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Abstract

Motivation: Direct analysis of microbial communities in the environment and human body has

become more convenient and reliable owing to the advancements of high-throughput sequencing

techniques for 16S rRNA gene profiling. Inferring the correlation relationship among members of

microbial communities is of fundamental importance for genomic survey study. Traditional

Pearson correlation analysis treating the observed data as absolute abundances of the microbes

may lead to spurious results because the data only represent relative abundances. Special care

and appropriate methods are required prior to correlation analysis for these compositional data.

Results: In this article, we first discuss the correlation definition of latent variables for compos-

itional data. We then propose a novel method called CCLasso based on least squares with ‘1 pen-

alty to infer the correlation network for latent variables of compositional data from metagenomic

data. An effective alternating direction algorithm from augmented Lagrangian method is used to

solve the optimization problem. The simulation results show that CCLasso outperforms existing

methods, e.g. SparCC, in edge recovery for compositional data. It also compares well with SparCC

in estimating correlation network of microbe species from the Human Microbiome Project.

Availability and implementation: CCLasso is open source and freely available from https://github.

com/huayingfang/CCLasso under GNU LGPL v3.

Contact: dengmh@pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbes play an important role in the environment and human life.

Bacteria and archaea have been found in extreme conditions such as

deep sea vents with high temperatures and rocks of boreholes

beneath the Earth’s surface (Pikuta et al., 2007). The microorgan-

isms affect environments where they exist, and vice versa. It is esti-

mated that there are about 10 times microbe cells inhabiting our

human body than human cells (Savage, 1977). Microbes affect the

human life on our food, health and medicine (Gill et al., 2006). The

way in which microbes affect the human health remains largely

unknown. Analysis of the human microbiome may help us better

understand our own genome.

The increasing quality and reducing cost of sequencing

technologies provide great opportunity to analyze the microbe com-

munities through sequencing. This represents a great improvement

over traditional microbe studies which are hindered by several
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limiting factors. First, only a small proportion of microbes can be

cultured under laboratory conditions. Second, only single microbe

can be studied in laboratories but it is well known that most

microbes need other microbes to survive. In contrast, sequencing

technologies allow researchers to collect information from the whole

genomes of all microbes in a community directly from their nat-

ural environment, facilitating mixed genomic surveys (Handelsman

et al., 1998).

When data are available across many communities, the depend-

encies among microbes, which can be measured by correlations,

may provide important clues on the interactions among microbes.

However, one unique feature of sequencing-based survey data is

that they only provide relative abundances of different microbes in a

community because the sequencing results are a function of sequenc-

ing depth and the biological sample size (Ni et al., 2013). Therefore,

metagenomic data collected from mixed genomic survey studies

belong to the so-called class of compositional data in statistics. It

was pointed out by Pearson (1897) more than one century ago that

correlation analysis method designed for absolute values could lead

to spurious correlations for compositional data. Great attention and

specialized methods are needed to appropriately analyze and inter-

pret compositional data. Filzmoser and Hron (2009) proposed a

procedure based on balances to measure correlations for compos-

itional data, but the groups defined by the balances cannot always

be clearly defined and separated from each other. Faust et al. (2012)

proposed CCREPE based on permutation and bootstrap to infer the

correlated significance but it’s difficult to explain the difference

between the permutation and bootstrap samples. Friedman and Alm

(2012) introduced correlation concepts of latent variables based on

log-ratio transformation of compositional data and proposed an

approximation method called SparCC to infer the correlation matrix

under sparse assumption. But SparCC does not consider the influ-

ence of errors in compositional data which may reduce the estima-

tion accuracy. In addition, there is no guarantee that the inferred

covariance matrix from SparCC is positive definite and even the cor-

relation coefficients may fall outside ½�1; 1�.
In this article, we propose a novel method based on least squares

with ‘1 penalty after log ratio transformation for raw compositional

data to infer the correlations among microbes through a latent vari-

able model, called Correlation inference for Compositional data

through Lasso (CCLasso). Similar to SparCC, CCLasso explicitly

considers the compositional nature of the metagenomic data in cor-

relation analysis, and it has the additional benefit that the estimated

correlation matrix of the latent variables for compositional data is

positive definite. We also propose an efficient alternating direction

algorithm of augmented Lagrangian method to solve the optimiza-

tion problem involved in our method. The tuning parameter that

balances the loss function and sparse assumption is chosen through

cross validation.

The performance of CCLasso is compared with SparCC through

simulation studies, using several correlation network structures and

sample sizes. The simulation results show that CCLasso gives more

accurate estimation for correlation matrix than SparCC as well as bet-

ter edge recovery. When CCLasso and SparCC are applied to estimate

the correlation networks of microbes from Human Microbiome

Project (HMP), we find that CCLasso is comparable with SparCC in

view of consistent accuracy and reproducibility. But for shuffled HMP

datasets there are supposed to be no correlations for any species,

SparCC always results some small correlations while CCLasso shrinks

these small values into 0. We believe that CCLasso can be applied to

study correlations of compositional data arising from metagenomic

data in natural environment and human body, and it is also broadly

applicable in many other contexts where there is interest to assess cor-

relations of variables from compositional data.

