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Abstract

Motivation: Cancer genomes exhibit a large number of different alterations that affect many genes

in a diverse manner. An improved understanding of the generative mechanisms behind the muta-

tion rules and their influence on gene community behavior is of great importance for the study of

cancer.

Results: To expand our capability to analyze combinatorial patterns of cancer alterations, we de-

veloped a rigorous methodology for cancer mutation pattern discovery based on a new, con-

strained form of correlation clustering. Our new algorithm, named C3 (Cancer Correlation

Clustering), leverages mutual exclusivity of mutations, patient coverage and driver network

concentration principles. To test C3, we performed a detailed analysis on TCGA breast cancer and

glioblastoma data and showed that our algorithm outperforms the state-of-the-art CoMEt method

in terms of discovering mutually exclusive gene modules and identifying biologically relevant

driver genes. The proposed agnostic clustering method represents a unique tool for efficient and

reliable identification of mutation patterns and driver pathways in large-scale cancer genomics

studies, and it may also be used for other clustering problems on biological graphs.

Availability and Implementation: The source code for the C3 method can be found at https://github.

com/jackhou2/C3

Contacts: jianma@cs.cmu.edu or milenkov@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid advances in high-throughput sequencing technologies have

provided unique opportunities for analyzing large numbers of cancer

genomes. However, the complexity of genomic alterations in cancer

causes significant analytical and computational challenges that have

to be overcome in order to fully characterize the functional roles of

various mutations. In particular, as cancer genomes tend to contain

a large number of diverse mutations (e.g. point mutations or copy

number changes) most of which are neutral, one problem of signifi-

cant importance is to identify a small set of mutations that perturb

key biological pathways and have significant impact on tumorigen-

esis (Hanahan and Weinberg, 2011). Hence, a central question in
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cancer genomics is how to distinguish ‘driver’ mutations, which con-

tribute to tumorigenesis, from functionally neutral ‘passenger’

mutations.

Many computational methods have been developed to facilitate

the discovery of driver genes (Carter et al., 2009; Dees et al., 2012;

Gonzalez-Perez and Lopez-Bigas, 2012; Lawrence et al., 2013;

Manolakos et al., 2014), most of which rely on mutation counts.

Due to the high level of inter-tumor heterogeneity, two patients with

the same cancer may have vastly different drivers and as a result

many cancer mutations occur with low frequency in the patient

population. Therefore, approaches relying on simple estimates of re-

currence or frequency of mutations usually do not work well in

practice. To mitigate this problem, several recent approaches have

integrated frequency analysis with pathway-based and network-

based models in order to ensure high accuracy of common driver

mutation discovery (Bashashati et al., 2012; Hou and Ma, 2014; Ng

et al., 2012; Paull et al., 2013; Pe’er and Hacohen, 2011). Such

methods have an advantage in so far that in addition to mutation

analysis, they take into account gene interactions as an added source

of prior knowledge.

In parallel, methods have been proposed to identify driver path-

ways, i.e. groups of genes that may interact together in combinator-

ial patterns to promote tumorigenesis. Ciriello et al. (2012)

described a method called MEMo, and subsequently used it to show

that mutually exclusive modules based on known networks can aid

in determining groups of genes that contribute to tumorigenesis.

These gene groups, or modules, are jointly highly recurrent, have

similar pathway impact in terms of biological processes, and their

corresponding mutations tend to be mutually exclusive, meaning

that very often only one gene in each gene group is mutated at a

given time in any given patient. This mutual exclusivity rule in can-

cer pathways is supported by the observations that, in general, one

mutated gene suffices to perturb the function of its corresponding

pathway. Multiple mutations would require significantly higher en-

ergy investments on the part of cancer cells, and are hence selected

against. Zhang et al. (2013) expanded the ideas behind the concept

of MEMo with iMCMC, and provided a framework to integrate

mutation data, copy number and expression information into cancer

network weights which they used to identify modules; they also per-

formed multiple types of integrative cancer perturbation data ana-

lysis. Dendrix (Vandin et al., 2012) was developed to identify driver

pathways de novo using mutual exclusivity and coverage (patient

coverage) principles, without relying on known network informa-

tion that has the potential to improve the discovery process of new

modules. MDPFinder from (Zhao et al., 2012) expanded on the

overall framework of Dendrix by incorporating gene expression in-

formation to ensure that genes in discovered mutually exclusive

pathways were also co-expressed. Multi-Dendrix (Leiserson et al.,

2013) and CoMDP (Zhang et al., 2014) improved on the limitations

of Dendrix and MDPFinder, respectively, by allowing their algo-

rithms to find multiple co-occuring modules. More recently, CoMEt

(Leiserson et al., 2015a) was proposed to address an inherent bias in

Dendrix and Multi-Dendrix that resulted in high frequency muta-

tions being significantly more likely to be included in mutually ex-

clusive modules.

However, while methods such as Dendrix, Multi-Dendrix and

CoMEt all have the ability to identify mutually exclusive modules

de novo, they still have significant limitations. The aforementioned

methods are typically inefficient when applied to large-scale datasets

with large values of their relevant parameters. Also, some of these

methods are randomized in nature and no guarantees exist that mul-

tiple runs of the methods will produce compatible results.

