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Abstract

Motivation: Protein phosphorylation is a post-translational modification that underlines various as-

pects of cellular signaling. A key step to reconstructing signaling networks involves identification

of the set of all kinases and their substrates. Experimental characterization of kinase substrates is

both expensive and time-consuming. To expedite the discovery of novel substrates, computational

approaches based on kinase recognition sequence (motifs) from known substrates, protein struc-

ture, interaction and co-localization have been proposed. However, rarely do these methods take

into account the dynamic responses of signaling cascades measured from in vivo cellular systems.

Given that recent advances in mass spectrometry-based technologies make it possible to quantify

phosphorylation on a proteome-wide scale, computational approaches that can integrate static fea-

tures with dynamic phosphoproteome data would greatly facilitate the prediction of biologically

relevant kinase-specific substrates.

Results: Here, we propose a positive-unlabeled ensemble learning approach that integrates

dynamic phosphoproteomics data with static kinase recognition motifs to predict novel substrates

for kinases of interest. We extended a positive-unlabeled learning technique for an ensemble

model, which significantly improves prediction sensitivity on novel substrates of kinases while re-

taining high specificity. We evaluated the performance of the proposed model using simulation

studies and subsequently applied it to predict novel substrates of key kinases relevant to insulin

signaling. Our analyses show that static sequence motifs and dynamic phosphoproteomics data

are complementary and that the proposed integrated model performs better than methods relying

only on static information for accurate prediction of kinase-specific substrates.

Availability and implementation: Executable GUI tool, source code and documentation are freely

available at https://github.com/PengyiYang/KSP-PUEL.
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1 Introduction

Phosphorylation is an essential protein post-translational modifica-

tion characterized by the precise and reversible addition of a phos-

phate group, by proteins called ‘kinases’, to their targets, called

‘substrates’ (Hunter, 1995). The signaling networks established by

protein phosphorylation govern numerous cellular functions such as

metabolic homeostasis, cell proliferation, survival and apoptosis

(Lemmon and Schlessinger, 2010), and the identification of sub-

strates often reveals new mechanisms by which the cell regulates

these processes. The identification of new kinase substrates (i.e. the

phosphorylation site on a given protein) is therefore of great biolo-

gical interest.

Experimental validation of kinase substrates is an expensive and

time-consuming process and must therefore be prioritized and per-

formed for only a limited number of candidates. To select appropri-

ate candidates for experimental characterization, in silico

approaches are widely used to predict candidate substrates of a kin-

ase or family of kinases of interest. To this end, a number of compu-

tational approaches have been developed for de novo substrate

prediction (Miller and Blom, 2009). These range from simple motif-

based approaches to sophisticated machine learning algorithms. A

list of available methods is reviewed and categorized by Trost and

Kusalik (2011) according to the techniques employed for substrate

prediction. For example, methods based on sequence motif either

contain precompiled regular expression patterns (Amanchy et al.,

2007) or rely on calculating position-specific scoring matrices

(PSSMs) (Obenauer et al., 2003; Yaffe et al., 2001) from known kin-

ase substrates extracted from the literature or in vitro experiments.

While motif-based methods are able to sensitively identify substrates

that have a similar sequence composition to those used to compile

the motif (Miller et al., 2008), they generally extend poorly to more

diverse substrates. As increasingly more phosphorylation sites are

deposited in public databases such as Phospho.ELM (Dinkel et al.,

2011) and PhosphoSitePlus (Hornbeck et al., 2011), machine learn-

ing approaches that generalize well to diverse substrates are becom-

ing increasingly necessary. In this category, methods differ in the

learning algorithms that have been employed for modeling (Dang

et al., 2008; Kim et al., 2004; Trost and Kusalik, 2013; Wong et al.,

2007; Xue et al., 2008), the amount of sequence information utilized

(Gao et al., 2010; Xue et al., 2010) and the integration of additional

information such as protein structure (Hjerrild et al., 2004), colocal-

ization (Linding et al., 2007) or interaction (Horn et al., 2014; Song

et al., 2012). While these ‘static’ features (e.g. protein sequence,

structure, co-localization and interaction) are informative, methods

based on ‘static’ features do not account for the dynamic spatio-

temporal kinetics that may help accurately define the architecture of

cell signaling networks.

Recent advances in liquid chromatography and mass spectrometry

has enabled high-throughput protein phosphorylation profiling in

time course studies (Choudhary and Mann, 2010; Sabido et al.,

2012). Coupled with labeling techniques such as isobaric tagging (e.g.