2 Methods

2.1 Correlation of latent variables for compositional

data
Suppose there are p microbe species and their absolute abundances

are random vector y ¼ ðy1; . . . ; ypÞ which cannot be directly

observed in practice. Instead, only the compositional random vector

x ¼ ðx1; . . . ;xpÞ,

xi ¼
yi

Xp

k¼1

yk

; (1)

can be observed from biological experiments. The absolute abun-

dances y are called latent variables since they cannot be directly

observed. The additive log normal distribution (Aitchison and Shen,

1980) is a special case for Equation (1) when y is from a multivariate

logarithm normal distribution. The relations among y are of more

relevance than x’s in both practice and theory. The interactions

among microbe species are described by y while there is a negative

correlation trend for compositional vector x from the constant sum

constraint even in the absence of any correlations among y,

Xp

k¼1

xk ¼ 1)
X
k6¼i

Covðxi; xkÞ ¼ �VarðxiÞ:

Let w ¼
Xp

k¼1

yk be the total absolute abundance for microbe species.

Covariances between the latent absolute abundance y, which cannot

be observed, and those of its compositional representation x, which

are observed, can be related through the base equation (1),

Covðln xi; ln xjÞ ¼ Covðln yi; ln yjÞ �Covðln yi; ln wÞ

�Covðln w; ln yjÞ þ Varðln wÞ;

since ln xi ¼ ln yi � ln w. Let Rln x ¼ Varðln xÞ, Rln y ¼ Varðln yÞ
and a ¼ Covðln y; ln wÞ �Varðln wÞ1p=2 where 1p is a p� 1 vector

of 10s, then the matrix form of connection between Rln x and Rln y

can be described as

Rln x ¼ Rln y � a1T � 1aT : (2)

We can focus on the correlation among log transforms of y and we

also call ln y latent variables. When x is from additive logistic nor-

mal, the independences among ln y are equivalent to y. Since there is

information loss from y to x through normalization procedure

(Equation 1), the problem of estimating Rln y from the sample esti-

mation of Rln x is undefined without any assumptions. This can be

easily seen from Equation (2) that there are pðpþ 1Þ=2 equations

but pðpþ 1Þ=2þ p unknown parameters.

One way to get around this problem is to assume that Rln y is

sparse which means that the interaction network among microbe spe-

cies has a small proportion of all possible edges present compared to

the fully connected network. Sparse structure is a very common as-

sumption for under-determinated problems such as linear regression

models (Tibshirani, 1996), Gaussian graphical models (Yuan and Lin,

2007) and compressed sensing (Candes and Tao, 2005) where the

number of unknown parameters is larger, sometimes much larger,

than the number of data points. For compositional data, there may

exist several sparse networks corresponding to the same Rln x because
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y and its scaled form CðyÞy (C(y) is any arbitrary positive random

variable which is a scaling factor) cannot be distinguished from the

base equation (1) if both Rln y and Rln ðCðyÞyÞ are sparse. The sparse

level of Rln y is the key because there is at most one sparse network

Rln y whose edge density is no greater than 1
2� 1

p�1 corresponding to

the same Rln x. And this sparse density condition cannot be relaxed

(See Supplementary Material). There are very few statistical methods

available to investigate the correlation among the latent variables ln y

with the exception of some recently introduced methods, e.g. SparCC

(Friedman and Alm, 2012).

To remove a in the right hand of Equation (2), we can choose a

matrix F with RankðFÞ ¼ p� 1 and F1p ¼ 0 and multiple F on both

sides in Equation (2),

FRln xFT ¼ FRln yFT � Fa1T
p FT � F1aT

p FT ¼ FRln yFT : (3)

The left hand of Equation (3) is the variance of Fln x and the right

corresponding Fln y. And their relationship can be seen as

Fln x ¼ Fðln y� 1pln wÞ ¼ Fln y:

The above relation can explain the two constraints for F. RankðFÞ
¼ p� 1 ensures that there is a 1� 1 correspondence between x and

Fln x since there is the constant sum constraint for x. So there is

no loss of information in statistical inference from Fln x instead of

x. F1p ¼ 0 helps to cancel the common denominator w after log

transformation. There are many such transformation matrices sat-

isfying the two constraints, e.g. F ¼ ðEp�1;�1p�1Þ is the linear trans-

formation for additive log ratio where the reference variables is xp

and F ¼ Ep � 1p1T
p =p for the centered log ratio for compositional

data where Ep is a p�p identity matrix (Aitchison, 1982).

Let R ¼ Rln y ¼ ½rij�p�p. The sample version S of Rln x can be

obtained after the fraction estimation from raw data such as metage-

nomic data through the Bayesian pseudo count method (Agresti and

Hitchcock, 2005). From Equation (3) and the sample estimation

S for Rln x, we can get the following estimation equation,

FRFT ¼ FSFT : (4)

Since RankðFÞ ¼ p� 1 and R is a p�p positive definite matrix,

R cannot be directly estimated through Equation (3). The additional

sparse assumption for R is reasonable in many application contexts,

such as metagenomic data, since most of variable pairs are not

expected to be correlated when the number of components is large.

