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Abstract

Motivation: The advent of next-generation sequencing (NGS) has created unprecedented opportu-

nities to examine viral populations within individual hosts, among infected individuals and over

time. Comparing sequence variability across viral genomes allows for the construction of complex

population structures, the analysis of which can yield powerful biological insights. However, the

simultaneous display of sequence variation, coverage depth and quality scores across thousands

of bases presents a unique visualization challenge that has not been fully met by current NGS

analysis tools.

Results: Here, we present LayerCake, a self-contained visualization tool that allows for the rapid

analysis of variation in viral NGS data. LayerCake enables the user to simultaneously visualize vari-

ations in multiple viral populations across entire genomes within a highly customizable framework,

drawing attention to pertinent and interesting patterns of variation. We have successfully deployed

LayerCake to assist with a variety of different genomics datasets.

Availability and implementation: Program downloads and detailed instructions are available at

http://graphics.cs.wisc.edu/WP/layercake under a modified MIT license. LayerCake is a cross-

platform tool written in the Processing framework for Java.

Contact: mcorrell@cs.wisc.edu

1 Introduction

Comparative sequence analysis can reveal evolutionary relationships

that could otherwise not be discerned. Sequence comparisons can

also identify signatures of natural selection and, when analyzed in

conjunction with appropriate phenotypic data, can be used to infer

the ‘pressures’ driving selection processes.

Prior to the arrival of next-generation sequencing (NGS), com-

parative sequence analysis was largely restricted to the comparison

of consensus sequences; i.e. sequences represented by the most abun-

dant nucleotide at a given position in a particular sample. The limi-

tations of consensus-level sequence analyses are particularly

apparent when examining RNA viruses, as samples often contain a

highly heterogeneous ‘swarm of mutants’—the diversity of which

cannot be represented by a consensus sequence. NGS yields thou-

sands of short ‘reads’ that together represent the full diversity of

virus sequences in a sample. The assembly of these sequencing reads

using either a pre-determined reference or a reference assembled de

novo from the reads themselves allows for the reconstruction of cod-

ing-complete viral genomes with the detection of nucleotide variants

that exist in as little as 1% of a viral population. With this para-

digm, it is now possible to overlay useful information such as nu-

cleotide polymorphisms, polymorphism frequencies and sequencing

coverage depth onto every position of a whole-genome consensus se-

quence. Conveying the read depth at each position in conjunction

with the above information creates a large multi-dimensional ma-

trix, which can be difficult to display visually in a manner that
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facilitates the discovery of motifs by the investigator. This problem

is further compounded when NGS data from multiple samples

(‘isolates’) is compared, especially when the virus in question has a

high degree of intra-sample sequence variability. However, it is in

precisely these contexts that a visualization tool can be most useful

for evaluating variation across genomes.

Relevant to the discussion of genomic sequence variability is the

notion of a sample. Rather than a sequence of nucleotides, an indi-

vidual sample contains the population of nucleotides observed at

different locations along a genome, derived from NGS data. These

populations can be compared to a reference sequence (or ‘reference

population’, see Section 2.2.2) to define a certain proportion of vari-

ability at each location. By visualizing different samples simultan-

eously, we can observe change in variability over time (if we take

multiple samples from the same infected organisms but at different

time points) or observe subgroups within a particular virus (if we

take samples from multiple organisms and compare them). In both

cases, the analyst compares multiple samples at once.

We have therefore developed the LayerCake visualization tool to

address the problem of visualizing sequence variability in viral popu-

lations. In LayerCake, samples are visualized as a colored row or

layer in a single view, with variability and confidence information

encoded as color. LayerCake automatically aggregates regions of the

genome into discrete bins, the size of which can be controlled by the

user. This design allows viewers to immediately receive an overview

of the entire dataset and quickly locate regions of interest within or

among samples. Zooming and side displays allow the user to retrieve

detailed, nucleotide-level statistics with a single click. Interaction

allows the user to adjust the aggregation, update the metrics used to

define variation or update metrics related to data quality or import-

ance. In this article, we describe the LayerCake system in detail, con-

textualizing its design with respect to other visual analytics tools for

genomics and presenting case studies of how LayerCake has been

used in multiple genomic analysis settings. We expand upon the ini-

tial LayerCake prototype detailed in Correll et al. (2011), support-

ing a more robust model of sequencing data, the capacity to deal

with multiple settings of ‘references’ and ‘pseudo-references’ and

adaptation to more general datasets.