TMT) (Erickson et al., 2014) or stable isotope labeling with amino

acids in cell culture (e.g. SILAC) (Olsen et al., 2006) and increasingly

label-free-based approaches (Humphrey et al., 2015; Oliveira et al.,

2015), tens of thousands of phosphorylation sites can be identified

and quantified with high precision on a proteome-wide scale (Olsen

and Mann, 2013). Computational approaches that integrate static

features with dynamic phosphoproteome will enable kinase-specific

substrate prediction in the context of dynamic cellular systems.

Here, we propose a positive-unlabeled ensemble learning algo-

rithm to integrate kinase recognition motifs with dynamic

phosphoproteomics data to predict novel substrates of relevant kin-

ases of interest. Extending on our previous model (Humphrey et al.,

2013), the proposed algorithm addresses several key computational

challenges faced in model training when using phosphoproteomics

data by using a positive-unlabeled learning technique for an ensem-

ble classification algorithm. First, the class distribution of the phos-

phoproteomics data is highly imbalanced due to the fact that

experimentally verified substrates are sparse, resulting in vastly

more negative training instances compared with positive instances.

We address this by using repeated sampling from the phosphopro-

teomics data and creating an ensemble of classifiers each trained on

a balanced training subset. Second, the model training requires a set

of negative instances to be provided. However, defining a true nega-

tive set is difficult because unannotated phosphorylation sites com-

prise a mix of negative and unidentified positive substrates. To

overcome this problem, a positive-unlabeled learning procedure is

implemented in the ensemble model for improving prediction sensi-

tivity while retaining specificity by correcting for the prediction bias.

We studied the behavior of the proposed positive-unlabeled ensem-

ble approach using simulation on synthetic datasets and subse-

quently applied it to predict substrates of kinases Akt and mTOR

(mammalian target of rapamycin) using a time-course phosphoryl-

ation dataset generated from insulin-stimulated profiling of cultured

adipocytes. Our results indicate that the proposed approach is

highly accurate, based on an array of evaluation metrics, and is able

to take advantage of both static information from amino acid se-

quences as well as dynamic information from phosphoproteomic

data to predict kinase substrates.

2 Methods

Because the number of experimentally verified kinase substrates

(positive set) are often very small compared with the complete set of

phosphorylation sites profiled (unannotated set), our learning model

(Fig. 1) relies on repeated sampling from the unannotated set and

combines each sampling set with the positive set to create balanced

subsets (Section 2.2). The base classifiers of support vector machines

(SVMs) (Section 2.1) are subsequently trained using these balanced

subsets with both static features, extracted from peptide sequences

and dynamic features, extracted from phosphoproteomics data

(Section 2.4). In addition, since the unannotated set comprises both

true negatives and unidentified positives, a positive-unlabeled learn-

ing procedure that uses a correction factor estimated from the repar-

titioned data (Section 2.3) is applied for each base classifier to
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Fig. 1. Schematic flowchart illustrating the positive-unlabeled ensemble

learning model for novel substrate prediction from phosphoproteomics data
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correct for prediction bias. These corrected base classifiers are then

integrated to form the ensemble of SVMs, and the final predictions

are made based on the combined probability from all base

classifiers.

2.1 Base classifier
Let xi ði ¼ 1; :::;nÞ denote phosphorylation sites and let yi 2 f�1;1g
be a binary label indicating whether xi is a substrate (yi¼1) of a kin-

ase or not (yi ¼ �1). We use SVM, implemented by Chang and Lin

(2011), to form the bases of an ensemble classifier. In dual formula-

tion, an SVM is expressed as

maxaLðaÞ ¼
Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

yiyjaiajkðxi; xjÞ

subject to :
Xn

i¼1

yiai ¼ 0; 0� ai�C;

where ai are Lagrange multipliers and xi for which ai > 0 are sup-

port vectors. The parameter C controls the fraction of support vec-

tors, and the kernel of the classifier is defined by kðxi;xjÞ.
Specifically, we use nonlinear classifiers with radial basis function

kernels, which is expressed as

kRBF
r ðxi; xjÞ ¼ expð�1

r
jjxi � xj

0jj2Þ;

where r is a parameter that controls the width of the radial basis

function. When data are linearly inseparable, using SVMs

with nonlinear kernel functions can provide better classifica-

tion accuracy while also retaining the robustness of linear classi-

fiers on background noise. The default parameters were used in

this study where C¼1 and r equals to the feature dimension of the

data.

2.2 Ensemble model

Kinase substrate prediction can be formulated as constructing a

model f ðxÞ, such that f ðxÞ ¼ pðy ¼ 1jxÞ approximates the truth.

For most kinases, often there are only a handful of experimentally

validated substrates. We denote them as x 2 P, where P is the set

of validated substrates and hence positive. After excluding these

positive substrates, the number of remaining phosphorylation

sites (denoted by set U) profiled from a large-scale phosphoproteo-

mics studies can easily exceed several thousand. This makes the

prediction of kinase substrates from phosphoproteomics data an

inherent class imbalanced learning problem, because the number

of positive instances are significantly outnumbered by the rest of

the profiled but as yet unannotated phosphorylation sites (P�U).