Furthermore, almost all methods are able to identify only a small

number of modules of limited size, as cluster sizes are critical algo-

rithmic parameters from the perspective of computational tractabil-

ity. Most importantly, they have to be redesigned or restructured

whenever new biological information is included in the discovery

process.

To overcome these and other shortcomings of existing methods,

we introduce a novel method called Cancer Correlation Clustering

(C3) to directly tackle the problems of integrating diverse sources of

evidence regarding driver pattern behavior and eliminating compu-

tational bottlenecks associated with large cluster sizes or cluster

numbers. The C3 method uses a new agnostic optimization frame-

work specifically developed and rigorously analyzed for the driver

discovery task, in which patient data is converted into a simple set

of weights used in the objective function that do not require the al-

gorithm to change upon incorporation of new data sources. In add-

ition to this flexibility, C3 has low computational cost, and it allows

for adding relevant problem constraints while retaining good theor-

etical performance guarantees. Furthermore, the algorithm outper-

forms CoMEt in three out of four evaluation criteria, where the

three criteria depend on which weights are ‘emphasized’ in the opti-

mization problem: tuning the weights allows one to select which fea-

tures to improve or emphasize. What the relevant constraints

features are may be chosen by the user, although our analysis

included coverage, mutual exclusivity, expression data and network

pathway information. We also point out that the weights may be

chosen so as to cater to the need of many other computational biol-

ogy problems that involve optimization on graphs.

To test C3, we ran extensive simulations for seven cancer types

(including breast cancer, kidney cancer, ovarian cancer, glioblast-

oma, etc.). Unfortunately, the patient sample set sizes for all except

two cancers—breast cancer and glioblastoma—did not allow for ac-

curate and statistically significant driver identifications for any of

the used methods. We hence report results for these two cancers

only, although a pan-cancer study is easy to conduct once suffi-

ciently many samples become available.

The paper is organized as follows. A basic introduction of the

principles of correlation clustering is provided in section

Approach. Section Methods contains a description of how to

transform patient data into clustering weights used for the compu-

tations, the algorithmic clustering approach based on the com-

puted weights, and the evaluation criteria used to compare C3 and

CoMEt. Section Results contains the main results of our analysis,

a comparison of the performance of C3 and CoMEt on breast can-

cer and glioblastoma data. A discussion of our findings and con-

cluding remarks are given in Discussions. A rigorous mathematical

performance analysis of C3 may be found in the Supplementary

Materials, along with more extensive software evaluations and ex-

planations of relevant concepts.

2 Approach

The basic idea behind the C3 approach is correlation clustering, an

agnostic learning technique first proposed in Bansal et al. (2004). In

the most basic form of the clustering model, one is given a set of ob-

jects and, for all or some pairs of objects, one is also given an assess-

ment as to whether the objects are ‘similar’ or ‘dissimilar’. This

information is described using a complete graph with labeled edges:

each object is represented by a vertex of the graph, and the assess-

ments are represented by edges labeled with either a ‘þ’ symbol, for

similar objects, or a ‘-’ symbol, for dissimilar objects. The goal is to

partition the objects into clusters so that the edges within clusters
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are mostly positive and the edges between clusters are mostly nega-

tive. Unlike in many other clustering models, such as k-means

(Hartigan and Wong, 1979), the number of clusters is not fixed

ahead of time and finding the optimal number of clusters is part of

the problem. Furthermore, the assignment of positive and negative

edges does not have to be mutually consistent: for example, if the

graph contains a triangle with two positive edges and one negative

edge, then we must either group the endpoints of the negative edge

together, erroneously putting a negative edge inside a cluster, result-

ing in a ‘negative error’ or else we must group them separately, forc-

ing one of the positive edges to erroneously go between clusters,

resulting in a ‘positive error’. An illustrative example is shown in

Supplemental Figure S1. When a perfect clustering is not possible,

we seek an optimal clustering: one that minimizes the total number

of ‘errors’. This form of correlation clustering is known to be NP-

hard, but depending on the graph topology, various constant or

logarithmic approximation guarantees exist.

Bansal et al. (2004) also proposed a weighted version of the

correlation-clustering problem. A more general weighted formula-

tion was introduced in Charikar et al. (2003), and this is the formu-

lation we subsequently generalize. In this model, each edge e is

assigned two nonnegative weights, wþe and w�e . A clustering incurs

cost wþe if e is placed between clusters, and incurs cost w�e if e is

placed within a cluster.

If no restrictions are placed on the weights wþe and w�e , then it is

possible to have edges with wþe ¼ w�e ¼ 0; these edges are effectively

absent from the graph, so there is no loss of generality in assuming

that the graph is a complete graph. Nevertheless, in order to arrive

at problems that have efficient constant approximation algorithms,

one needs to place certain restrictions on wþe and w�e . The probabil-

ity constraints give a natural restriction on the edge weights wþe
þw�e ¼ 1 for every edge e. Another restriction involves the triangle

inequality, and one requires that w�uw � w�uv þw�vw for all distinct

vertices u, v and w.

