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ABSTRACT
Whole-genome low-coverage sequencing has been combined with

linkage-disequilibrium (LD) based genotype refinement to accurately
and cost-effectively infer genotypes in large cohorts of individuals.
Most genotype refinement methods are based on hidden Markov
models, which are accurate but computationally expensive. We
introduce an algorithm that models LD using a simple multivariate
Gaussian distribution. The key feature of our algorithm is its speed,
it is hundreds of times faster than other methods on the same data
set and its scaling behaviour is linear in the number of samples. We
demonstrate the performance of the method on both low-coverage
and high-coverage samples.
Availability: The source code is available at https://github.
com/sequencing/marvin

Contact: rarthur@illumina.com

1 INTRODUCTION
The 1000 Genomes Project (1000GP) has pioneered the approach
of combining low-coverage whole-genome sequencing (LCWGS)
with LD-based genotype refinement to successfully build large pan-
els of accurately genotyped individuals (The 1000 Genomes Project
Consortium, 2010, 2012, 2015). This has provided a cost-effective
alternative to sequencing many individuals at high-coverage. How-
ever, genotype refinement has a large computational burden. For
example, Delaneau et al. (2014) quote around 32 compute years to
perform haplotype estimation on 1 092 LCWGS individuals using
the 1000GP haplotype estimation pipeline. Given increasing sam-
ple sizes, decreasing sequencing costs and the typically super-linear
scaling of refinement algorithms, we are fast approaching a point
where computation will account for a substantial proportion of the
cost of such analyses.

Low-coverage genotyping typically proceeds by calculating
genotype likelihoods (GLs) at a fixed set of variants (SNPs and
small indels) from read alignments, the variant list being created
at an earlier variant discovery step. These GLs reflect the likelihood
of the read data conditional on each of the three possible genotypes
(assuming a bi-allelic site). These uncertain GLs are then refined
into genotypes by exploiting linkage disequilibrium (LD), the cor-
relation between physically close variants across individuals. This
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final step is often referred to as genotype refinement and involves
one (or more) phasing and imputation algorithms. The most accu-
rate phasing and imputation techniques typically employ hidden
Markov models (HMMs) which are computationally demanding,
examples include Beagle (Browning and Browning, 2007), Thun-
der (Li et al., 2011) and SHAPEIT (Delaneau et al., 2012, 2013).
The final genotypes of 1000GP were created using a combination of
SHAPEIT and Beagle; starting haplotypes where generated with the
faster Beagle method and then were further refined using the slower,
and more accurate, SHAPEIT (Delaneau et al., 2014).

A closely related problem is the imputation of variants into study
samples assayed on DNA microarrays from reference panels of
sequenced individuals (Marchini et al., 2007). Several very fast
methods have recently emerged for this scenario (Howie et al., 2012;
Durbin, 2014; Fuchsberger et al., 2015). These rely on the availabi-
lity of phased haplotypes for both study and reference data and it is
not clear such algorithms will generalise to the LCWGS use case.

An alternative to HMM-based imputation is simply to predict
genotypes as linear combinations of other genotypes at physically
close flanking markers, modelling the correlation between variants
as a multivariate normal (MVN) distribution. This idea was first
introduced by Wen and Stephens (2010), where it was used in the
more traditional setting of imputing genotypes into DNA microar-
ray samples from a reference panel. Menelaou and Marchini (2013)
introduced a related approach, MVNcall, that performs imputation
on LCWGS data for which the individual has also been assayed on a
DNA microarray, exploiting the “backbone” of confident microarray
genotypes to improve genotypes at non-microarray sites.

We introduce a new technique based on MVN representations of
linkage disequilibrium that extends these ideas to the LCWGS-only
imputation scenario. The method exploits various efficient linear
algebra operations, making it hundreds of times faster than the
fastest HMM method. This speed comes with a decrease in accu-
racy compared to HMMs, but is still substantially more accurate
than genotype calls made using no LD information.