1.1 Related works
There are a number of general purpose genome browsers which em-

ploy principles from visualization [see Nielsen et al. (2010) for a sur-

vey and discussion of the difficulties in building such systems],

including some which are track based (in which different samples or

data types are placed in their own distinct rows and visualized sim-

ultaneously). Many of these systems are visually similar to

LayerCake in design, relying on comparison across rows or tracks

and the heavy use of color to encode value (e.g. see Robinson et al.

2011; Zhou et al. 2011; Zhu et al. 2009). The LayerCake system dif-

fers in two key ways from these systems: first, it supports flexible ag-

gregation and zooming, allowing the analyst to compare across an

entire genome and examine small regions of interest simultaneously.

Second, LayerCake is tailored for NGS data models and can adapt

to the specificities of examining this sort of sequencing data (as

opposed to treating each of the variables involved in NGS sequenc-

ing and alignment as orthogonal tracks).

Tools for the visualization of NGS data specifically must display

the heterogeneity of reads at particular locations. Most of these

NGS tools have relied on the ‘scaffold view’ in which sequencing

reads are assembled against a reference sequence and stacked atop

one another. Nucleotides that vary from the reference are high-

lighted within their respective read, and the frequency of these

variants is represented by proportional sequence logos at the bottom

of the stack (see Carver et al. 2012; Hou et al. 2010; Milne et al.

2010; Schatz et al. 2007 for a partial list of NGS visualization tools

employing the scaffold view). These sequence logos are notoriously

difficult to interpret (see Maguire et al. 2014; Ray et al. 2014), mak-

ing it difficult for analysts to compare variation at individual loca-

tions, let alone large regions of a genome. Even if other aggregation

strategies are used, the scaffold view is most useful when examining

a single sequence of reads, since each scaffold is large and visually

complex (requiring the display of potentially thousands of reads,

hundreds of base pairs long). Even tools which do not use the scaf-

fold metaphor are still limited to the exploration of variants within

a single NGS sample (such as Ferstay et al. 2013). A survey of tools

for NGS variant analysis (Pabinger et al. 2014) confirmed that most

tools for this task afford the viewing of only a few separate tracks of

reads at a time (one or two per window), although some tools allow

the analyst to dynamically combine samples (Bigelow et al. 2012).

One exception to the tools which present only one (or a few) sam-

ples at a time is the Sequence Surveyor tool (Albers et al. 2011).

Originally designed for the analysis of linkage and conservation across

large numbers of genomes, Sequence Surveyor encodes each genome

as a row in a large display and aggregates sections of the genome into

discrete colored blocks, allowing hundreds of sequences of millions of

base pairs in length to be summarized on a single screen. Swihart et

al. (2010) recommend a similar layered design for observing trends in

longitudinal data. The initial design of LayerCake adapts Sequence

Surveyor techniques to the variant analysis task while maintaining a

scalable design based on the arrangement of colored rows of blocks.

A key difference between the two methods is that Sequence Surveyor

is for viewing static sequences of genes or nucleobases. LayerCake

deals with the simultaneous comparison of multiple sample popula-

tions of sequentially organized reads. Instead of one bit of information

per location (for instance ‘what is the nucleobase at this location?’),

LayerCake must contend with at least four (how many of each type of

nucleobase are at this location?). This problem becomes even more

challenging when we compare populations to each other. Section

2.2.2 expands on this formalistic difference.

2 System and methods

LayerCake, as a tool for the quick, visual comparison of large amounts

of genomic variability data, has three primary design components:

1. Techniques for visually aggregating large amounts of genomic

variability data from multiple samples and populations.

2. Techniques for calculating and displaying various conceptions of

variation and reference

3. Techniques for calculating and displaying various conceptions of

data quality and confidence.