The analytic approach pursued in this work operates on the fol-

lowing model: genes which show sufficiently large mutation preva-

lence in cancer patients represent vertices of a complete (fully

connected) graph whose vertices are to be clustered according to

similarity criteria and weights to be described in detail in the next

section. Note that we only use the top 5% of mutated genes in can-

cer patients, ordered by mutation frequency, as vertices. The reason-

ing behind our approach is as follows: First, low-frequency

mutations require specialized statistical and network analysis meth-

ods which have to be developed in parallel and for which not suffi-

ciently many patient samples are yet available (Torkamani and

Schork, 2009; Vogelstein et al., 2013); Second, even when restricting

our attention to the most frequently mutated genes we outperform

all known methods, which illustrates that one can significantly scale

down the set of genes under consideration and at the same time im-

prove identification performance. The low-frequency trimming ap-

proach results in 170 genes in glioblastoma (GBM) and 130 genes in

breast cancer (BRCA). Although these numbers may appear prohibi-

tively small given that more than a hundred cancer driver genes are

reported, usually only a very small number of driver genes are

needed to initiate the process of tumorigenesis. (For example, in

Tomasetti et al. (2015), it was shown that only three driver gene mu-

tations are required for the development of lung and colorectal

cancers.)

The weights wþe and w�e assigned to an edge e connecting two

genes u and v are weighted sums of weights capturing driver gene

features, such as mutual exclusivity, coverage strength, network dis-

tance and expression similarity. More precisely, the negative weights

w�e are chosen to be relatively small if the endpoint genes describing

the edge are deemed to be mutually exclusive in cancer patients. A

small negative weight encourages placing mutually exclusive genes

within the same cluster, as the penalty paid for placement in the

same cluster is small. The positive weights jointly depend on the

coverage, network distance and expression correlation of the end-

point genes: The larger the joint coverage, co-expression and inverse

of the network distance of the endpoint genes, the larger the positive

weight and the more likely the genes will end up in the same cluster

so as to avoid paying a large cross-cluster cost. Precise mathematical

formulations of the weight functions will be provided in the next

section.

To control the size of the resulting clusters so as to discourage

uninformative singleton and giant clusters, we developed two new

correlation clustering algorithms that use cluster sizes as problem

parameters that may be chosen by the users. These cluster size

bounds also allow for more accurate comparison with other meth-

ods which operate with inherent cluster size constraints.

Furthermore, as pointed out in Vandin et al. (2012), driver path-

ways obeying mutual exclusivity and coverage constraints are usu-

ally smaller than most pathways annotated in the literature. This

observation provides another reason for using bounded cluster sizes

as well. Note that unlike in the aforementioned known methods, the

cluster sizes have no bearing on the complexity of our algorithm nor

on their overall approximation quality, and they may be completely

removed by the user if so desired.

The driver discovery approaches closest to C3 are Multi-Dendrix

(Leiserson et al., 2013) and CoMEt (Leiserson et al., 2015a). Multi-

Dendrix is an integer linear programming clustering algorithm that

ensures that the genes within a cluster have mutation patterns that

satisfy mutual exclusivity and coverage: In a nutshell, for any two

genes in a cluster, the number of patients in which these genes are

mutated at the same time is relatively small; in addition, a large por-

tion of the patients has at least one mutation in each cluster. CoMEt

uses a statistical score for mutation exclusivity that is conditioned

on the frequency of each alteration, alleviating the inherent bias

caused by frequently mutated genes. Compared to Multi-Dendrix

and CoMEt, C3 uses a weighted linear programming relaxation in-

stead of an integer linear program which significantly improves the

versatility and running time of the algorithm. Furthermore, the

weights allow for straightforward incorporation of heterogeneous

sources of evidence into the clustering method and the algorithm it-

self remains unchanged with the addition of new data. On the other

hand, Multi-Dendrix cannot be easily adapted to new problem con-

straints. This flexibility comes at the cost of C3 providing only an

approximate solution, but the approximate solutions exhibit large

overlap with the exact solutions for a number of tested smaller syn-

thetic networks. In addition, given the inherently approximate na-

ture of optimization criteria, the weight selection and

parametrization of both algorithms, this does not appear to be a sig-

nificant shortcoming. Also, empirical evaluations on real data sug-

gest that the approximation algorithms produce results very close to

the optimal solution.

3 Methods

Before rigorously describing our algorithmic methods, we introduce

some relevant notation and explain how to estimate appropriate

clustering weights based on available data. The weights are defined

separately for each combination of datasets in order to better ex-

plain the trade-offs between different choices of weights and to

allow the user to restrict her/his attention to the combination for
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which the best and largest collection of data points and samples is

available. In Results section, we describe the performance of C3 for

all combinations of datasets and corresponding weight choices.