Therefore, we can impose some sparsity constraints to help model

and infer R without other prior information.

2.2 SparCC and its limitations
Friedman and Alm (2012) proposed an iterative approximation ap-

proach called SparCC to solve the estimation equation (4) for a

number of special forms of transformation matrix F. In short,

SparCC first obtains a rough estimation for variance of latent vari-

able ln yi and the corresponding correlation matrix. Then it uses a

threshold to remove the most correlated pair and repeatedly esti-

mates the variances and correlations until some terminating condi-

tions are met.

Under the above notation, SparCC’s algorithm can be summar-

ized as follows. First, SparCC obtains an estimation for the diagonal

of R from a rough approximation that

X
j6¼i

rij ¼ 0; 8i: (5)

The rough approximation (Equation 5) supplies additional

p equations for Equation (4). This assumption means that every com-

ponent has no correlations with others on average. Let F1 ¼ ð�1p�1;

Ep�1Þ and R12 ¼ ðR21ÞT ¼ Covðln y1; ln y�1Þ; R22 ¼ Varðln y�1Þ
where ln y�1 ¼ ðln y2; . . . ; ln ypÞT , then Equation (4) can be written

as follows,

ð�1p�1;Ep�1ÞRð�1p�1;Ep�1ÞT ¼ F1SFT
1

) 1p�1r111T
p�1 � 1p�1R

21 � R121T
p�1 þ R22 ¼ F1SFT

1 :

Computing the trace for both sides of above equation, we have

ðp� 1Þr11 þ
Xp

i¼2

rii � 2
Xp

i¼2

r1i ¼ trðF1SFT
1 Þ:

If
Xp

i¼2

r1i ¼ 0, then ðp� 1Þr11 þ
Xp

i¼2

rii ¼ trðF1SFT
1 Þ: Let Fi; i ¼ 2;

. . . ; p be the additive log ratio transformation matrix where the xi is

the reference variable, for example, Fp ¼ ðE;�1p�1Þ. Then similar to

F1, we have ðp� 1Þrii þ
X
j 6¼i

rjj ¼ trðFiSFT
i Þ for i ¼ 2; . . . ;p from

the assumption (Equation 5). The corresponding solution is

rii ¼
1

p� 2
ðtrðFiSFT

i Þ �
1

2ðp� 1Þ
Xp

i¼1

trðFiSFT
i ÞÞ; (6)

since Ep þ 1
c 1p1T

p

� ��1
¼ Ep � 1

cþp 1p1T
p

� �
. Then the basic coeffi-

cients can be obtained after substituting Equation (6) into Equation

(4). In fact, the above procedure is just a way to solve Equation (4)

and Equation (5). This is called basic SparCC in Friedman and Alm

(2012). A potential problem for SparCC is that rii in Equation (6)

can be negative, and so a minimal value Vmin is required to replace

negative rii. Second, SparCC employs an iterative refinement scheme

through excluding the strongest correlated pair if the corresponding

magnitude exceeds a given threshold a. The rii is updated through

removing the most significant correlation pair based on another

assumption like Equation (5),

X
j 62Ci

rij ¼ 0; (7)

where Ci denotes the set of indices of ln yj identified to be strongly

correlated with ln yi. Finally, SparCC repeats the former two steps to

update the variance rii and the correlation matrix of ln y through the

threshold a for a given iteration time or until no new strongly corre-

lated pair is identified or only three components left. And SparCC se-

lects a correlation threshold to give an interaction network.

As far as we are aware, SparCC is the first method to infer the cor-

relations among latent variables ln y for compositional data. Its se-

cond step is an effective method to remove the strong assumption

(Equation 5) in the first approximation step and Equation (7) is

approximately right after removing the strongest pairs. Although it

represents a significant advance in analyzing compositional data,

SparCC has some limitations in the approximations. First, SparCC

directly solves Equation (4) with a series of approximate assumptions,

and the accuracy of Equation (4) is influenced by the errors resulting

from these approximations. Second, there is no consideration for the

overall property of the estimated correlation matrix. SparCC cannot

guarantee the inferred correlation matrix to be positive definite and

even the estimated correlations may fall out of ½�1; 1�.

2.3 CCLasso
We first note that the vectorization version of Equation (3)

together with sample variance S is e ¼ ðF� FÞvecðR� SÞ, where
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e satisfies EðeÞ ¼ 0 and VarðeÞ ¼ ðF� FÞVarðvecðSÞÞðFT � FTÞ. Let

VS ¼ VarðvecðSÞÞ, then an inverse variance weighted loss function

can be given as follows,

LOSS1ðRÞ ¼
1

2
ðvecðR� SÞÞTðFT � FTÞððF� FÞVSðFT � FTÞÞ�1

ðF� FÞðvecðR� SÞÞ;
(8)

where the inverse symbol M�1 is the Moore-Penrose pseudo

inverse of M (Penrose and Todd, 1955). The solution to minimize

LOSS1ðRÞ in Equation (8) satisfies the estimation equation (4). One

important property of the loss function (Equation 8) is that it is

invariant for any choice of the linear transformation matrix F. This

property results from the fact that the information for R in the ori-

ginal data is kept after log ratio transformation.

