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Abstract

Motivation: Simulation under the coalescent model is ubiquitous in the analysis of genetic data. The

rapid growth of real data sets from multiple human populations led to increasing interest in simulat-

ing very large sample sizes at whole-chromosome scales. When the sample size is large, the coales-

cent model becomes an increasingly inaccurate approximation of the discrete time Wright-Fisher

model (DTWF). Analytical and computational treatment of the DTWF, however, is generally harder.

Results: We present a simulator (ARGON) for the DTWF process that scales up to hundreds of thou-

sands of samples and whole-chromosome lengths, with a time/memory performance comparable

or superior to currently available methods for coalescent simulation. The simulator supports arbi-

trary demographic history, migration, Newick tree output, variable mutation/recombination rates

and gene conversion, and efficiently outputs pairwise identical-by-descent sharing data.

Availability: ARGON (version 0.1) is written in Java, open source, and freely available at https://

github.com/pierpal/ARGON.

Contact: ppalama@hsph.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The coalescent (Kingman, 1982) can be constructed as an approxi-

mation of the discrete time Wright-Fisher process (DTWF, Fisher

et al., 1922; Wright, 1931), and leads to simplified analytical and

computational treatment. Simulators based on the coalescent pro-

cess (e.g. Hudson, 2002) have been extensively adopted in computa-

tional methods. The coalescent approximation, however, relies on

the assumption that the sample size is small compared with the ef-

fective population size, and violations of this assumption may result

in substantial distortions of key genealogical properties (Bhaskar

et al., 2014; Wakeley and Takahashi, 2003).

Until very recently, coalescent simulators did not scale up to long

chromosomes and the very large sample sizes of modern day data

sets, which now comprise hundreds of thousands of individuals. The

recently developed simulators COSI2 (Shlyakhter et al., 2014) and

SCRM (Staab et al., 2015) enable fast simulation under approxi-

mate coalescent models. The COSI algorithm uses a standard

backwards-in-time approach, while SCRM adopts a ‘sequential’ ap-

proach (McVean and Cardin, 2005; Wiuf and Hein, 2000). Both

can be also used to simulate large sample sizes and chromosome-

long regions under the ‘exact’ coalescent process with reasonable

time and memory requirements.

Here, we present ARGON, an efficient simulator of the DTWF

process that scales up to very large chromosomes, and hundreds

of thoudsands of samples. The simulator offers substantially im-

proved performance compared with recent DTWF simulators,

e.g. GENOME (Liang et al., 2007), and is comparable or superior

to current coalescent simulators in terms of speed and memory

usage.

2 Approach

ARGON proceeds backwards in time one generation at a time, oc-

casionally sampling coalescent and recombination events subject to
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population structure and migration. Each individual is represented

as a list of regions for which not all samples have found a common

ancestor. Crossover and non-crossover recombination events are

sampled in genetic space and rounded to the closest physiscal base

pair position based on the desired uniform or variable recombin-

ation rate. Whenever a coalescence occurs, regions within individ-

uals are annotated with links to descendant nodes in the ancestral

recombination graph (ARG).

When compared with other DTWF implementations (e.g.

GENOME), ARGON offers substantially improved speed and

memory usage (see Supplementary Materials). In ARGON, large

regions are represented as intervals with arbitrary boundary val-

ues, and hash map data structures are extensively used to take ad-

vantage of sparsity, avoiding explicit representation of all

individuals. ARGON can run in approximate mode, so that recom-

binations breakpoints are rounded to blocks of a user-specified

genetic length, as implemented in the GENOME simulator. This

reduces the granularity of the recombination process, improving

speed and memory usage, at the cost of slightly inflated correlation

of nearby markers.

ARGON can efficiently output a list of identical-by-descent

(IBD) segments, which are delimited by the occurrence of recom-

bination events that change the most recent common ancestor for

pairs of samples. In ARGON, these events are detected by visiting

internal ARG nodes, while previous approaches to output simu-

lated IBD sharing data (e.g. Palamara et al., 2012) required com-

paring recent ancestry for all pairs of individual at each marginal

tree.

3 Results

3.1 Accuracy for small sample sizes
When n� Ne, the coalescent is a good approximation of the

DTWF. We performed extensive testing for several scenarios includ-

ing population size variation, migration across multiple demes, and

gene conversion. We report detailed results in the Supplementary

Materials. We find good agreement between ARGON and MS. We

also tested the accuracy of COSI version 2.0, SCRM version 1.6.1,

and MSprime version 0.1.6 (Kelleher et al., 2015), a new efficient

simulator for which a preliminary version was released at the time

of writing. All simulators were found to be well calibrated against

MS.

3.2 Deviation of the coalescent from the DTWF
The coalescent becomes a poor approximation of the DTWF process

when the sample size is not substantially smaller than the effective

population size (Bhaskar et al., 2014; Wakeley and Takahashi, 2003).

We verified that ARGON matches the theoretical prediction for the

number of singletons and doubletons described in Bhaskar et al.