Many popular classification algorithms, including SVMs that were

used as the base classifiers of the ensemble, are sensitive to the

imbalanced class distribution and would perform poorly without

correction of the class distribution of the training instances (Tang

et al., 2009).

An effective approach to address this class imbalance is to create

an ensemble classifier by sampling from the original dataset and cre-

ating base classifiers, each trained on a balanced subset (Yang et al.,

2014). This strategy can be modified for solving the imbalanced

class problem in our phosphoproteomics application by randomly

sampling from U and combining them with members of P to form

balanced subsets ðU1 [ P;U2 [ P; :::;Ur [ PÞ, where r is the number

of sampling operations performed. These subsets can then be used to

train the base classifiers from which the ensemble is obtained for

prediction:

pEðy ¼ 1jxÞ ¼ 1

r

Xr

i¼1

pðy ¼ 1jx; Ui [ PÞ

The above prediction is an estimate of the combined probability pE of

a given phosphorylation site x to be a positive substrate of a kinase.

2.3 Positive-unlabeled learning in ensemble
One complication in applying the ensemble model described above

is that U is an unannotated set that comprises a mixture of unidenti-

fied substrates of a given kinase as well as negatives. This is known

as the positive-unlabeled learning problem where only a small set of

positive instances are known, while the rest of the data contains

both positive and negative instances but are unlabeled (Letouzey

et al., 2000). The ensemble model described above makes a naive as-

sumption by treating all members of U (that is, x 62 P) as negative in-

stances for sampling and training the base classifiers. The model

would therefore predict conservatively and may penalize heavily on

novel substrates because they may be selected as negative instances

in model training. This is undesirable since our goal is precisely to

discover from U the set of novel substrates.

It has been shown that by multiplying a correction factor, esti-

mated from a data repartitioned approach, one can correct for the

prediction bias on the unannotated set (Elkan and Noto, 2008). Here,

we extend this positive-unlabeled learning technique for our ensemble

classifier by estimating the correction factors for individual base clas-

sifiers and subsequently correcting their prediction bias in ensemble

classification. Let s¼1 if the instance x is labeled, and s¼ –1 other-

wise. Since only experimentally validated substrates are labeled, y¼1

is certain when s¼1, whereas y could be 1 or �1 when s¼ –1.

Therefore, by treating all labeled instances as positive and all un-

labeled ones as negative, we are in fact learning gðxÞ ¼ pðs ¼ 1jxÞ
and using this as approximation to pðy ¼ 1jxÞ. Elkan and Noto

(2008) have mathematically proved that pðy ¼ 1jxÞ ¼ pðs ¼ 1jxÞ=c,

where c ¼ pðs ¼ 1jy ¼ 1Þ and by reserving a subset of validation data

from the training data the value of c can be estimated as

c ¼ 1

m

X
x2P�

gðxÞ;

where P� is a set of labeled instances in the validation dataset and m

is the cardinality of P�.

For our ensemble classifier, we have, for each base classifier,

giðxÞ ¼ pðs ¼ 1jx; Ui [ PÞ; ði ¼ 1; :::; rÞ. Therefore, a correction fac-

tor can be estimated by reserving a validation dataset for each base

classifier giðxÞ and ensemble model with prediction correction can

then be expressed as

pE
c ðy ¼ 1jxÞ ¼ 1

r

Xr

i¼1

pðs ¼ 1jx; Ui [ PÞ=ci

ci ¼
1

mi

X
x2P�

i

giðxÞ:

The corrected and combined probability pE
c is the estimation of x

being a positive substrate of a given kinase.

2.4 Static and dynamic feature extraction from

phosphoproteomics data
We demonstrate the proposed approach on a previously published

phosphoproteomics dataset where insulin stimulation of 3T3-L1

adipocytes was performed to quantify the insulin signaling
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phosphoproteome in adipocyte cells (Humphrey et al., 2013). The

phosphopeptides were quantified in biological triplicates and

included a serum-starved (‘basal’) control and a time-course of insu-

lin treatment (at 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 20 min and

60 min), as well as cells treated with or without PI3K/mTOR or Akt

inhibitors (LY294002 and MK2206, respectively) applied for

30 min prior to a 20-min insulin treatment. Data were filtered to se-

lect phosphorylation sites that are quantified in at least one of the

three biological replicates in each time point and the basal condi-

tion. This resulted in 12 289 phosphorylation sites.