The loss function LOSS1ðRÞ in Equation (8) is too complex to be

handle for the high-dimensional covariance matrix VS (p2 � p2).

Inspired by Zhang and Zou (2012) for variance approximation of

sample variance, we can use the following loss function to substitute

Equation (8),

LOSS1
0ðRÞ ¼ 1

2
trððFðR� SÞFTÞðFSFTÞ�1ðFðR� SÞFTÞÞ: (9)

The transformation matrix F in Equation (9) should be chosen rea-

sonably. Considering the symmetry of components, let

F0 ¼ Ep � 1
p 1p1T

p be the transformation matrix of centered log ratio

with symmetric projection property F2
0 ¼ F0; FT

0 ¼ F0. It is sug-

gested that treating the weighting covariance matrix in loss func-

tions as diagonal performs well in some high-dimensional problems

(Chen et al., 2013). Let V ¼ ðdiagðF0SFT
0 ÞÞ
�1. We may consider an-

other substitute for loss function,

LOSSðRÞ ¼ 1

2
trððF0ðR� SÞFT

0 ÞVðF0ðR� SÞFT
0 ÞÞ

¼ 1

2
jjF0ðR� SÞF0jj2V :

(10)

The diagonal matrix V can be seen as a standardization matrix for

F0ðR� SÞF0. The key idea of our method is that we use the loss func-

tion (Equation 10) because of its simplicity.

A reasonable approach to incorporating the sparse assumption

for R is to minimize loss function plus a suitable penalty. An ideal

penalty function is the number of non-zero elements in R� which is

the off diagonal of R. But it is computationally intractable where the

optimization involving jjR�jj0 is a combinatorial optimization prob-

lem with an exponential complexity. A commonly used approach is

to replace ‘0-norm by ‘1-norm (Tibshirani, 1996; Yuan and Lin,

2007). We consider the following objective function combining loss

function and ‘1 penalty,

f ðRÞ ¼ LOSSðRÞ þ PENðRÞ ¼ 1

2
jjF0ðR� SÞF0jj2V þ knjjR�jj1; (11)

where PENðRÞ ¼ knjjR�jj1. The tuning parameter kn�0 in

Equation (11) is used to balance the fit of model (3) and the sparsity

assumption of R. CCLasso aims to find a positive definite matrix R̂
so that

R̂ ¼ arg min
R�0

f ðRÞ ¼ arg min
R�0

1

2
jjF0ðR� SÞF0jj2V þ knjjR�jj1; (12)

where R � 0 means R should be positive definite. The corresponding

correlation matrix estimation can be derived from standardizing the

diagonal elements of R̂. The optimization problem involved in

Equation (12) is convex since both the objective function f ðRÞ and

the constraint region fRjR � 0g are convex. So the local minimiza-

tion of Equation (12) is global.

Compared with SparCC, CCLasso explicitly considers the error

terms behind the estimation equation (4) through the loss function

(Equation 10). The sparse assumption is directly handled through an

additional ‘1-type penalty function in contrast to the additional

assumption (Equation 7) for SparCC. The estimated correlation

matrix from Equation (12) is positive definite and its elements are

located in ½�1;1� from the positive definite restriction.

2.4 Optimization algorithm and choice of kn

We develop an efficient algorithm based on the alternating direction

method to solve the constrained optimization problem in CCLasso

(Zhang and Zou, 2012). A relaxed version for Equation (12) can be

obtained after removing the positive definite constraint,

~R ¼ arg min
R¼RT

1

2
jjF0ðR� SÞF0jj2V þ knjjR�jj1: (13)

If the solution ~R in Equation (13) is positive definite, R̂ ¼ ~R.

Otherwise the nearest positive definite matrix to ~R is used as R̂.

To derive an alternating direction method for Equation (13),

we introduce a new matrix R1 and rewrite Equation (13) as follows,

ð~R; ~R1Þ ¼ arg min
R¼RT ;R1¼R

1

2
jjF0ðR� SÞF0jj2V þ knjjR�1 jj1:

We consider the augmented Lagrangian function

LðR;R1;KÞ ¼
1

2
jjF0ðR� SÞF0jj2V þ knjjR�1 jj1

þ trðKðR� R1ÞÞ þ ðq=2ÞjjR� R1jj2F;

where jj � jjF is the matrix Frobenius norm. Let ðRk;Rk
1;K

kÞ be the so-

lution at step k, we update ðR;R1;KÞ according to

Rkþ1 ¼ arg min
R¼RT

LðR;Rk
1;K

kÞ; (14)