In the methods section we outline the model and its implemen-
tation. In our results section we contrast the speed and accuracy
of our technique with Beagle on 2 535 samples from 1000GP
Phase 3 (LCWGS) and 3 781 samples taken from the UK10K pro-
ject (UK10K Consortium et al., 2015; Huang et al., 2015). Finally,
we demonstrate the applicability of LD-based genotype refinement
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in the high-coverage WGS setting, something that has not been
investigated to date.

The method is implemented in a software package called MarViN
(MultiVariate Normal imputation) and is freely available under the
GPLv3 license.

2 MATERIALS AND METHODS
We assume that N diploid individuals have been sequenced and
used to detect M bi-allelic polymorphisms. We record the number
of copies of the non-reference (alternate) allele in a matrix

Gij ∈ {0, 1, 2}, (1)

where the indexes i and j label polymorphic sites and individu-
als respectively. We assume that we have been given genotype
likelihoods (GLs)

P (Rij |Gij = k), (2)

where k ∈ {0, 1, 2} and Rij denotes the reads aligning to site i in
individual j.

2.1 Single-site model
We now describe a simple Expectation-Maximization (EM) algori-
thm that we use to initialise our model. We apply Bayes’ theorem to
obtain posterior probabilities of genotypes:

P (Gij = k|Rij) ∝ P (Gij = k)P (Rij |Gij = k). (3)

where P (Gij = k) is the prior probability of seeing genotype k and
is initialised as 1

3
. Dosages (expected genotype values) at each site

can be calculated from

Gij =
∑
k

kP (Gij = k|Rij) (4)

This constitutes the E-step of our routine. The M-step involves re-
estimating our prior, P (Gij = k). First, we estimate site allele
frequencies as

µ̂i =
1

2N

∑
j

Gij . (5)

Assuming Hardy-Weinberg equilibrium, our updated prior is then

P (Gij = k) =


(1− µ̂i)

2 k = 0,
2µ̂i(1− µ̂i) k = 1,
µ̂2
i k = 2.

(6)

The E-step and M-step are iterated and generally converge rapidly.

2.2 Multi-site model
This EM algorithm gives an estimate of Gij that takes into account
the population allele frequency at site i but ignores any correlation
with flanking sites (i.e. linkage disequilibrium). We now describe
how to improve the estimate ofG using LD. A simple way to encode
LD is with the M ×M covariance matrix Σ, where

Σii′ =
1

2N

∑
j

(Gij − µi)(Gi′j − µi′). (7)

Following Wen and Stephens (2010), we make the assumption that
the probability density for the vector of dosages g(j) for individual j,

the jth column of the genotype matrix (g(j)i = Gij), is multivariate
normal (MVN):

P (g(j) = g) ∝ exp

(
1

2
(g − µ)T Σ−1(g − µ)

)
(8)

We can then ask “what is the distribution for the dosage at site i
of individual j conditional on the dosages at all other sites?” For
the MVN, a closed form expression for this conditional probability
exists:

P (Gij = k|Gi′j = g
(j)

i′ ) ∝ exp

(
(k − νij)2

2σi

)
(9)

where g(j)i′ refers to all genotypes excluding site i and

σi = Σii +

M∑
l6=i

M∑
m6=i

ΣilΩ̃
(i)
lmΣmi, (10)

νij = µi +
∑
l6=i

∑
m6=i

ΣilΩ̃
(i)
lm(Gmj − µm), (11)

and the matrix Ω̃i is the inverse of the matrix formed by deleting the
ith row and column from Σ.

In words, what we are doing is using the genotype matrix to esti-
mate allele frequencies and linkage disequilibrium. Fixing these, we
re-estimate the genotype matrix using the MVN assumption. The
approach is similar to our single site EM algorithm, but with the
simple population frequency prior in equation 6 replaced with the
more sophisticated population LD prior in equation 9.