For each kinase of interest, a positive training set of annotated

substrates was curated from a combination of PhosphoSitePlus

(Hornbeck et al., 2011) database and manual extraction from litera-

ture. Next, the PSSM was calculated for each kinase of interest using

the six amino acids flanking the actual phosphorylation site (total

length: 13) of its annotated substrates as

Mk;j ¼
1

l

Xl

i¼1

Iðai;j ¼ kÞ;

where l is the number of annotated substrates, j is the sequence win-

dow size and k is the set of 20 amino acids. All identified phosphor-

ylation sites are then scored against Mk;j to determine their

similarity to the annotated substrates.

For dynamic features from phosphoproteome profiling, we cal-

culate, for each phosphorylation site, the log 2-fold change at each

time point compared with basal control and the log 2-fold change

before and after inhibitor treatments. In addition, we extracted

several secondary features for each phosphorylation site from its

temporal pattern. These include the mathematical mean of the

log 2-fold change at each time point compared with basal control,

the area under the temporal profile calculated as follows:

Area ¼ 1

2

Xt

i¼1

ðyi�1 þ yiÞ;

and the goodness of a polynomial (degree of two) curve fit measured

by F-test as follows:

F ¼

Xt

i¼1

ðŷi � yÞ2

Xt

i¼1

ei

;

where t is the number of time points, yi is the standardized log 2-

fold change at time point i, ŷi is the fitted value of yi and ei is the

unfitted residuals from the model at time point i.

2.5 Performance evaluation and comparison
To compare the performance of our models and other commonly

used kinase-specific substrate prediction tools, we used an array of

evaluation metrics including sensitivity (Se), specificity (Sp), F1

score, geometric mean (GM) and Matthews correlation coefficient

(MCC) defined as follows:

Se ¼ TP

TPþ FN
; Sp ¼ TN

FPþ TN
;

F1 ¼
2TP

2TPþ FPþ FN
; GM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþ FN
� TP

TPþ FP

r
;

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p ;

where TP, TN, FP and FN denote the number of true positives, true

negatives, false positives and false negatives, respectively.

Beside using metrics defined above for evaluating a single classi-

fication threshold, we also generated Precision/Recall curves to

evaluate the performance of the model trained using both motif and

phosphoproteomics data and those trained using only motif or phos-

phoproteomics data across a range of threshold by varying the clas-

sification cutoff c as follows:

PrecisionðcÞ ¼ TPðcÞ
TPðcÞ þ FPðcÞ ; RecallðcÞ ¼ TPðcÞ

TPðcÞ þ FNðcÞ :

Methods with predefined prediction thresholds that cannot be

adjusted to an arbitrary cutoff are represented as single points in the

Precision/Recall comparison plot.

In the simulation study, we repeatedly generated 10 simulation

datasets and for each dataset we trained and compared the predic-

tion accuracy of a single SVM model, an uncorrected ensemble mod-

el and a corrected ensemble model using the evaluation metrics

described above. To evaluate the individual contributions of the

‘static’ motif information and the dynamic phosphoproteome infor-

mation, we created partial models using either motif or phosphopro-

teomics data and compared these with the model trained with both

using the dynamic phosphoproteomics data. In addition, we also

compared the performance of our approach with other commonly

used kinase-specific substrate prediction tools including GPS 3.0

(Xue et al., 2008), iGPS 1.0 (Song et al., 2012), KinasePhos 1.0

(Huang et al., 2005), KinasePhos 2.0 (Wong et al., 2007), NetPhosK

1.0 (Hjerrild et al., 2004) and NetworKIN 3.0 (Horn et al., 2014).

We used the default/suggested parameters for each prediction tool.

Specifically, the prediction specificity of HMM is set to 0.9 for

KinasePhos 1.0, the prediction specificity of SVM is set to 0.8 for

KinasePhos 2.0, the minimum score of 2.0 and the max difference of

4.0 is set for NetworKIN 3.0, the prediction threshold is set to 0.5

for NetPhosK 1.0, high for GPS 3.0 and high for iGPS 1.0. For cal-

culating sensitivity, the annotated substrates were treated as positive

instances, and leave-one-out cross-validation was used for our

model evaluation. For calculating specificity, since we do not know

the set of true negative phosphorylation sites, we assumed that only

a very small fraction of phosphorylation sites in the unlabeled set of

U are positive instances with most of them being negative instances.

On the basis of this assumption, we randomly sampled five sets of

phosphorylation sites from all profiled phosphorylation sites,

excluding annotated substrates of Akt and mTOR and evaluated

each method on each of the five negative sets. The performance of

each method is reported as the mean plus and minus the standard

deviation.