Rkþ1
1 ¼ arg min

R1

LðRkþ1;R1;K
kÞ; (15)

and Kkþ1 ¼ Kk þ qðRkþ1 � Rkþ1
1 Þ. Let Rkþ1 ¼ Sþ Dkþ1 for (14), we

can write

Dkþ1 ¼ arg min
D¼DT

1

2
jjF0DF0jj2V þ ðq=2ÞjjDjj

2
F

þ trðDðKk þ qðS� Rk
1ÞÞÞ:

The above objective function on the right is quadratic for D and

Dkþ1 is the solution of the following equation,

1

2
ðF0VF0DF0 þ F0DF0VF0Þ þ qD ¼ �ðKk þ qðS� Rk

1ÞÞ:

Let F0 ¼ UD0UT ; ðUTVUÞ11=2qþ Ep�1=2 ¼ U0DUT
0 (the subscript

11 means removing the last row and column) be the eigenvalue

decomposition for the corresponding matrix and

M ¼ �UTðKk þ qðS� Rk
1ÞÞU=q, then the solution for the above

equation is

Dkþ1 ¼ U
�U0fðUT

0 M11U0Þ � CgUT
0 M12

M21 M22

�
UT ; (16)

where 	 is the Hadamard product of matrices and Cij ¼ 1
DiiþDjj

.

To update Rkþ1
1 , we define an operator GðA; kÞ as follows,
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GðA; kÞij ¼

Aij i ¼ j;

Aij � k i 6¼ j; Aij > k;

Aij þ k i 6¼ j; Aij < �k;

0; i 6¼ j; �k
Aij
 k:

8>>>>><
>>>>>:

From Equation (15), we write

Rkþ1
1 ¼ arg min

R1

ðq=2ÞjjR1jj2F � trðR1ðKk þ qRkþ1ÞÞ;

then the solution of the above problem is Rkþ1
1 ¼ G Kk

q þ Rkþ1; kn

q

� �
:

The following algorithm summarizes the details to carry out the

above alternating direction method to solve the optimization prob-

lem (Equation 12) for CCLasso.

1. Initialization: k¼0, K0, R0
1 ¼ Ep.

2. Repeat (a)-(d) until Rk and Rk
1 converge:

1. Rkþ1  Sþ Dkþ1 where Dkþ1 is given in Equation (16);

2. Rkþ1
1  GðKk

q þ Rkþ1; kn

q Þ;
3. Kkþ1  Kk þ qðRkþ1 � Rkþ1

1 Þ;
4. k kþ 1.

3. Return the converged Rk as the solution for ~R defined in

Equation (13).

The tuning parameter kn�0 in Equation (11) has to be tuned

since it controls the balance between fitness of model (Equation 3)

and the sparsity assumption. A K-fold general cross validation of

loss function (Equation 10) is used to choose kn in this article. First,

all samples are divided into K disjoint subgroups as folds noted by Ik

for k ¼ 1; . . . ;K. These folds will be used as the training set and

testing set in turn. Second, for each k ¼ 1; . . . ;K, compute Sk and

S�k corresponding to the sample estimation of Varðln pÞ through Ik

and I1; . . . ; Ik�1; Ikþ1; . . . ; IK. The subscript –k means using all sam-

ples with the k-th fold left out. The weight matrix V for both train-

ing data and testing are based on all data. Thirdly, let S ¼ S�k and

compute the estimation R̂�k through Equation (12) for each

1
k
K. Then compute the mean of K-fold cross validated errors for

the tuning parameter kn,

CVðknÞ ¼
1

K

XK

k¼1

1

2
jjF0ðR̂�k � SkÞF0jj2V :

Finally, we choose k�n ¼ arg min kn
CVðknÞ as the final tuning

parameter.

3 Results

3.1 Simulation studies
Though a goal of a genomic survey study is to infer the correlations

among members of microbe communities from the abundance count

matrix, the estimation accuracy of correlation matrix using either

CCLasso or SparCC can be compared to assess their relative perform-

ance since they are both based on the same latent assumptions described

in Equation (1). The essential difference between these two methods is

the estimation procedure after obtaining the fraction estimation.

The compositional data are simulated from the additive logistic

normal distribution with a given mean and covariance matrix,

ln y � Nðl;RÞ; xi ¼
yi

Xp

k¼1

yk

:

The variation parameter of l controls the unbalance of components.

Every element of l is generated from a uniform distribution of

½�0:5;0:5�. We focus on performance comparison between SparCC

and CCLasso on sparse correlation matrix with varying levels of

sparsity in our simulations. Five covariance structures are

considered:

1. Random Model: Every pair of components is connected with a

given probability 0.3 and the correlation strength is 60.15 with

equal probability 0.5.

2. Neighbor Model: Randomly select p points in the ½0;1�2 plane.

Then connect the 10 nearest neighbors for each point with the

correlation strength 0.5.

3. AR(4) Model: Connect pair (i, j) if ji� jj
4, and set the correl-

ation strength as 0.4, 0.2, 0.2 or 0.1 as the distance is 1, 2, 3 or

4, respectively.