Examining the terms closely, we see that σi is independent of the
individual, as is the quantity

tim =
∑
l6=i

ΣilΩ̃
(i)
lm. (12)

Thus we need only calculate it once. Rewriting equation 11, we see
that updating the mean of individual j is achieved by evaluating

νij = µi +
∑
m6=i

tim(Gmj − µm), (13)

at a cost of one dot product per site per individual.

2.3 Algorithm description
We initialise G using the single-site model described in Section 2.1.
We then repeat the following steps for a default of five iterations:

1. Calculate µ and Σ from G.

2. Calculate tim and σi for all sites i and m.

3. For all sites i and individuals j, calculate νij .

4. Update P (Gij = k|Rij) using equations 3 and 9.

5. Recalculate G.

We take the final estimate of G as our imputed genotypes. We
could iterate steps 2 and 3, reusing the covariance matrix obtained
at the beginning of the iteration but we found this to be unhelpful in
practice.
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2.4 Calculating Ω

Computationally, Step 1 is dominated by the calculation of Σ, which
takes O(NM2) operations. Step 2 requires a matrix vector product
for every individual and so is also O(NM2). However, a straight-
forward implementation of Step 3 would be O(M4), since a matrix
must be inverted at each site at a cost of O(M3) per inversion.

To see how Step 3 can be sped up, consider the case where we
want to update the marker 1 while fixing the M − 1 markers to the
right. We write the covariance matrix in the following form:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(14)

where Σ11 is 1× 1 and Σ22 is (M − 1)× (M − 1).
To calculate σ1, we require

σ1 = Σ11 + Σ12Σ−1
22 Σ21 (15)

(compare equation 10). The big overhead here is calculating Σ−1
22 .

We define

Ω = Σ−1 =

(
Ω11 Ω12

Ω21 Ω22

)
, (16)

where the blocks are sized to match the corresponding submatrices
of Σ. By making an LDU decomposition, we can show that

Σ−1
22 = Ω22 − Ω21Ω−1

11 Ω12, (17)

which is known as the Schur complement of Ω11 in Ω. This gives
us Ω̃(1) = Σ−1

22 which we can use in equation 12.
Consider the variant at site i. The matrix we need to invert in order

to evaluate the conditional expectation is the inverse of a submatrix
of Σ formed by deleting the ith row and column of Σ. Swapping
rows i and 1 and columns i and 1 of Σ puts the matrix we need the
inverse of in the position of Σ22 in equation 14. A row and column
can be swapped by pre and post multiplying with a permutation
matrix P .

Σ→ PΣPT . (18)

Because permutation matrices are orthogonal we have that

(PΣPT )−1 = P (Σ)−1 PT = PΩPT . (19)

The required inverse for variant i can be obtained by applying equ-
ation 17 again on the permuted matrix. In practice we just swap
rows and columns of the matrix the usual way, which is equivalent
to the multiplication. This trades M matrix inverses for a single
matrix inverse plus M matrix operations of complexity O(M2)
each (matrix-vector products), giving an O(M3) overall cost.

2.5 Using a reference panel
If we have a small number of individuals to impute and a refe-
rence panel formed from a large number of individuals with hard
genotypes assigned, we can impute individuals using the panel by
following the procedure below:

1. Calculate allele frequencies µ and the covariance matrix Σ
from the panel.

2. Use the panel allele frequencies to obtain an initial estimate of
G from the GLs.

3. Calculate tim and σi for all sites i.

4. For each individual with genotype g(j) to be imputed, the
following steps are performed K times:

a. For all sites i, calculate νij

b. Update P (g
(j)
i = k|Rij) using Bayes’ theorem, equations 3

and 9.

c. Recalculate g(j).

Calculating tim is O(M3) and Σ is O(NM2), both of which
must be done once per panel. To impute each new individual then
requires performing O(M2) operations for each of K iterations,
where K will be around 5 in practice.