3 Results

3.1 Evaluation of positive-unlabeled ensemble

learning on synthetic data
We generated synthetic datasets to analyze the behavior of different

classification models in classifying data with highly imbalanced class

distribution and with positive and unlabeled instances. Figure 2a

shows a typical example where a synthetic dataset is simulated with

10 positive instances (red points) with two features both generated

from a Gaussian distribution Nð6:5; 1Þ and 10 500 unlabeled in-

stances, of which 500 are unannotated positive instances (dark blue

points) and the remaining 10 000 are negative instances (cyan

points) generated from a Gaussian distribution Nð4:5; 1Þ. In this ex-

ample, a single SVM would predict every instance, including the 10

positives, as a negative (purple region in Fig. 2b). This is because the

negative class is significantly over-represented in the training data.
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In comparison, an ensemble model without positive-unlabeled learn-

ing correction is able to correctly classify 10 positive instances as

well as a large proportion of unlabeled positive instances (orange in

Fig. 2c). By applying positive-unlabeled learning correction for the

base classifiers, an ensemble model is able to correctly classify even

more unlabeled positive instances (orange in Fig. 2d)

To verify if corrected ensemble models (by positive-unlabeled

learning) perform consistently better than the single SVMs or the

uncorrected ensemble models, we repeated the above simulation

10 times, creating 10 synthetic datasets and evaluated each model

based on multiple performance metrics. As listed in Table 1, single

SVMs always predict all instances as negatives. When it comes to en-

semble models with and without positive-unlabeled learning correc-

tion, corrected ensemble models significantly improve prediction

sensitivities compared with uncorrected ensemble models while

retaining comparable specificities. The overall performance of cor-

rected ensemble models is also better than uncorrected ensemble

models according to F1 score, GM or MCC.

3.2 Application of positive-unlabeled ensemble learning

on insulin-activated phosphoproteome
We demonstrate the application of the proposed method using the

mass spectrometry-based phosphoproteomics data generated from

insulin-activated time-series studies of 3T3-L1 adipocyte cells

(Humphrey et al., 2013).

3.2.1 Kinase selection and feature extraction

Before applying the proposed approach for kinase-specific substrate

prediction, we need to determine kinases that are of interest and

relevant to insulin-activated phosphoproteomics data. Typically,

kinases that are activated or inhibited in the context of the experi-

ment performed are of particular interest. Since many substrates of a

given kinase have similar temporal kinetics, clustering phosphoryl-

ation sites into distinct clusters and testing for enrichment of known

substrates of each kinase (obtained from an annotation database

such as PhosphoSitePlus) (Hornbeck et al., 2011) can facilitate the

identification of kinases that are perturbed during the time course

and/or by the treatments in the phosphoproteomics experiments. To

this end, we filtered the set of all phosphorylation sites by selecting

only those that have an associated gene product and are differen-

tially phosphorylated in at least one of the eight time points profiled,

as determined using a moderated t-test (Gentleman et al., 2005)

(FDR<0.05). This resulted in 3178 regulated phosphorylation sites.

We then applied knowledge-based cluster evaluation (CLUE) (Yang

et al., 2015) to determine the optimal clustering of the phosphoryl-

ation sites and identified kinases whose substrates are enriched

within each cluster. Using CLUE, we identified four clusters en-

riched with known substrates of a set of kinases (Fig. 3a). Notably,

Akt and mTOR substrates are the most highly enriched (Fig. 3b)

based on Fisher’s exact test. We therefore selected Akt and mTOR

as kinases of interest for substrate prediction.

After selecting Akt and mTOR as kinases of interest, we used a

combination of manual curation and database extraction to compile

lists of annotated substrates for the Akt and mTOR kinases. We

found a total of 22 and 26 substrates for Akt and mTOR, respect-

ively, and used these as positive instances for model training in sub-

sequent analyses (Supplementary Table S1). We next constructed

(a) (b)

(c) (d)

Fig. 2. Synthetic data for analyzing the behavior of classification models. (a) A

synthetic dataset containing 10 positive examples (red filled circles) and

10 500 unlabeled examples of which 500 are unlabeled positive examples

(dark blue filled squares) and the remaining 10 000 are negative examples

(cyan +s). (b) Negative prediction region (purple rectangle) from a single clas-

sifier of SVM. (c) Negative prediction region (purple rectangle) and positive

prediction region (orange oval) from an ensemble of SVMs without positive-

unlabeled learning (ensemble size: 50). (d) Negative prediction region (pur-

ple) and positive prediction region (orange oval) from an ensemble of SVMs

with positive-unlabeled learning (ensemble size: 50)