4. Hub Model: Randomly select 3 points as hubs and the other p –

3 points as common points. Then connect each hub to others

with a probability 0.7 while creating edges with probability 0.2

among the common points and all edge strength is set to be 0.2.

5. Block Model: Divide p points into 5 blocks equally. Connect

each pair in the same block with probability 0.6 and correlation

strength 0.4 while connecting points in different blocks with

probability 0.2 and correlation strength 0.2.

To make the covariance matrix positive definite, the diagonal

elements of R are set large enough and then normalized all as 1. The

random model is a very common graph model in which every pos-

sible edge occurs independently with the same probability. Through

setting the strength as 60.15 with equal probability, the random

model roughly satisfies assumptions Equations (5) and (7) of

SparCC. The neighbor model is a 2-dimensional geography model in

which edges exist among nearest neighbors. The ARð4Þ model can

be considered as a model where points are ordered linearly along a

line where edges exist between those nodes whose distance is no

more than 4, and the correlation decreases as the distance increases.

The hub model describes a graph where some special nodes, called

hubs, are connected to others with a higher probability than the con-

nection probabilities among other nodes. The block model defines

network clustering where edge probabilities are higher within

groups than between groups. All models are sparse with different de-

grees of sparsity. The expect number of edges in the neighbor and

ARð4Þ model is proportional to p while p2 for the random, hub and

block model.

For all the models, we set p¼50 and consider different sample

sizes n¼200, 300 and 500. For each model, and three combinations

of (p, n), we repeat simulations 100 times. The tuning parameter kn

is determined through 3-folds cross validation, and all data are used

to estimate R and the correlation matrix. We reimplemented

SparCC using R and the default tuning parameters a ¼ 0:1,

kmax¼10 and Vmin ¼ 10�4 are used while the final correlation is

truncated by –1 and 1 as the lower and upper limit. SparCC is ro-

bust for its tuning parameters since only the strongest pair is

removed in each iteration (Supplementary Fig. S1).

To compare the performance between CCLasso and SparCC for

each combination of model setting and sample size, we define the

correlation inference accuracy by the mean absolute error d1ðq̂;qÞ

¼ 2
pðp�1Þ

X
i<j

jq̂ij � qijj and the Frobenius norm distance dFðq̂; qÞ ¼

jjq̂ � qjjF between the estimated correlation matrix q̂ and the true

one q. The area under the receiver operation characteristics curve

(AUC) is used to assess the performance of CCLasso and SparCC on
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recovering the non-zero entries in the sparse covariance matrix R to

avoid the threshold parameter selection.

Table 1 summarizes the performance of CCLasso and SparCC

for simulation studies in view of d1 and dF distances and AUC. As

the sample size increases from 200 to 500, both d1 and dF decrease

for both CCLasso and SparCC in each simulation setting. The esti-

mation errors of CCLasso are smaller than SparCC. And the corres-

ponding results suggest that CCLasso performs better than SparCC

in simulations. This may be due to the fact that CCLasso considers

random errors while SparCC does not. For edge recovery, CCLasso

also performs better than SparCC except for the random graph

model when sample size is 200 and 300. This can be explained by

the fact that the random model roughly satisfies assumptions

Equations (5) and (7) of SparCC. The accuracy and AUC are not

vey consistent such as d1 and dF for CCLasso is smaller than SparCC

but the AUC for SparCC is larger than CCLasso in the random mod-

el. This phenomenon’s reason is that the accuracy measures the con-

tinuous distance between the estimation and the true one while AUC

shows the discrimination between the non-zeros and zeros.

More detailed results for ROC are shown in Figure 1. As the sam-

ple size increases, the gap between CCLasso and SparCC increases.

For the low false-positive rate such as 0.1, the true-positive rate for

CCLasso is larger than SparCC except the random graph model. An

interesting phenomenon is that both CCLasso and SparCC perform

poorly for the hub model, but as sample size increases the estimation

efficiency improves. One should use a much larger sample size for

some special graphical structures such as the hub model and the block

model than others for given precision. We also compare CCREPE

with CCLasso through ROC and find the performance of CCREPE is

similar to SparCC (Supplementary Fig. S2).

3.2 HMP data
Because of close relationships between ourselves and the microbes in

our body, the Human Microbiome Project Consortium (2012a,b)

aims to investigate the fundamental roles of the microbes in human

health and disease. The high-quality sequencing reads in 16S vari-

able regions 3–5 (V35) of HMP healthy individuals are used to

explore the correlation interactions among the microbes in 18 body

sites and the corresponding operational taxonomic units (OTUs) are

obtained from the HMPOC dataset, available at http://www.

hmpdacc.org/HMMCP/. We consider Phase I production study

(May1, 2010) and the first sample collected for multiple samples

from the sample body site of the same individual. The data are fur-

ther filtered by removing samples with less than 500 reads or more

than 60% 0s are collected and by removing OTUs that are repre-

sented by less than 2 reads per sample on average or more than 60%

0s. The transformation from counts to compositional data cannot

be directly normalized since both CCLasso and SparCC assume that

the 0s in the OTU counts are not real 0 fractions. CCLasso adds all

counts by the maximum rounding error 0.5 and then normalizes the

counts to get compositional data. Friedman and Alm (2012) pro-

vided Bayesian framework to estimate the fractions from counts for

SparCC. The final estimation for SparCC is the median of estima-

tions in 20 replicated samples from the posterior distribution of

fractions.

