed that the

method is highly accurate by comparing the inferred ancestries with

each parent’s true genomic ancestries. We further validated the

method on simulated trios. For pooled Markov processes, we

showed how to compute likelihood exactly using dynamic program-

ming. For general pooled semi-Markov processes, we developed a

stochastic EM algorithm to infer the model parameters. We add-

itionally validated accuracy of our inference algorithm in settings

where the semi-Markov length distributions are Gaussians.

We tested our algorithm on Latino trios, but it can be applied to

other admixed populations and can be used to infer ancestries other

than European, Native American and African. The method can be

used on general genotype datasets of unrelated, unphased individ-

uals, for which large cohorts exist, to infer the genomic ancestries of

the parents. This has immediate applications in investigating as-

sortative mating in human populations.

The current approach assumes that the local ancestry of the off-

spring has been computed from his/her genotype. This is reasonable

for large admixed populations such as Latinos and African

Americans, where existing algorithms (e.g. LAMP-LD) can accurate

infer the local ancestries. For other admixed populations, an inter-

esting direction of future work is to jointly infer the local ancestry of

the offspring and the global ancestries of the parents
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