Table 1. Comparison of single SVM, uncorrected ensemble and

corrected ensemble by positive-unlabeled learning using synthetic

datasets

Single SVM Uncorrected ensemble Corrected ensemble

Se (%) 0.0 6 0.0 83.6 6 2.9 90.2 6 2.5

Sp (%) 100.0 6 0.0 92.4 6 1.1 90.9 6 2.5

F1 (%) 0.0 6 0.0 87.9 6 1.3 90.1 6 0.6

GM (%) NaN 88.0 6 1.2 90.2 6 0.6

MCC NaN 0.774 6 1.9 0.803 6 1.1

(a) (b)

Fig. 3. Kinase substrate enrichment analysis. (a) Temporal profile clusters

with kinases whose substrates are enriched. Color gradient correspond to the

cluster membership score generated by fuzzy c-means clustering. (b)

Enrichment based on Fisher’s exact test (�log10ðpÞ) for each kinase. Each

shade of color corresponds to a cluster index
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PSSMs using sequence recognition sites of the known Akt and

mTOR substrates (Fig. 4a) and generated consensus motifs (Thomsen

and Nielsen, 2012) for learning. Next, we extracted temporal infor-

mation for the known Akt and mTOR substrates from the phospho-

protoemics data (Fig. 4b–d). Boxplots of the log 2-fold change of

insulin stimulation versus basal control across the eight time points in-

dicate that Akt substrates responded to insulin activation significantly

faster than those of mTOR (Fig. 4b). This is confirmed by calculation

of the area under the curve (see Section 2.4), where Akt substrates gen-

erally have very large values (Fig. 4c). This temporal latency is in

agreement with the known cellular topology of the insulin signaling

network in which Akt is proximal to the insulin receptor and is rapidly

activated by multisite phosphorylation (Humphrey and James, 2012),

while mTORC1 is downstream of Akt and relies on the multiple dis-

crete steps including the phosphorylation of TSC2 by Akt, ultimately

leading to the activation of the kinase (Laplante and Sabatini, 2012).

Interestingly, the area under the curve values for mTOR substrates ap-

pears to be bimodal suggesting a subset of mTOR substrates may re-

spond to insulin activation more slowly than the others (Fig. 4c). This

is consistent with the enrichment analysis (Fig. 3) where mTOR is

found to be enriched in both a relatively faster cluster (cluster 3) and a

slower cluster (cluster 2). Figure 4d shows the log 2-fold change of

phosphorylation level in insulin stimulation with and without prior

treatment of inhibitors. The phosphorylation levels of both Akt and

mTOR substrates appear to be inhibited by both LY and MK inhibi-

tors although to different degrees.

3.2.2 Determining effective ensemble size

A key parameter in designing an effective ensemble of classifiers is

the number of base classifiers used for creating the final ensemble

model (‘ensemble size’). We tested a range of ensemble sizes for pre-

dicting Akt and mTOR substrates, respectively, and calculated the

correlation of prediction scores for all phosphorylation sites. This

procedure was repeated 10 times to obtain the variance introduced

by using a positive-unlabeled ensemble model with a given ensemble

size. As shown in Figure 5, the correlation from each individual pre-

diction increases with the ensemble size and plateaus at size of

around 30. Since ensemble models with smaller size yield more vari-

able predictions while larger size yield more consistent predictions

(Fig. 5), we made a conservative decision to use an ensemble size of

50 for subsequent ensemble models.

3.2.3 Predicting Akt- and mTOR-specific substrates

After extracting learning features and determining the effective ensem-

ble size, we compared the proposed Positive-Unlabeled Ensemble

Learning models that use both motif and phosphoproteome data for

prediction (‘PUEL’) with those that use only the motif (‘-Motif’) or the

(a)

(b)

(c)

(d)

Fig. 4. Feature extraction. (a) Recognition motifs of Akt and mTOR kinases

generated from PSSMs of known Akt and mTOR substrates. (b) Log 2-fold

change of insulin stimulated phosphorylation level from each time point com-

pared with basal for defined Akt and mTOR substrates. (c) Distribution of area

under the curve values calculated from the temporal profile of all phosphoryl-

ation sites (red), defined Akt substrates (blue) and defined mTOR substrates

(green). (d) Log 2-fold change of insulin stimulated phosphorylation level at

20 min with and without prior treatment of PI3K/mTOR inhibitor (LY) or Akt in-

hibitor (MK) compared with basal
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Fig. 5. Ensemble size estimation. Positive-unlabeled ensemble models with a

range of ensemble sizes are tested for predicting Akt and mTOR substrates,

respectively. For each ensemble size, 10 ensemble models are created using

random sampling and the mean and the standard deviation of the correlation

from these 10 predictions is plotted

Table 2. Evaluation of kinase-specific substrate prediction for Akt and mTOR

Akt mTOR

Se (%) Sp (%) F1 (%) G mean (%) MCC Se (%) Sp (%) F1 (%) G-Mean (%) MCC

PUEL 100.0 99.1 6 2.0 99.6 6 1.0 99.6 6 0.9 0.991 6 0.019 88.5 86.4 6 7.2 86.4 6 5.4 88.6 6 2.7 0.749 6 0.068

Motif 90.9 98.2 6 2.5 94.4 6 1.2 94.4 6 1.3 0.894 6 0.026 80.8 90.9 6 3.2 85.7 6 1.2 85.9 6 1.3 0.715 6 0.033