Since there is no prior information for true correlation network

of taxon–taxon interaction in real data, we use consistent accuracy

and reproducibility to compare the performance of CCLasso and

SparCC. First, all data are used to construct a gold standard refer-

ence correlation matrix for CCLasso and SparCC. The estimated

correlation matrix in this step is treated as “known” since all data

are used. Second, we randomly select half samples to estimate the

correlation matrix through CCLasso and SparCC. The consistent ac-

curacy is measured by the Frobenius norm distance between the esti-

mated correlation matrices of the first and second step. The

consistent reproducibility is measured by the fraction of the same

edges shared for these two steps in the first gold reference network

which only the top 1/4 edges is used. This procedure is repeated 20

times for stable results.

The results are summarized in Table 2. CCLasso and SparCC

have similar performance in terms of consistent accuracy and repro-

ducibility. When the sample size is small, the reproducibility is low.

Even for large sample size such as left Antecubital fossa, the repro-

ducibility is only 0.64 for both CCLasso and SparCC. We can find

consistent accuracy and reproducibility are not good criteria from

the simulation data (Supplementary Table S1). Since there are sev-

eral optimization procedures for the cross validation of CCLasso,

SparCC is faster than CCLasso (Supplementary Table S2). The

reproducibility is robust for the top edges’ choice (Supplementary

Table S3). We also compare the inferred correlation network from

CCLasso and SparCC using all samples for all body sites and find

their results are very similar (Supplementary Fig. S3 and Table S4).

Table 1. Performance comparisons of CCLasso and SparCC based

on simulation results

n Method d1 dF AUC

Random Model

200 CCLasso 0.033(0.001) 2.954(0.049) 0.791(0.015)

SparCC 0.057(0.001) 3.528(0.080) 0.823(0.014)

300 CCLasso 0.028(0.001) 2.409(0.057) 0.885(0.012)

SparCC 0.047(0.001) 2.901(0.059) 0.891(0.011)

500 CCLasso 0.023(0.001) 1.994(0.053) 0.953(0.007)

SparCC 0.038(0.001) 2.332(0.056) 0.951(0.006)

Neighbor Model

200 CCLasso 0.039(0.003) 3.355(0.206) 0.948(0.015)

SparCC 0.076(0.001) 4.606(0.081) 0.888(0.014)

300 CCLasso 0.033(0.002) 2.675(0.151) 0.986(0.006)

SparCC 0.070(0.001) 4.176(0.060) 0.931(0.009)

500 CCLasso 0.026(0.002) 2.064(0.121) 0.999(0.001)

SparCC 0.065(0.001) 3.800(0.041) 0.967(0.006)

AR(4) Model

200 CCLasso 0.021(0.001) 2.444(0.134) 0.885(0.021)

SparCC 0.061(0.001) 3.766(0.087) 0.858(0.019)

300 CCLasso 0.018(0.001) 1.994(0.133) 0.922(0.017)

SparCC 0.052(0.001) 3.210(0.078) 0.890(0.017)

500 CCLasso 0.015(0.001) 1.549(0.087) 0.958(0.011)

SparCC 0.044(0.001) 2.693(0.059) 0.918(0.011)

Hub Model

200 CCLasso 0.037(0.001) 3.453(0.037) 0.749(0.021)

SparCC 0.067(0.001) 4.194(0.070) 0.690(0.014)

300 CCLasso 0.036(0.001) 3.133(0.047) 0.768(0.021)

SparCC 0.059(0.001) 3.686(0.049) 0.735(0.012)

500 CCLasso 0.032(0.001) 2.918(0.048) 0.828(0.018)

SparCC 0.051(0.001) 3.248(0.043) 0.788(0.010)

Block Model

200 CCLasso 0.039(0.001) 3.307(0.113) 0.782(0.014)

SparCC 0.070(0.001) 4.268(0.072) 0.734(0.010)

300 CCLasso 0.035(0.001) 2.773(0.079) 0.854(0.014)

SparCC 0.062(0.001) 3.788(0.052) 0.765(0.011)

500 CCLasso 0.029(0.001) 2.258(0.076) 0.924(0.011)

SparCC 0.057(0.001) 3.374(0.038) 0.796(0.012)

d1 and dF are the two distances between the estimated correlation matrix

and the true one defined in the text. AUC is the area under the receiver oper-

ation characteristics curve. The results are the averages over 100 simulation

runs with standard deviations in brackets.
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Fig. 1. ROC curves of CCLasso and SparCC. The true-positive rate is averaged over 100 replications after fixing the false-positive rate and the gray line is baseline

reference
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We also compare the performances between CCLasso and

SparCC through shuffled HMP data. The individual counts are per-

muted for each OTUs, so it is supposed not to find any correlations

among species. Figure 2 shows the histograms of estimated correl-

ations through CCLasso and SparCC for the shuffled datasets.