3.1 Clustering weights
Let G(V, E) be a complete graph, where V(G) denotes the set of verti-

ces and E(G) denotes the set of edges of the graph G, respectively. As

the graph is complete, an edge exists between any pair of vertices and

the only relevant edge property is its pair of weights. Note that we fol-

low this formalism as it is an established approach in correlation clus-

tering. The symbol e 2 EðGÞ or e¼uv with u; v 2 VðGÞ is used to

denote a generic edge. Each edge is assigned a positive weight wþe and

a negative weight w�e . Recall the interpretation of these weights: For

two distinct vertices u; v 2 VðGÞ; wþuv is the cost of placing u and v in

different clusters; consequently, by making the positive weight of an

edge large, one can discourage placing the corresponding two genes

into different clusters. Similarly, w�uv is the cost of placing u and v in

the same cluster, and hence making this weight large discourages plac-

ing the corresponding two genes into the same cluster. In the rest of

this section, we will explore different ways of defining the weights

w�uv and wþuv; in order to avoid confusion between the different defin-

itions, each weight we define will include a parenthetical abbrevi-

ation, so that, for example, wþðcÞuv will refer to the positive weight

of uv defined according to the coverage criteria, while wþðc; nÞuv will

refer to the positive weight of uv according to the coverage and net-

work criteria. The weights are computed using four types of datasets:

gene mutation data, copy number variation (CNV), network informa-

tion (NI) and gene expression (GE) data. As each data type carries in-

formation of different importance to the driver discovery process (for

example, CNVs are directly connected to driver gene properties, while

GE data may only carry indirect information; CNV may also causally

influence GE), when fusing different sources of information we allow

for linear combinations of the weights w�uv and wþuv corresponding to

individual data sources based on their importance or accuracy (for ex-

ample, there are still a number of unresolved issues in computing the

exact CNV of a gene, while a large number of GE datasets are very

noisy). To illustrate these points, if one source were to suggest positive

and negative weights w�uvð1Þ and wþuvð1Þ, while another source were

to suggest w�uvð2Þ and wþuvð2Þ, where the second source is deemed

twice more important or accurate, the resulting weights would be ob-

tained through a linear parameter fusion equation

w�uv ¼ ð1=3Þw�uvð1Þ þ ð2=3Þw�uvð2Þ;

wþuv ¼ ð1=3Þwþuvð1Þ þ ð2=3Þwþuvð2Þ:

In our weight assignment process, we also make frequent use of

the notions of coverage and mutual exclusivity which we roughly

described in previous sections. Coverage refers to the number of pa-

tients in which the same mutation is observed. High coverage postu-

lates that important driver pathway should be mutated in as many

patients as possible. Mutual exclusivity refers to the property that

mutated driver genes in a patient tend to belong to different path-

ways, and that the number of patients with more than one mutated

driver gene per given pathway is small.

Let np denote the number of samples (i.e. patient genomes avail-

able) and let ng denote the number of genes. Also, let A 2 f0;1gng�np

denote the matrix containing mutation data: If gene i is mutated in

sample (patient) j, we set Aði; jÞ ¼ 1; otherwise, we set Aði; jÞ ¼ 0.

Also, let C be an ng � np matrix representing the CNV data: we set

Cði; jÞ ¼ 0 if there is no change in the copy number of gene i in sam-

ple j; otherwise, we choose an integer value reflecting the deviation

of the CNV number from its baseline. Hence, the CNV matrix con-

tains both positive and negative values corresponding to the copy

number changes of the corresponding gene in each sample.

To combine CNV and mutations, we combine the matrices A

and C as follows: We form a new binary matrix M 2 f0;1gng�np

such that

Mði; jÞ ¼ 0; if Aði; jÞ ¼ 0 AND lcnv < Cði; jÞ < hcnv; (1)

and Mði; jÞ ¼ 1 otherwise. In this formulation, lcnv and hcnv are

lower and upper bounds on copy numbers that may be chosen by

the user. These bounds determine what is deemed to be a significant

CNV change. In our tests, we set lcnv ¼ �1 and hcnv¼3, although

other options are clearly possible. It is worth pointing out that more

conservative CNV thresholds tend to decrease coverage, while more

relaxed CNV assumptions tend to decrease mutual exclusivity.

Based on the procedure above, we arrive at one ‘combined mutation’

matrix M which we use instead of the matrices A and C, as it cap-

tures both mutations and CNVs. A positive entry in row i and col-

umn j of the mutation matrix M indicates that gene i is deemed

mutated in sample j. A zero entry indicates that no mutation is re-

corded. Note that we are going to use this matrix in our future

evaluations only for the purpose of indicating mutations, and count-

ing mutations per gene (through row entry summation, or equiva-

lently, by counting the number of patients that are deemed to have

the gene mutated); or mutations per patient (through column entry

summation, or equivalently, by counting the number of genes that

are deemed to be mutated in the patient).

Finally, let Z 2 Rng�np be the matrix corresponding to z-scores of

gene expression data: Here, Zði; jÞ denotes the z-score of the expres-

sion of gene i in sample j. More precisely, if the raw expression of

gene i in sample j equals xij, then Zði; jÞ ¼ xij�li

ri
; li denotes the average

expression of gene i and ri denotes its standard deviation. The entries

of this matrix will be used to incorporate the expression information

into the clustering analysis, as described in the next section.