(2014) for the DTWF (see Table 1). We simulated populations of ef-

fective size Ne ¼ 1000 and Ne ¼ 20000 haploid individuals, and

sampled all present-day individuals. While ARGON matches the pre-

diction of Bhaskar et al. (2014) in both exact and approximate mode,

coalescent simulations substantially deviate from the DTWF model.

3.3 Scalability to large sample size and whole-

chromosome length
We tested the run time and memory usage of ARGON and two re-

cently developed programs that enable simulating very large sample

sizes and long chromosomes: COSI2 and SCRM (see Table 2). We

find that for large parameter values SCRM generally performs worse

than ARGON. COSI2 is generally faster, but scales poorly for mem-

ory usage as the size of the region and the sample size grows.

Additional tests, including a pre-release version of MSprime, are de-

tailed in the Supplementary Materials.

We further tested the performance of approximate algorithms for

the same set of simulation parameters (see Table 2). We compared

ARGON with a minimum recombination block size of 10lm (AR10),

SCRM with the ‘�l’ flag set to 0 (SC0), and COSI2 with the ‘�u’ flag

Table 2. Comparison of simulation algorithms with respect to

chromosome length (Mb), exponential expansion rate (q), sample

size (n), and ancestral population size (A)

Time Memory

Mb 102q n/103 A AR SC CS AR SC CS

100 0.0 20 20 0.48 1.42 0.12 10.1 19.6 17.3

300 0.0 20 20 2.56 † 0.59 15.2 † 41.4

500 0.0 20 20 5.35 † † 19.8 † †

100 0.0 1 10 0.09 0.02 0.01 6.5 0.5 0.2

100 0.0 10 10 0.12 0.27 0.02 8.5 4.9 4.4

100 0.0 100 10 1.01 6.20 52.33 12.6 48.9 6.8

100 0.0 200 10 3.05 † † 19.4 † †

100 0.0 300 10 10.19 † † 24.6 † †

100 0.347 20 10 0.39 1.37 0.07 10.5 19.6 9.0

100 0.576 20 10 0.94 2.37 † 13.0 39.1 †

100 1.151 20 10 3.97 † † 25.0 † †

Time Memory

Mb 102q n/103 A AR10 SC0 CS0 AR10 SC0 CS0

100 0.0 20 20 0.12 1.23 0.15 8.2 19.6 17.3

300 0.0 20 20 0.46 † 0.89 9.7 † 41.4

500 0.0 20 20 0.79 † † 11.0 † †

100 0.0 1 10 0.02 0.02 0.01 3.3 0.5 0.3

100 0.0 10 10 0.04 0.28 0.03 7.9 4.9 4.4

100 0.0 100 10 0.34 6.36 * 8.0 48.9 *

100 0.0 200 10 0.66 † * 8.4 † *

100 0.0 300 10 1.59 † † 17.6 † †

100 0.347 20 10 0.09 2.51 0.07 8.2 39.1 8.9

100 0.576 20 10 0.15 † 0.13 8.6 † 9.4

100 1.151 20 10 0.22 † † 12.0 † †

Simulation parameters and setup are detailed in the Supplementary

Materials. DTWF and coalescent algorithms: AR, ARGON; SC, SCRM; CS,

COSI2; approximate algorithms: AR10, ARGON with minimum recombin-

ation block of size 10 lM; SC0, SCRM with; ‘�l’ set to 0; CS0, COSI2 with

‘�u’ set to 0; † represents runs terminated due to insufficient memory

(>60Gb) or a memory error; * indicates that the program took longer than

100 h to complete.

Table 1. Number of singleton and doubleton alleles when n¼Ne.

We simulated a region of 1 Mb, l ¼ 2� 10�8 and 1 cM/Mb, where

hs is the average simulation result and ht is the theoretical expect-

ation. The 6 sign introduces a standard error

n ¼ Ne singletons % doubletons %

MS 20 000 �10:8160:01 þ4:8760:02

ARGON 20 000 þ0:0160:01 �0:0260:02

ARGON10 20 000 þ0:0060:01 �0:0260:02

MS 1000 �10:8060:05 þ4:8060:09

ARGON 1000 þ0:0360:05 �0:1160:09

ARGON10 1000 þ0:0260:05 þ0:1760:09

Errors are obtained as 100� ðhs � htÞ=hs, where hs is the average simula-

tion result and ht is the theoretical expectation. The 6 sign introduces a SE.
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set to 0 (CS0). We find that ARGON’s speed and memory usage is

substantially improved, at the cost of slightly inflated correlation for

neighboring markers (see Supplementary Materials). For a constant

population of size Ne ¼ 20 000, for instance, squared correlation (r2)

of markers 0 to 50Kb apart (using 1 cM/Mb) was increased by�27%

for AR10, but remained unchanged for markers at a larger distance.

For CS0 and SC0, r2 was decreased by �5% for markers at a larger

distance. AR10 is faster than SC0, and approximately as fast as CS0,

and uses less memory than both simulators for the large values of the

test parameters. Comparison to other simulators and additional tests

are detailed in the Supplementary Materials.
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