2.6 Regularizing the covariance matrix
To guard against degeneracy due to perfect correlation and force the
variance to be non-zero, we performed Tikhonov regularization on
the covariance matrix, i.e. applied the transformation

Σ→ Σ + λI. (20)

We found 0.06 to be an effective value for the regularization para-
meter λ in all of our tests. Alternative regularization methods (such
as adding a matrix proportional to the diagonal of the covaria-
nce matrix, as done in the Levenberg-Marquardt algorithm) were
evaluated but were not found to confer a significant improvement.

After Wen and Stephens (2010), we also modify the mean as
follows:

µi → (1− θ)µi +
θ

2
, (21)

where

θ =

(∑2N−1
i i−1

)−1

2N +
(∑2N−1

i i−1
)−1 .

This correction is relevant in the case of small cohorts where the
empirical mean may be a bad estimate of the true mean, the specific
form above is derived in Wen and Stephens (2010) using the model
of Li and Stephens (2003). In our case, with cohorts of 2 500 or
more, the difference between this and the sample mean is very small.

2.7 Implementation
We implemented our method in C++ using the the Eigen matrix
library (Gaël Guennebaud, Benoı̂t Jacob and others, Eigen v3,
http://eigen.tuxfamily.org) for matrix manipulations and HTSlib (Li
et al., 2009) for streaming the input VCF/BCF files.

2.8 Data
2.8.1 Low-coverage data We make use of two different publicly
available large cohorts to evaluate our method in the low-coverage
scenario. First, the 1000GP Phase 3 samples which consist of 2 535
samples from a heterogeneous mix of 26 populations, each sample
sequenced to an average of 7.4×. Second, data from the UK10K
control group, a more homogeneous cohort than the 1000GP sam-
ples comprising 3 781 samples, each sequenced to around 7×. We
only evaluated SNPs in these comparisons.

287 individuals from the 1000GP cohort were also sequenced to
high-coverage (80× or more) by Complete Genomics (CG) and we
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used this data to validate our 1000GP calls. To create validation data
for the UK10K samples, we took 63 of the European CG samples
and calculated genotype likelihoods at the UK10K sites for these
samples from their respective low-coverage BAM files using bcfto-
ols (Li et al., 2009). MarViN imputation was performed in 200kbp
windows with an overlap of 100kbp between windows. We perfor-
med a number of small timing experiments on a 2Mbp region of
chr20, and a more rigorous accuracy experiment using the entire
chr20 for both cohorts. A summary of the samples and number of
variants is in Table 1.

On both these cohorts, we compared MarViN with two alterna-
tive genotype refinement schemes: Beagle 4.0 (r1399) (Browning
and Browning, 2007) and the “no-LD” method we described in
Section 2.1, which does not use LD information. We chose Bea-
gle as a comparison due its popularity, ease-of-use and relative
speed compared to other HMM routines (notably SHAPEIT is more
accurate but also slower). Given we expect MarViN to be substan-
tially faster, but also less accurate, than Beagle, it is reasonable to
conclude that MarViN will be faster (and less accurate) than other
more computationally demanding HMM based routines.

Cohort Samples SNPs CG sample CG SNPs
1000GP 2 535 1 628 533 287 565 991
UK10K 3 844 489 278 63 223 528

Table 1. Summary of the number of samples and SNPs for each LCWGS
data set. Sample size is the number of samples present in the input genotype
likelihoods, for UK10K this includes the UK10K control cohort (3 781 sam-
ples) plus an additional 63 CG validation samples with GLs calculated from
low coverage alignments. Number of SNPs is the number of non-singleton
bi-allelic SNPs in each respective cohort on chromosome 20. The rightmost
two columns count the number of samples and SNPs that are also in the CG
validation data.

2.8.2 High-coverage data We took 50× coverage of 100bp
paired reads sequenced from the widely studied NA12878 sam-
ple (ENA AC:ERR194147). These were aligned with BWA-
MEM 0.7.12 (Li, 2013) and small variants were called accor-
ding to GATK3.3-0 best practices (DePristo et al., 2011; Auwera
et al., 2013), the associated genotype likelihoods were supplied to
MarViN. If an alternate allele for a variant in the 1000GP reference
panel was not detected in a given sample then we used the genotype
likelihood taken from the homozygous-to-reference interval in the
gvcf file that overlapped the variant site.