Phospho 90.9 93.6 6 5.2 92.2 6 2.4 92.3 6 2.4 0.847 6 0.053 80.8 78.2 6 7.5 81.1 6 2.6 81.2 6 2.6 0.590 6 0.072

EL 95.4 99.1 6 2.0 97.2 6 1.0 97.3 6 1.0 0.946 6 0.021 84.6 87.3 6 7.5 86.6 6 2.8 86.7 6 2.8 0.718 6 0.073

GPS 3.0 100.0 77.3 6 8.5 89.9 6 3.4 90.4 6 3.0 0.795 6 0.070 61.5 70.9 6 9.4 66.2 6 2.9 66.5 6 3.3 0.326 6 0.098

iGPS 1.0 45.5 91.8 6 6.7 59.3 6 2.6 62.4 6 3.9 0.425 6 0.092 0.0 100.0 6 0.0 0.0 6 0.0 NaN NaN

KinasePhos 1.0 86.4 77.3 6 5.6 82.6 6 2.2 82.8 6 2.1 0.640 6 0.052 — — — — —

KinasePhos 2.0 72.7 94.5 6 5.9 81.7 6 2.7 82.4 6 3.1 0.691 6 0.069 — — — — —

NetPhosK 1.0 90.9 97.3 6 2.5 93.9 6 1.2 94.0 6 1.3 0.884 6 0.027 — — — — —

NetworKIN 3.0 86.4 99.1 6 2.0 92.2 6 1.0 92.5 6 1.1 0.862 6 0.022 — — — — —

‘PUEL’: prediction using both motif and phosphoproteome for positive-unlabeled ensemble learning; ‘-Motif’: prediction using motif only; ‘-Phospho’: predic-

tion using phosphoproteome only; ‘EL’: prediction using ensemble learning [as described in Humphrey et al. (2013)] but without positive-unlabeled learning tech-

nique. The calculation of each evaluation metrics are described in Section 2.5.
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phosphoproteome data (‘-Phospho’). As can be seen from Table 2, the

performance of the models using both types of information performed

better in both Akt and mTOR substrate prediction. This is especially

evident in the case of mTOR, where the sensitivity of the PUEL is

88.5%, while for the models trained on only motif or phosphopro-

teome data, this is 80.8%. It is evident that PUEL performs better

across the range of classification thresholds for mTOR and Akt, based

on Precision/Recall curves (Fig. 6a). These results demonstrate the

complementary nature of static sequence motifs and dynamic phos-

phoproteome data in kinase substrate prediction. It is also evident that

PUEL outperforms the ensemble model without positive-unlabeled

learning (‘EL’) (Table 2), which demonstrates a contribution by posi-

tive-unlabeled ensemble learning toward kinase substrate prediction.

To assess the performance of our approach in relation to that of

other approaches, we evaluated substrate prediction accuracy for

Akt and mTOR kinases using six popular kinase substrate predic-

tion tools (Table 2). For Akt substrate prediction, our ensemble ap-

proach achieved the highest sensitivity and specificity. NetworKIN

and NetPhosK 1.0 performed comparably with high specificity but

with relatively low sensitivity. Compared with KinasePhos 2.0,

KinasePhos 1.0 offers good sensitivity but lower specificity. GPS 3.0

has a perfect prediction sensitivity for Akt substrate prediction.

However, this seems to be achieved by sacrificing specificity. iGPS

1.0 improves the specificity compared with GPS 3.0 but at the cost

of sensitivity. For mTOR substrate prediction, GPS 3.0 did not per-

form as well as our approach. Its variant iGPS 1.0 did not predict

any tested phosphorylation sites to be a positive substrate of mTOR.

The pre-trained models used by KinasePhos 1.0/2.0, NetPhosK 1.0

and NetworKIN 3.0 preclude them from making substrates predic-

tions for mTOR. Overall, the positive-unlabeled ensemble model

performed better than other methods in predicting both Akt and

mTOR substrates according to the evaluation metrics (Table 2) as

well as the Precision/Recall curves (Fig. 6a).