Central to LayerCake is the notion of a layer—each separate

sample of viral sequence data is visually represented as a row of col-

ored glyphs. Figure 2 shows an example of a LayerCake layer; red

regions of the layer correspond to locations along the genome for

which this particular population has high variance compared with

the current reference. Figure 1 shows the entire LayerCake system:

dozens of discrete layers organized and displayed simultaneously,

with annotations and tools for viewer interaction.

2.1 Aggregation
Although viral genomes are smaller in length than mammalian gen-

omes (tens of thousands of nucleobases rather than billions), it is still

LayerCake 3523

``
''
``
''
&sect;
,
),
,
paper
,
``
''
``
,''
W
(
),
-
(
);Zhu etal.(2009);
(
)).
ly
ly
``
''
Schatz etal.(2007);Milne etal.(2010);Hou etal.(2010);
(
)
(
);
(
)),
(
)).
(
))
(
)). 
(
)).
, ``
?''),
&sect;
M
 &mdash; 
to
While


not feasible to visually present all the information from dozens of

samples simultaneously. To present a meaningful overview in lim-

ited space, LayerCake compresses the sequence and chooses a visual

representation of each sample that is compact enough to afford the

simultaneous presentation of many samples in a single screen.

Sequence compression must be considered not just in pixels, but also

in visual complexity. By definition, this compression inherently ag-

gregates some information, but LayerCake gives the viewer the abil-

ity to recover these details on demand.

The primary form of aggregation LayerCake supports is binning:

contiguous locations in the genome are aggregated together into dis-

crete blocks. The resulting color of the block represents the average

variation of all sites within the block. We used color to encode data

rather than, for instance, vertical position (as in a line graph or scat-

terplot) as prior work has shown that viewers are better at estimat-

ing and comparing average color values from sequences as opposed

to average positional values (Albers et al. 2014; Correll et al. 2012).

A typical viral genome consisting of tens of thousands of nucleo-

bases can then be reduced to a few hundred blocks, which can easily

fit within the dimensions of a standard computer monitor. The

viewer can interactively choose how many base pairs are contained

within a single bin, which alters the aspect ratio of each block as the

entire layer is stretched to fit the available space. To guarantee the

visibility of each block, the number of nucleobases within a block

cannot be reduced to a number so low that a block would be less

than a pixel wide. Conversely, the number of nucleobases within a

block cannot be a number so high that the display of a bin’s contents

will not fit in the available space. In practical use cases, viewers tend

to make bins dozens of base pairs large, to reduce the visual com-

plexity of the display while still permitting the investigation of

small-scale features in the data.

2.1.1 Recovering Detail

LayerCake averages together multiple locations into a single bin;

this aggregation can create ambiguity (is this location somewhat red

because many of the locations within it are somewhat variant or is it

because there is one highly variant location surrounded by locations

with little or no variation?) and erase details (since a region of inter-

est in the overview could ambiguously refer to any location within a

region dozens or hundreds of nucleobases long). We therefore in-

clude two techniques to recover detail: focusþ context lenses and

‘event striping’.

When the viewer right-clicks on a particular bin, LayerCake ex-

pands the contents of the bin to a detail view and shrinks the rest of

the layer to maintain total length. Since this zooming occurs discon-

tinuously, this is a ‘table’ or ‘Manhattan’ lens [see Carpendale and

Montagnese (2001) for an overview of this and other lens types for

information displays]. This detail view explicitly shows the variation

at each location within a bin. Figure 2 shows an example.

Fig. 1. An overview of LayerCake, on the simian arterivirus (SAV) dataset (see Section 3.1). Central to the display are a series of layers, each representing a sam-

ple of a viral population. Dark red sections of the layers correspond to areas with high deviation from a reference. The radio buttons on the left allow the viewer

to choose between different conceptions of a reference (see Section 2.2.4). (1) An overview of variation across all samples, as a colored histogram. Dark red re-

gions correspond to sections of the genome with high variation. ORFs are depicted as directional arrows. (2) The color wedge, which is both legend and inter-

active filtering tool. Viewers can move the yellow dots to define their own standards of important amounts of variation and acceptable levels of uncertainty (see