MarViN can only improve genotyping at variants seen in the refe-
rence panel (variants with LD and frequency information). Any
variant called in an individual that has been seen in a curated panel
such as 1000GP is likely to be real given sufficient coverage (some
amount of false discovery in 1000GP notwithstanding), since these
variants have already been carefully filtered. Variants called in an
individual that are not present in 1000GP require more scrutiny,
although we still expect tens to hundreds of thousands of novel
(mostly rare) variants in a given sample.

Hence we apply the hard filters described in Li (2015) to non-
1000GP variants using hapdip (http://bit.ly/HapDip). For variants
called by GATK that intersect with 1000GP, we are less stringent,
only filtering on the genotype quality (GQ) field, the phred-scaled

probability that a genotype is incorrect. The GQ field is produced
both by GATK and MarViN.

When setting up the reference panel, we excluded NA12878 and
all other CEPH1463 pedigree members from the 1000GP Phase 3
panel so as not to bias results. We only considered bi-allelic SNPs
with an alternate allele count of at least five, reasoning that very
rare variants were unlikely to benefit greatly from LD-based refi-
nement. We ran MarViN for five iterations with a window size of
210kbp with overlap of 5kbp at each end (so each window overlaps
by 10kbp).

As truth data, we used the highly accurate NA12878 call set from
Platinum Genomes v7.0.0 (http://www.illumina.com/platinumgenomes).
This consists of variants and confident homozygous-reference inte-
rvals generated from multiple aligners/callers on the 17-member
CEPH1463 pedigree. The reliability of the variant calls is enh-
anced by retaining only those calls whose inheritance pattern
across the pedigree is consistent with Mendelian inheritance.
GATK/MarViN callsets were compared to this truth data using
hap.py (https://github.com/Illumina/hap.py), a tool which compares
variants via alignment and exact matching.

3 RESULTS
3.1 Low-coverage genotype refinement
We first evaluated each method’s speed and accuracy as a
function of sample size by sampling subsets of the UK10K
cohort of sizes N={100, 200, 500, 1000, 2000, 3844} and perfor-
ming genotyping on a 2Mbp window of chromosome 20 (35Mbp
to 37Mbp) containing 14 416 SNPs. We measured the non-
reference discordance (NRD) of each method, which is defined as
(FP+TP )/(FP+TP+FN), where TP , FP and FN count the
number of true positive, false positive and false negative alternate
allele calls respectively. Timings were performed on a an Intel Xeon
E5-2670v2 CPU with no other compute intensive processes run-
ning. We do not report compute times for no-LD as this process
is dominated by I/O operations.

Figure 1 plots NRD (left) and compute time in hours (right)
against sample size. When N=100; no-LD, MarViN and Beagle
had NRD of 5.74%, 5.20% and 1.26% meaning MarViN was sub-
stantially less accurate than Beagle. However, MarViN’s accuracy
dramatically increases with sample size. MarViN had 0.71% NRD
at N=1 000 and 0.63% at N=3 844 versus 0.59% and 0.38% for
Beagle. Although still less accurate than Beagle, MarViN’s speed
advantage widens with increasing N , it being 104× and 1 445×
faster than Beagle for N=1 000 and N=3 844 respectively. Nota-
bly MarViN had around 9-fold fewer errors than no-LD atN=3 844
and required minimal compute resources (≈14 CPU minutes for
N=3 844).

We then evaluated each method for both the 1000GP Phase 3
cohort (N=2 535) and the UK10K (N=3 844) for the entire chro-
mosome 20 (1.63 and 0.49 million SNPs respectively). To achieve
a fair comparison of compute requirements, we gave each method
exclusive use of a 20-core compute node (2×10-core E5-2670v2
CPUs), running Beagle with 20 threads and running 20 simulta-
neous MarViN processes (concatenation time is included in the
results).