Observe that some datasets are clearly correlated with each other

while others may have very little correlation (e.g. CNV and gene ex-

pression are clearly correlated); nevertheless, different datasets pro-

vide different expert opinions that contain potential errors and noise

sources and hence combining them one expects to get significantly

improved inference results.

3.1.1 Clustering weights determined based on mutual exclusivity

and coverage (ME-CO)

The idea behind our approach is to impose the mutual exclusivity

constraint through the weights w�e and coverage constraint through

the weights wþe . We remind the reader that high coverage postulates

that important driver pathway should be mutated in many patients

as possible, while mutual exclusivity postulates that drivers should

be mutually exclusive within the same pathway.

For each gene (i.e. vertex) u, let SðuÞ denote the set of patients in

which u is altered. Note that we use the matrix M to determine if a mu-

tation in the gene exists, either due to sequence mutation or CNV. Then,

for any u; v 2 VðGÞ, the negative weights are chosen according to

w�u;vðeÞ ¼ a� jSðuÞ \ SðvÞj
minðjSðuÞj; jSðvÞjÞ ; (2)

where a is a scaling parameter to be chosen by the user, and the label

e in the weight refers to ‘exclusivity’. The intuition behind the choice

of the weight is as follows: the smaller the number of patients in
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which both u and v are mutated, the smaller the weight and the

more likely that u and v are mutually exclusive. The reason behind

the use of the factor a is that we can strengthen or weaken the im-

portance of mutual exclusivity through a: If a is large (e.g. empiric-

ally, a value of a>3 is deemed large), mutual exclusivity is enforced

strictly, while if a is small, (e.g. a<3), the genes in each cluster will

not be highly mutually exclusive. Also, note that

0 � jSðuÞ \ SðvÞj
minðjSðuÞj; jSðvÞjÞ � 1:

To capture the coverage property through the positive weights, ob-

serve that if two genes increase the coverage significantly, their posi-

tive weight should be large so that they are encouraged to be placed

in the same cluster. To determine the positive weights, we first form

the set D ¼ fDðu; vÞg; for all u; v 2 VðGÞ, where Dðu; vÞ ¼ jSðuÞD
SðvÞj and D denotes the symmetric difference of two sets. A large

value for the symmetric difference D(u, v) suggests that the vertices

u and v should be placed in the same cluster, since they increase the

coverage of the cluster.

Given the set D, we define T(J) to be the Jth percentile of the val-

ues in D. In all our runs, we used the default value of J¼95, al-

though this choice may be governed by the user as well. The positive

weights are chosen according to:

wþuvðcÞ ¼
1; if Dðu; vÞ > TðJÞ

1

TðJÞ �Dðu; vÞ otherwise:

8><
>: (3)

Note that by this definition, 0 � wþuvðcÞ � 1 for any uv 2 EðGÞ.
Also, we used the index c in the weight label to indicate ‘coverage.’

In order to ensure that the positive and negative weights meet

the constraints imposed by our constant approximation algorithm,

we also require that for all u; v 2 VðGÞ; w�uvðeÞ þwþuvðcÞ � 1. This

leads to the additional constraints:

if wþuvðcÞ þw�uvðeÞ < 1; (4)

rescale w�uvðeÞ to
w�uvðeÞ

wþuvðcÞ þw�uvðeÞ
; and let wþuvðcÞ ¼ 1�w�uvðeÞ:

3.1.2 Clustering weights determined based on mutual exclusivity,

coverage and network information (NI-ME-CO)

The comprehensive results of pan-cancer studies reported in a num-

ber of recent papers (Garcia-Alonso et al., 2014; Leiserson et al.,

2013, 2015b; Porta-Pardo et al., 2015) have revealed the important

connection between network topology and cancer driver distribu-

tion patterns. More precisely, the effect of deleterious mutations on

the phenotype may be suppressed through a particular configuration

of the corresponding protein complexes, and at the same time, the

strength of the effect of a mutation may be emphasized through an-

other configuration. As an example, most of the variants observed

in healthy individuals seem to appear at the periphery of the interac-

tome, and they do not seem to influence network connectivity. In

contrast, cancer driver somatic mutations tend to occur in central,

internal regions of the interactome and within highly co-integrated

components. It appears that no previous attempts were made to

more precisely quantify the network distances between driver vari-

ants, which prompted us to perform the following analysis. We first

computed the pairwise (shortest) network distances between genes

in a large pathway comprising 8726 genes from (Ciriello et al.,

2012) via an implementation of the standard Dijkstra algorithm

(Skiena, 1990). In this test, we randomly selected 1000 pairs in order

to reduce the computational burden of running Dijkstra’s algorithm

Oð87262Þ times. By using the most complete known driver list from

the Cancer Gene Census (CGC) (Futreal et al., 2004), we computed

the same distances for driver genes, this time for all pairs of genes.

The resulting distribution of shortest paths is depicted in Figure 1.