Section 2.3). (3) If the viewer mouses over a particular region of interest, the detail view shows histograms of variations for each population. If the viewer is

zoomed into a particular bin, this will show variation information at the level of individual nucleobases. (4) Interaction tools for manipulating the range of data,

the size of bins and minimum standards of uncertainty, among other options
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The overview merely shows the average value of each bin. A sin-

gle point of high variation can be lost in this averaging process. If

the viewer wishes to see small scale (but important) features, we sup-

port a technique called ‘event striping’ (see Fig. 3). When enabled,

the viewer selects a threshold of interest, and then LayerCake will

draw thin red stripes on bins which contain locations where vari-

ation meets or exceeds this threshold. For instance, a viewer might

use event striping to highlight locations on the genome where more

than 50% of reads are variant. An individual bin in the main display

might, on average, have significantly less than 50% variation but

still have a number of visible red stripes which suggest that the

viewer might wish to investigate this bin with zooming. Event strip-

ing increases the visual complexity of the display (since the number

of events is only limited by the number of locations in the dataset)

but allows viewers to find locations that would otherwise be lost in

the averaging. Prior work has shown the utility of event striping for

identifying outliers in sequence data (Albers et al. 2014).

2.2 Defining Variation and Reference
Variation presupposes a non-variant sequence or population from

which deviation can be measured—a reference. Typically, this is a

reference sequence; however, in LayerCake we expand on the defin-

ition of reference to include more complex situations—for instance

we may be concerned in how a viral population has changed com-

pared to a particular time point, as opposed to some initial pre-

infection reference. Different datasets will have different references

(sequences, pseudo-sequences or populations against which we de-

fine variation), but they also might have different definitions of

what constitutes a valid reference. These definitions might even

change dynamically over the course of a session.

2.2.1 Variation from a Static Reference Sequence

Let Reads
�����!

n be a four dimensional convex vector whose components

sum to 1.0, denoting the population of all reads at a location n.

Reads
�����!

n;A would then be the proportion of reads at location n that

were identified as adenine. Let Refn denote the reference at n. If Refn
is a static, single base pair, then the variation from the reference at n

is straightforward to compute. Namely, it is the percentage of reads

which do not match the reference base pair:

1:0� Reads
�����!

n;Refn
(1)

2.2.2 Variation from a Reference Population

In real tasks, the assumption of a static reference is frequently vio-

lated. For instance, we might want to compare against a population

at a particular timepoint, or an individual might have been infected

by a diverse population of viruses rather than a single homogeneous

population. In this case we would represent not just the sample but

also the reference as another four dimensional vector Ref
���!

n.

Variation should then be represented as some sort of distance from

one vector to another. Many possible distance metrics exist; how-

ever, for this task, the distance metric ought to be easily comparable

to Equation (1) above: it should preserve the semantic meaning of

‘more’ or ’less’ variation and have a range in the interval [0,1].

We chose a distance metric based on the central metaphor of

swapping. That is to make two locations identical, one would

change individual reads until the distributions matched. For in-

stance, if the population was entirely adenine at a location, but the

reference was one entirely cytosine, one would ‘swap’ out 100% of

the adenine and replace it with 100% cytosine: 100% of the reads

would be swapped, so the total variation would be 100%. Likewise,

if the reference was 50% A and 50% C, only half as many swaps

would need to be performed, so variation would be 50%. This be-

havior of examining distance at each dimension (or nucleotide) indi-

vidually and then summing up is captured by the ‘1-norm or

Manhattan distance. To avoid double-counting swaps (adding more

adenine by necessity means subtracting quantities for another nu-

cleotide), we divide the ‘1-norm by 2.0 to derive the final metric for

variation between two populations:

kReads
�����!

n � Ref
���!

nk1

2:0
(2)