Figure 6b shows the prediction scores (z-axis) of Akt and mTOR

substrates, respectively, using the positive-unlabeled ensemble model

with both motif features and phosphoproteome features. The contri-

bution of motif feature and the phosphoproteome features are plot-

ted on x-axis and y-axis. A complementarity pattern of motif score

and phosphoproteome score can be seen in both Akt and mTOR

(a)

(b)

Fig. 6. (a) Precision/Recall curves for performance assessment of Akt and

mTOR substrate prediction. Methods with predefined prediction thresholds

are represented as single points. (b) Prediction of Akt and mTOR substrates

using positive-unlabeled ensemble approach. Prediction scores (probabil-

ities) from the model are plotted on y-axis. Prediction scores using sequence

motif only or phosphoproteomic data only are plotted on x-axis and z-axis, re-

spectively. Each point corresponds to a phosphorylation site profiled by the

phosphoproteomics experiments and is rainbow colored by the value of pre-

diction score. The larger points highlighted in dark blue (top-right) are the

annotated substrates of Akt and mTOR, respectively

Table 3. List of top-20 predicted Akt and mTOR substrates

Akt predictions mTOR predictions

Rank Gene symbol Site Known Full model Motif Phospho Gene Symbol Site Known Full model Motif Phospho

1 Tsc2 981 � 0.999 0.999 0.999 Patl1 184 � 0.999 0.998 0.996

2 Foxo1 316 � 0.996 0.988 0.989 Grb10 503 � 0.993 0.998 0.987

3 Irs2 303 0.995 0.983 0.974 Ulk2 772 0.993 0.873 0.984

4 Cep131 114 0.994 0.910 0.999 C2cd5 295 0.987 0.873 0.975

5 Gsk3a 21 � 0.994 0.995 0.990 Ulk2 781 0.985 0.827 0.973

6 Ndr3 331 0.993 0.997 0.986 Wdr91 257 0.984 0.608 0.993

7 Irs1 265 � 0.992 0.956 0.988 Lip1 444 0.983 0.710 0.968

8 Pfkfb2 486 � 0.991 0.997 0.990 Maf1 68 � 0.980 0.992 0.964

9 Flnc 2234 0.990 0.886 0.997 Oxr1 62 0.973 0.994 0.961

10 Fkhr2 252 � 0.988 0.945 0.989 Znf503 107 0.971 0.547 0.964

11 Tsc2 939 � 0.988 0.998 0.980 Tcfeb 167 0.964 0.589 0.970

12 Gsk3b 9 � 0.987 0.994 0.981 Ulk1 450 0.964 0.603 0.990

13 Rtkn 520 0.987 0.977 0.978 Dock1 1772 0.963 0.643 0.967

14 Tsc2 1466 � 0.985 0.983 0.989 Mapk6 704 0.960 0.647 0.971

15 Uhrf1bp1 430 0.982 0.637 0.987 Maf1 60 � 0.960 0.972 0.938

16 As160 324 0.982 0.983 0.987 Rhbdf2 295 0.960 0.827 0.960

17 Cables1 272 � 0.981 0.988 0.981 Pik3r4 905 0.957 0.772 0.957

18 Kank1 325 0.980 0.886 0.983 Mtus1 505 0.957 0.520 0.995

19 Fam13a 322 0.980 0.945 0.972 Tbc1d10b 693 � 0.957 0.964 0.931

20 Mllt4 1802 0.978 0.464 0.982 Lpin1 323 0.955 0.620 0.988

Full model: prediction using both motif and phosphoproteome; Motif: prediction using motif only; Phospho: prediction using phosphoproteome only.
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predictions. These results argue for the utilization and integration of

dynamic features extracted from phosphoproteomics data with trad-

itional motif features. Table 3 lists the top 20 substrates predicted

for Akt and mTOR, with Supplementary Table S2 containing the

full list of predictions.

4 Conclusion

In this study, we developed a positive-unlabeled ensemble learning ap-

proach that enables the accurate prediction of kinase-specific substrates

by integrating motif information derived from amino acid sequences

surrounding the phosphorylation recognition sites with dynamic

phosphorylation patterns quantified in large-scale time-series phospho-

proteomics studies. We extended the positive-unlabeled learning tech-

niques for ensemble learning and illustrated how such an application

can improve the prediction sensitivity while retaining high specificity

for kinase-substrate prediction. Finally, we demonstrated the comple-

mentary nature of the static features extracted from sequence motif

and the dynamic features extracted from phosphoproteomics data.

Compared with traditional sequence motif-centric methods, our study

suggests an alternative approach for predicting kinase-specific sub-

strates that incorporates and exploits the wealth of physiological infor-

mation captured by large-scale phosphoproteomics studies.

With the recent development of high-throughput methods prom-

ising to streamline the generation of large-scale phosphoproteomics

data (Humphrey et al., 2015), we anticipate that the methods

described here will become an increasingly valuable approach for

enabling prediction of kinase substrates, while preserving the dy-

namic and cellular context of the biological system being studied.
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