One can clearly observe that the average shortest distance between

drivers is significantly smaller than the average shortest distance be-

tween two randomly selected genes. A permutation test confirms

this observation, and we calculated a P-value of less than 0.001.

These findings suggest that when determining potential driver

mutations, one should make use of network distance and connect-

ivity information. This may be accomplished within our approach

by adjusting the positive weight of edges connecting two genes:

If both endpoint genes were to be drivers, they should be suffi-

ciently central to a given pathway, close to other known drivers or

to each other.

For the purpose of studying this problem, we consider an undir-

ected graph corresponding to the gene network, denoted by G0; in

this graph, which is assumed to be known a priori and which in this

work was retrieved from the KEGG Database, each vertex corres-

ponds to a gene. The graph is not complete, but rather relatively

sparse, and each edge represents an interaction between genes. As

before, we let np and ng ¼ jVðGÞj ¼ jVðG0Þj denote the total number

of patients and the total number of genes in our dataset, respect-

ively. For each vertex u 2 VðG0Þ, we let NðuÞ denote the set of

neighbors of u and let N 0ðuÞ ¼ NðuÞ [ fug. The first step in assign-

ing the positive weights is to determine the set F ¼ ff ðu; vÞg, where

for any pair of vertices u; v 2 VðG0Þ,

f ðu; vÞ ¼ jN
0ðuÞ \ N 0ðvÞj

jN 0ðuÞ [ N 0ðvÞj
: (5)

Note that 0 � f ðu; vÞ � 1 for all u, v. In a nutshell, f(u, v) cap-

tures the shared neighborhood of two genes, normalized by the size

of their joint network neighbors. In the statistics literature, the func-

tion is known as the Jaccard similarity coefficient between two sets.

A large value of the Jaccard coefficient f(u, v) suggests that the genes

u and v are well connected and likely to be involved in the same

pathway (Ciriello et al., 2012), and that the corresponding genes

should be clustered together.
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Fig. 1. Histogram of shortest distances between randomly selected genes and

driver genes in the network
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Given the set F , we define T 0ðJ0Þ to be the J0th percentile of the

values in F . For any u; v 2 VðGÞ, the positive weights are then

chosen according to the following formula:

wþuvðc; nÞ ¼ w1 wþuvðcÞ þw2 wþuvðnÞ; (6)

where w1;w2 � 0; w1 þw2 ¼ 1, and where the indices c and n indi-

cate ‘coverage’ and ‘network’. The coverage weight, as before,

equals

wþuvðcÞ ¼
1; if Dðu; vÞ > TðJÞ

1

TðJÞ �Dðu; vÞ otherwise;

8><
>: (7)

and the network weight equals

wþuvðnÞ ¼
1; if f ðu; vÞ > T 0ðJ0Þ

1

T 0ðJ0Þ � f ðu; vÞ otherwise:

8><
>: (8)

Again, in order to ensure that for all

u; v 2 VðGÞ; w�uvðeÞ þwþuvðc; nÞ � 1, we add the additional

constraints

if wþuvðc;nÞ þw�uvðeÞ < 1; (9)

set w�uvðeÞ ¼
w�uvðeÞ

wþuvðc; nÞ þw�uvðeÞ
; and wþuvðc; nÞ ¼ 1�w�uvðeÞ:

The weights w1, w2 may be chosen in such a way as to empha-

size the importance of either coverage or network information.

We suggest using w1 ¼ w2 ¼ 1=2 in a coverage/network only test,

although our analysis reveals that emphasizing one criterion over

the other offers improved algorithm performance on some

datasets.

3.1.3 Clustering weights determined based on mutual exclusivity,

coverage and gene expression data (EX-ME-CO)

Similar to network information, expression data may be incorpo-

rated through the positive weights, using the assumption that co-

expressed genes may be involved in the same function or cancer

pathway. Hence, highly (positively or negatively) co-expressed genes

should be encouraged to cluster together.

To explain how to incorporate gene expression data into the

clustering procedure, assume that zðuÞ and zðvÞ denote the vectors

of time-evolving expression values corresponding to genes u and v,

respectively. The first step in assigning the positive weights is to de-

termine the set G ¼ fgðu; vÞg, where for every pair of genes u, v,

gðu; vÞ ¼ jhzðuÞ; zðvÞijjjzðuÞjj jjzðvÞjj : (10)

Here, ha; bi denotes the classical inner product of the vectors a

and b, while jjajj stands for the ‘2 norm. A large value for g(u, v) in-

dicates that the expression vectors of u and v are highly correlated

and hence should be clustered together (we used absolute values to

capture both positive and negative correlations). Also, note that 0

� gðu; vÞ � 1 for all u and v.