2.2.3 Synonymous and non-synonymous variation

The analysis of viral NGS data within a sample or from multiple

samples can be used to identify signatures of natural selection—an

exercise that can yield powerful biological insights, especially when

supported by phenotypic data. At the core of this analysis is the

identification of ‘non-synonymous’ mutations: those which change

the amino acid sequence of the encoded protein. Since mutations are

generated randomly, a high density of non-synonymous mutations

in a particular region is indicative of natural selection favoring

Fig. 2. A LayerCake layer. Variation at multiple sequential locations on the genome is averaged together into bins, presenting an overview of the entire genome

at once (above). By right clicking on a bin (below), the viewer can recover specific information about a section of the genome while keeping the overview in

context

Fig. 3. An example of event striping—since each bin contains the average of

information from many locations, it is possible that specific locations with

high variation will be drowned out by their low variation neighbors [as in (a),

where there appears to be very little variability in the last few bins]. Event

striping draws a dark red bar on high variation outliers, adding to the visual

complexity of the display but showing outliers that could be missed when

data are aggregated [as in (b), where three specific points of high variation

are now visible]
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diversification of the respective protein sequence: a phenomenon

referred as ‘positive selection’. The opposite is also true: a paucity of

non-synonymous mutations indicates selection against protein se-

quence changes (i.e., ‘purifying selection’). To enable the visualiza-

tion of non-synonymous variation across the genome, LayerCake

can display either non-synonymous mutations, synonymous muta-

tions or both when open reading frame (ORF) annotations are

included in the input reference sequence. A mutation is considered

non-synonymous if it would result in a changed amino acid for even

one of the relevant ORFs. The metrics presented above extend to

this case by filtering out the relevant types of variation before calcu-

lating total variation.

2.2.4 Defining References in LayerCake

LayerCake considers three different reference scenarios:

1. Individual references: In this scenario, each discrete population

considers variation separately—for each population, the user ei-

ther provides a reference sequence (for instance from a FASTA

file) or LayerCake will generate a consensus sequence for each

sequence. This scenario highlights regions which have systemat-

ically high variation within a sample.

2. Population consensus: In this scenario, variation is defined with

reference to a single reference sequence. This sequence is either

provided from a source file (for instance a GFF file) or

LayerCake will generate a single consensus sequence by voting.

That is if there are 10 populations in the dataset and 6 of them

have an adenine at a given position, then the population consen-

sus will also be adenine, regardless of the read depth of any indi-

vidual sequence. This scenario affords the quick apprehension of

particular regions of particular samples that have high

variations.

3. Per sample comparison: Individual samples, through the method

described in Equation (2), can be used as a pseudo-reference for

the rest of the dataset. This scenario readily shows variation be-

tween samples and also the identification of sub-groups of sam-

ples. See Figure 6 for an example.

Users may dynamically choose between different reference scen-

arios, even in the course of a single session. For instance, if one is

interested in general regions where variation occurs, they might

begin with individual references. Once those locations are identified,

they might choose a particular population as a reference, to see if

there are groups of populations that have different sorts of variation

in these hotspots.

2.3 Confidence Visualization
Uncertainty about variation at a particular location on the gen-

ome can occur for a number of reasons. There can be error in

assembling reads, aligning reads, identifying base pairs and

sampling error that could arise from insufficient read coverage at a

location.

Uncertainty data, no matter the source, must be visualized along

with the variation information, especially for tasks where the viewer

must decide which locations of the genome require more detailed

analysis—highly variant but uncertain information might warrant

less attention than a location with less variation but little

uncertainty.

In LayerCake, color is used in each layer to display information.

Color has been shown in Albers et al. (2014) to be a useful visual

variable for helping analysts to quickly find outliers and estimate

average value in regions. Since we have two types of information to

display (frequency of variation and average uncertainty), this means

that we must use a bivariate color map to represent the data. To

avoid many theoretical obstacles to creating these color scales (see

Trumbo 1981), we presume that highly uncertain values are unim-

portant, regardless of the variation at this location. Thus, rather

than our color map resembling a square (two equal orthogonal

axes), our color map resembles a wedge (with the uncertainty axis

converging to a point). This makes the choice of colors significantly

easier, while maintaining the desired visual behavior (important re-

gions are highly visible, unimportant regions recede into the back-

ground). While we interpolate in multiple color attributes (both hue

and saturation) to make discriminability easier, as confidence

decreases it is intentionally more difficult to distinguish colors; in

effect we have fewer distinct color values as we descend the wedge,

replicating the intended effect of making value less important as

confidence decreases. Figure 4 shows the color wedge in detail.