Table 2 summarises the accuracy and compute times. MarViN
was 360× faster than Beagle on UK10K and 46× faster on 1000GP.
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Fig. 1: Performance of each method on UK10K cohort for incre-
asing samples sizes (chr20:35M-37M). Left: Non-reference
discordance versus sample size for three different methods. Right:
Total compute time in hours versus sample size.

MarViN’s speed advantage on 1000GP is decreased relative to
UK10K due to a much larger number of SNPs. MarViN had
higher NRD than Beagle with 1.66% versus 0.90% on 1000GP and
0.64% versus 0.41% on UK10K. Whilst these accuracy differences
may seem small, the error rates are concentrated at low freque-
ncy genotypes. Nevertheless, MarViN has 4.64× and 9.82× fewer
errors than the naive no-LD routine.

Cohort Method Time Discordance NRD
1000GP no-LD 0.62 7.71
1000GP Marvin 19.03 0.11 1.41
1000GP Beagle 878.31 0.07 0.90
UK10K no-LD 1.16 6.35
UK10K Marvin 2.26 0.11 0.61
UK10K Beagle 812.52 0.08 0.44

Table 2. Performance for each method on the 1000GP (N=2535) and
UK10K (N=3844) chr20 data. Time is the compute time in hours on a
20-core (2×E5-2670v2 CPUs) server with 132GB RAM when using 20
threads. Discordance is the percentage of discordant genotypes between
the imputed genotypes and high-coverage genotypes on the CG validation
samples. Non-reference discordance (NRD) is the discordance when not
counting genotypes that were homozygous reference in both the imputed
and high-coverage genotypes.

We then investigated accuracy at different allele frequencies by
binning genotypes by allele frequency and calculating Pearson’s
correlation coefficient (r2) between the imputed genotypes and
the high-coverage validation genotypes within each bin. Figure 2
plots r2 against allele frequency (log 10 scale) for 1000GP (left)
and UK10K (right). We see for common variants (AF≥2%) Bea-
gle and MarViN are roughly equal (and substantially better than
no-LD). Beagle outperforms MarViN at lower allele frequencies.
Figure 2 and Table 2 also suggest that MarViN performs less well
on heterogeneous cohorts such as 1000GP, compared to relatively
homogeneous cohorts like UK10K.

1000G UK10K
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Fig. 2: Pearson’s correlation coefficient between imputed and true
genotypes for different cohorts as a function of allele frequency for
different data sets. Left: 1000GP Right: UK10K.

3.2 High-coverage genotype refinement
Figure 3 plots recall (proportion of PG SNPs detected and correctly
genotyped) against precision (the proportion of called SNPs that are
concordant with PG) for GATK before and after refinement with
MarViN for increasingly liberal filters on the GQ field. MarViN refi-
nement yields a modest, but consistent, improvement in SNP recall
for a given level of precision (and vice versa).

96.0
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97.0

97.5

98.0

99.700 99.725 99.750 99.775 99.800 99.825
Precision %

R
ec

al
l %

GATK

GATK+MarViN

Fig. 3: Recall versus precision for GATK SNP genotype calls before
and after refinement with MarViN for increasingly aggressive GQ
filters. Recall is defined as the proportion of PG alternate genoty-
pes correctly identified. Precision is the proportion of alternate
genotypes called that are concordant with the PG data set.

Table 3 further breaks down these results. Firstly, there were
243 381 SNPs called by GATK that were not in 1000GP (with minor
allele count >4), these were filtered using the hard filters in hapdip.
Such SNPs cannot be further refined but we report them for com-
pleteness. Of these, 143 247 SNPs were validated in the Platinum
Genomes dataset and a total of 2 386 were classified as false posi-
tives due to having either incorrect genotypes, incorrect alleles or
being called in a known homozygous-reference region. This yields
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a precision of 98.36%, which as one might expect, is lower than
calls that intersect with 1000GP variants.