Given the set G, we let T 00ðJ00Þ denote the J00th percentile of the

values in G. For any u; v 2 VðGÞ, the positive weights are chosen ac-

cording to the following formula:

wþuvðc; xÞ ¼ w1 wþuvðcÞ þw2 wþuvðxÞ; (11)

where w1;w2 � 0; w1 þw2 ¼ 1, and

wþuvðcÞ ¼
1; if Dðu; vÞ > TðJÞ

1

TðJÞ �Dðu; vÞ otherwise;

8><
>: (12)

and

wþuvðxÞ ¼
1; if gðu; vÞ > T00ðJ00Þ

1

T 00ðJ00Þ � gðu; vÞ otherwise:

8><
>: (13)

Hence, all the algorithmic conditions required are satisfied for

the weights, except possibly the third one. In order to make sure

that for all u; v 2 VðGÞ; w�uvðeÞ þwþuvðc;xÞ � 1, we include an add-

itional condition that

if wþuvðc; xÞ þw�uvðeÞ < 1; (14)

set w�uvðeÞ ¼
w�uvðeÞ

wþuvðc; xÞ þw�uvðeÞ
; and wþuvðc;xÞ ¼ 1�w�uvðeÞ:

Note that other combinations of datasets may be used, with ap-

propriate changes in the weights. For example, incorporating cover-

age, network information as well as expression information into a

positive weight may be accomplished by setting

wþuvðc; n;xÞ ¼ w1 wþuvðcÞ þw2 wþuvðnÞ þw3 wþuvðxÞ; (15)

where w1;w2;w3 � 0; w1 þw2 þw3 ¼ 1.

Figure 2 illustrates how the various data sources were integrated

into positive and negative clustering weights.

3.2 Clustering algorithms
The classical formulation of correlation clustering does not include

cluster size restrictions. On the other hand, all known driver identifi-

cation methods operate with de facto cluster size bounds, as the

cluster sizes govern the computational complexity of the method.

For example, comprehensive testing of CoMEt reveals that the algo-

rithm fails to operate beyond cluster sizes of 10–12. In order to per-

form a fair comparison, we introduce a cluster size constraint in our

algorithm, by assuming that all clusters are of size K. Clearly, setting

K equal to the number of vertices (genes) removes the cluster size

constraint, hence our algorithm has a large flexibility in cluster size

selection. An additional reason for choosing a restricted cluster size

is that we expect driver genes of specific cancer types to be grouped

together within clusters, and as already remarked, a number of re-

cent results suggest that only a few drivers are actually present in

any cancer type. Making the clusters excessively large would poten-

tially lead to inclusions of multiple cancer type drivers in the same

cluster, thereby obscuring the fine partition of the drivers.

Nevertheless, the user of the method may choose K according to her/

his own requirements. Yet another reason for introducing cluster

sizes is to avoid the shortcomings of many known clustering

Fig. 2. Heterogenous data sources converted into different clustering weights
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algorithms which tend to produce non-informative ‘giant clusters’

and singleton clusters.

The bounded cluster size correlation clustering problem for

driver gene inference may be formulated as follows. As already

described, let K be a ‘hard’ bound on the size of the driver clusters,

and let the positive wþ and negative weights w� be chosen accord-

ing to a desired combination of datasets, as explained in the previous

section. The optimum clustering may be found by solving the integer

linear program (ILP) below.

minimize
x

X
e2EðGÞ

ðwþe xe þw�e ð1� xeÞÞ (16)

subject to xuv � xuz þ xzv ðfor all distinct u; v; z 2 VðGÞÞ (17)

X
v6¼u

ð1� xuvÞ � K ðfor all u 2 VðGÞÞ (18)

xe 2 f0;1g ðfor all e 2 EðGÞÞ: (19)

In this formulation, and for a fixed edge e¼uv, xuv¼1 implies

that u and v should belong to different clusters and xuv¼0 implies

that the two vertices should belong to the same cluster. Note that

the triangle inequality (17) ensures that if u and z are in the same

cluster and z and v are in the same cluster, then u and v are also in

the same cluster. Any clustering of the vertices can be described

using the variables xe. For a fixed clustering, the objective function

is the cost associated with that clustering.

Solving the ILP is NP-hard. We hence relax the problem by

changing the integer constraint xe 2 f0;1g to an interval constraint

xe 2 ½0;1�. This relaxation leads to a classical linear program (LP),

the solution of which may be fractional. To obtain a valid clustering,

the fractional solutions have to be subsequently rounded to produce

integer solutions. Unfortunately, known rounding algorithms we

previously developed in Puleo and Milenkovic (2015) tend to pro-

duce very small clusters, often as small as single-vertex clusters that

are not meaningful. For our study, we hence slightly modify the al-

gorithm by moving the cluster size constraint (18) from the LP to

the rounding procedure. The new rounding procedure is described

in Algorithm 1. Hence, the clustering algorithm involves solving 16

without the constraint
P

v6¼uð1� xuvÞ � K and then applying the

rounding procedure of Algorithm 1.

Algorithm 1 is closely based on the rounding algorithm described

in Charikar et al. (2003). The idea behind the rounding algorithm is

to pivot on one vertex, examine its closest neighbors, where closeness

is governed by the value of the output variables xe of the LP, and

partition large neighborhoods if needed to get clusters of size at most

Kþ1. In the Appendix of the Supplementary Materials, we prove

that the LP and Rounding Algorithm 1 provides a 9-approximation

for the ILP problem, given that the parameter a is set to 2/7 and given

that the weights obey the following constraints:

• wþe � 1 for every edge e, and
• wþe þw�e � 1 for every edge e.