While a bivariate encoding (such as color and size or color and

orientation) would allow us to faithfully present value and

confidence simultaneously, we wished to make it easier for analysts

to filter out uncertain (and likely irrelevant) portions of the

dataset without having to integrate multiple channels of visual

information.

3 Discussion

The LayerCake system has been widely deployed across a number

of viral datasets. In this section, we highlight three case studies

that highlight the benefits of the LayerCake system: the presentation of

a genome-scale overview of data, the ability to interactively alter no-

tions of reference and variation and the alignment and aggregation of

many samples in a single, all-encompassing display.

In addition to finding regions of high variation (as described in

Correll et al. 2011), LayerCake affords longitudinal comparison of

variation (as in Fig. 5) and allows for the identification of subgroups

with similar variation signatures (as in Section 3.1).

3.1 Simian arterivirus
LayerCake also allows for the description of nucelotide variation

and deep population analysis of novel viruses for which little or no

prior data on sequence evolution exists. In Bailey et al. (2014a, b),

we used LayerCake to examine nucleotide variation in novel, highly

divergent simian arteriviruses that we discovered in wild red

Fig. 4. The LayerCake color wedge, showing the mapping from the two axes

of variation (1) and uncertainty (3) to color. Highly uncertain data are all

mapped to the same grey color, giving the visual impression of data receding

into a “fog” of unimportance. The two yellow dots (2) can be moved by the

viewer to redefine standards of interest and importance. On the right (4b) the

viewer has moved the topmost yellow dot counterclockwise, making all loca-

tions with more than 1% variation dark red, which is interactively reflected in

the layers
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colobus monkeys and yellow baboons living in Uganda and

Tanzania, respectively. With a population-wide consensus selected

(the Population Consensus option described in Section 2.2.4),

LayerCake revealed several genomic regions with high levels of non-

synonymous diversity. Follow-up analysis showed that the region

with the most intense signal was within the ORF encoding the major

envelope glycoprotein. When compared with functional data from

more extensively characterized arteriviruses, this region aligned with

the primary neutralizing antibody epitope of these viruses (i.e., the

region of the viral protein targeted by adaptive humoral immune

responses)—again providing mechanistic insight into the selective

pressures driving the accumulation of non-synonymous mutations.

Selecting individual references in LayerCake (the Per Sample

Comparison option described in Section 2.2.4) quickly revealed

varying degrees of viral sequence homology between animals, re-

flecting the pattern of transmission among individual monkeys (see

Fig. 6). In the red colobus, this exercise identified one animal that

was super-infected with two unique virus strains.

Fig. 6. An example of how changing the conception of the reference in LayerCake can identify intrasequence patterns of variability, here on a dataset of simian

arterivirus (SAV). Dataset from Bailey et al. (2014a). By defining variation from a particular population rather than a reference sequence, we can easily identify

subgroups. The first row is selected as the reference population. Here, the first three rows are very similar to each other but not to the other sample, indicating a

meaningful subgroup

Fig. 5. An example of the utility of LayerCake for viewing systematic patterns of variation, illustrated by examining the evolution of HIV-1 in an infected individual

over time. While the standard heatmap display (a) makes the overall trend visible (variability increases over the course of the infection), it is difficult to compare

specific locations over time. In LayerCake (b), each row represents the viral population at a different timepoint in the infection. Change over time at a particular lo-

cation can be estimated by visually scanning a particular column. Annotations (across the top of the LayerCake display) also adds context to the pattern of vari-

ation accumulated over time
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4 Conclusion

LayerCake is a full-featured visualization tool for exploring patterns

of variability in viral genomes. We have deployed LayerCake to ex-

perts in the field and incorporated their feedback into further refine-

ments. The tool, and more broadly the analytics and visual metaphor

of the per-sample layer, has been applied to a large number of

datasets, with positive scholastic results. The LayerCake tool is freely

available and extensible to datasets beyond those we present.
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