For SNP calls that intersect 1000GP, we only applied a GQ≥20
filter. The GATK callset contained 3 387 126 SNPs, rising to
3 408 128 after refinement with MarViN. Of these, 3 309 226 and
3 317 953 were validated as correct in Platinum Genomes, meaning
MarViN refinement yielded an additional 8 727 correctly genoty-
ped SNPs. In terms of effect on false positive rate, MarViN reduced
the number of incorrect genotypes (with correct allele) from 1 577
to 1 318, as one might expect genotype refinement to do. However,
Marvin also imputed a greater number of variants with incorrect
alternate allele (96 versus 81) and SNPs in homozygous reference
regions (1 916 versus 1 037). This means MarViN had a slightly
higher number of false positives than the raw GATK callset, 3 330
versus 3 087, bringing its precision to 99.902% versus 99.909% for
GATK 99.902%. Given the gains in SNP recall, this seems a minor
cost to pay.

non-1000G 1000G
GATK Marvin

Total 243 381 3 387 126 3 408 128
Unevaluated 97 748 74 813 86 845
TP 143 247 3 309 226 3 317 953
FN 3 377 480 211 373 202 888
FP1 (GT wrong) 1 251 1 577 1 318
FP2 (allele wrong) 98 81 96
FP3 (homref) 1 037 1 429 1 916
FP (total) 2 386 3 087 3 330

Table 3. Summary of high coverage SNP calls by GATK that were not pre-
sent in 1000G with MAC greater than 4 (first column), calls made by GATK
that were present in 1000G (middle column) and GATK calls after applying
Marvin genotype refinement (third column).

4 DISCUSSION
The algorithm presented in this paper is at least two orders of magni-
tude faster than Beagle on the UK10K cohort. Whilst this speed does
come with a decrease in accuracy (particularly for rare variants), our
method still makes nearly 10-fold fewer errors than a genotyping
routine that does not take linkage-disequilibrium into account.

The rapidly growing size of reference panels may soon pre-
clude the use of super-linear complexity techniques such as Beagle,
since computation will become too expensive. For example, the
Haplotype Reference Consortium (http://www.haplotype-reference-
consortium.org) has collected around 35 000 LCWGS samples to
create a reference panel for imputation. Extrapolating from Figure 1,
it seems unlikely it would be tractable to run Beagle on a cohort of
this size. One possible use of MarViN would be to quickly generate
an initial estimate of genotypes, which could then be supplied as
starting values to a more sophisticated routine, reducing the number
of iterations the latter needs to perform. MarViN might also be an
ideal routine for intermediate coverage (≈15×) projects.

The reduced accuracy of MarViN compared to Beagle at lower
frequency variation is likely due to the limitations of modelling the
population using one vector of allele frequencies and one covariance

matrix. This simplistic model may not capture more subtle popu-
lation substructure. Notably MarViN performs better on the more
homogeneous UK10K cohort than on the 1000GP cohort which has
far more population structure (although also has a smaller sample
size). One possible way to improve this situation would be to add
more flexibility to the MarViN model by using an MVN mixture
distribution, but we leave this for future work.

We have also demonstrated the efficacy of genotype refinement in
the high-coverage scenario, the first such investigation to our know-
ledge. A modest gain in recall for SNPs was achieved at a cost of a
negligible decrease in precision. We also attempted refining indels
with this approach, gains in recall were indeed observed but were
accompanied by unacceptable increases in the false-discovery rate.
This may be due to a higher FDR in the 1000GP indels and could
perhaps be solved via aggressive filtering.

While the improvements seen on high-coverage data are modest,
we nevertheless believe it noteworthy that results achieved from
high-coverage data can be improved at all by this method. Moreover
the efficiency of our method means it adds little additional overhead
to processing pipelines for WGS data, whereas genotype refine-
ment using existing HMM-based methods would be a considerable
computational undertaking.
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