Almost none correlations are detected by CCLasso but there are

always some small correlations inferred from SparCC. In this way,

CCLasso outperform SparCC. We use CCLasso and SparCC for the

other dataset and find SparCC detects too many strong meaningless

edges (Supplementary Fig. S4).

4 Discussion

Although compositional data arise naturally in many practical prob-

lems, researchers are generally more interested in the latent variables

that underlie these data. For example, in genomic survey studies, it

is of great interest to infer the dependency among different bacteria

from the observed relative abundance, instead of the absolute abun-

dance, of the bacteria. Therefore, there is a need to infer the correl-

ation matrix among the latent variables for the compositional data.

In this article, we have proposed a novel method to infer the correl-

ations among the latent variables for compositional data. We use

the sparse assumption to help estimate the correlation matrix of

latent variables through solving the constant sum constraint prob-

lem. The simulation results show that CCLasso has better perform-

ance than SparCC, the only available method in the literature that

we are aware of that attempts to solve this problem from a latent

variable viewpoint. For the HMP data, CCLasso has similar consist-

ent accuracy and reproducibilities as SparCC. But from the shuffled

HMP datasets, we find that SparCC always gives some nonzero

estimations.

Though CCLasso performs better than SparCC in simulation

studies, it has similar difficulties as SparCC such as reliable compo-

nent fraction estimation and only linear relation explained. We

adopt the simple pseudo count 0.5 to avoid 0 components for HMP

datasets. There are other normalization methods that accounts for

under sampling such as Paulson et al. (2013) introduced a method-

ology to assess differential abundance in sparse high-throughput

microbial marker-gene survey data. Recently, Biswas et al. (2014)

proposed a Poisson-multivariate normal hierarchical model to learn

direct interactions removing confounding predictors’ effect from

metagenomics sequencing experiments. The assumption of Biswas et

al. (2014) is similar to CCLasso from the latent model view, but the

essential difference between them is the compositional assumption.

Future work will concentrate on improvement of the components

estimation accounting for under sampling and exploring nonlinear

relationships among microbes.
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Table 2. Consistent Frobenius accuracy and reproducibility for CCLasso and SparCC in different body sites from HMP data

Body Sample Frobenius Accuracy Reproducibility

Site Size CCLasso SparCC CCLasso SparCC

AntNar 152 2.28(0.17) 2.22(0.12) 0.70(0.05) 0.68(0.05)

AKerGin 193 1.71(0.13) 1.56(0.14) 0.75(0.04) 0.77(0.05)

BucMuc 196 2.47(0.17) 2.11(0.11) 0.71(0.03) 0.72(0.03)

HarPal 197 2.57(0.18) 2.24(0.13) 0.79(0.03) 0.80(0.03)

LAntFos 51 4.35(0.31) 6.57(0.51) 0.64(0.05) 0.64(0.04)

LRetCre 123 2.24(0.21) 2.30(0.15) 0.69(0.04) 0.66(0.04)

MidVag 45 2.69(0.48) 3.35(0.59) 0.64(0.08) 0.64(0.07)

PalTon 203 2.76(0.17) 2.31(0.17) 0.83(0.02) 0.83(0.02)

PosFor 22 3.34(0.68) 2.98(0.80) 0.67(0.14) 0.68(0.11)

RAntFos 54 3.31(0.37) 6.32(0.32) 0.54(0.03) 0.60(0.04)

RRetCre 85 2.64(0.17) 3.50(0.20) 0.63(0.04) 0.61(0.05)

Saliva 184 2.95(0.14) 2.75(0.13) 0.75(0.03) 0.77(0.03)

Stool 190 1.81(0.13) 2.10(0.16) 0.72(0.04) 0.71(0.03)

SubPla 205 2.89(0.23) 2.45(0.18) 0.82(0.02) 0.84(0.03)

SupPla 207 2.74(0.22) 2.31(0.12) 0.82(0.02) 0.85(0.02)

Throat 197 2.79(0.15) 2.48(0.14) 0.79(0.03) 0.80(0.02)

TonDor 207 2.52(0.22) 2.00(0.17) 0.83(0.02) 0.84(0.02)

VagInt 52 2.93(0.27) 2.94(0.21) 0.65(0.06) 0.63(0.05)

AntNar, anterior nares; AKerGin, attached keratinized gingiva; BucMuc, Buccal mucosa; HarPal, hard palate; LAntFos, left antecubital fossa; LRetCre, left ret-

roauricular crease; MidVag, mid vagina; PalTon, palatine tonsils; PosFor, posterior fornix; RAntFos, right antecubital fossa; RRetCre, right retroauricular crease;

SubPla, subgingival plaque; SupPla, supragingival plaque; TonDor, tongue dorsum; VagInt, vaginal introitus.

The results are the averages over 20 replication runs with standard deviations in brackets.
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Fig. 2. Histogram of estimated correlations through CCLasso and SparCC for

shuffled HMP datasets
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