The above inequalities were addressed as described in the previ-

ous section, and we remind the reader that they were imposed on

the weights through proper normalization.

Note that we only used high frequency mutations for our cluster-

ing problem, and hence did not encounter any computational issues

with the LP solvers. On the other hand, if one were to use all 25 000

genes in the analysis, the LP solver implemented in Gurobi (https://

www.gurobi.com/) would inevitably break down due to the large

number of constraints, which is quadratic in the number of genes. In

this case, a much simpler scalable solution is to use approximate LP

solvers, akin to those described in Sridhar et al. (2013). The approxi-

mate solver is guaranteed to produce a solution that does not exceed

the LP solution by more than a factor 1þ �, for some small value of

�, by using gradient descent methods that are highly scalable.

3.3 Evaluation methods
We evaluated the performance of both C3 and CoMEt in terms of

their ability to detect mutually exclusive, high-coverage and bio-

logically relevant gene clusters. At this point, it is important to ob-

serve that the inference and evaluation strategies may appear to

involve circular arguments: Mutual exclusivity, coverage and net-

work distance, used to predict the clusters, are also used to evaluate

the performance of the clustering method. But this is clearly not the

case, as mutual exclusivity, coverage and network distance are opti-

mization constraints, and one always needs to test the quality of a

(approximate) solution to an optimization problem based on how

well the constraints are accounted for. Other driver discovery tools,

such as CoMEt, use the same constraint modeling and evaluation

criteria. Furthermore, we added one more evaluation criteria,

related to biological significance and pathway enrichment analysis,

which is independent on the optimization criteria. As will be shown

in the subsequent section, this evaluation criteria confirms the qual-

ity of the C3 analysis for cancer driver gene inference and its im-

provements over CoMEt.

We ran both the C3 and CoMEt methods using mutation and

CNV data collected from TCGA, pertaining to breast cancer

(BRCA) (Network et al., 2012) and glioblastoma (GBM) (Brennan

et al., 2013). In addition to GBM and BRCA, we also considered

kidney cancer (KIRC) and ovarian cancer (OV), but the available

patient data appeared limited at this stage to allow for statistically

significant and comprehensive results. We accessed the TCGA provi-

sional data using the cBioPortal platform (Gao et al., 2013) on

August 14, 2015. We ran both methods using the same alteration

dataset. We evaluated both point mutations and indels, and for

CNVs, we used the GISTIC thresholds (Mermel et al., 2011) of –1

and 3 as our cut-offs (as already pointed out in the previous section).

Algorithm 1

Input: fxege2EðGÞ, a and K

Let S ¼ VðGÞ.
while S 6¼1 do

Let the ‘pivot vertex’ u be an arbitrary element of S.

Let T ¼ fw 2 S� fug : xuw � ag.
if
P

w2T xuw � ajTj=2 then

Output the singleton cluster {u}.

Let S ¼ S� fug.
else if jTj � K then

Output the cluster fug [ T.

Let S ¼ S� ðfug [ TÞ.
else

Partition T as T ¼ T 00 [ T1 [ � � � [ Tp, where jT 00j ¼ K

and each jTij ¼ Kþ 1 for 0 < i < p and jTpj � Kþ 1.

Let T0 ¼ fug [ T 00.

Output the clusters T0, T1;T2; . . . ;Tp.

Let S ¼ S� ðfug [ TÞ.
end if

end while
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To focus on mutations with high frequency, we only selected genes

in the top 95 percentile of alteration frequencies, thereby obtaining

130 genes spanning 959 patient samples in BRCA and 170 genes

spanning 291 patient samples in GBM.

To test the effects of cluster sizes and the quality of our results,

we ran both C3 and CoMEt to find clusters of sizes upper bounded

by 5, 6, 7, 10 and 15. As already pointed out, larger cluster sizes are

easily accommodated for by C3, but since CoMEt failed to produce

solutions for clusters of sizes roughly greater than ten, we restricted

our attention to the aforementioned range of values. Due to the fact

that correlation clustering and CoMEt will cluster all genes in a

dataset, and hence produce a partition of the gene set, a large num-

ber of clusters will contain neutral mutations only and will hence

have no biological significance. This is why we only compared the

top ten most mutually exclusive gene sets generated by C3 with those

of CoMEt.

We ran CoMEt with 1 000 iterations each and 3 initialization

points to ensure both timely and consistent runs. For C3, we ran the

C3 clustering method for all combinations of weights w1;w2;w3 2 f
0; 0:25; 0:5; 0:75;1g that satisfy w1 þw2 þw3 ¼ 1, but selected to

report only results for the weight parameters w1 ¼ 0:167 (coverage),

w2 ¼ 0:333 (network information) and w3 ¼ 0:333 (expression

data). Our choice is governed by the fact that coverage seems to be a

biologically much less important criteria then network information

or expression. Hence, high weights for expression and network in-

formation increase the ability of the C3 algorithm to detect biologic-

ally significant clusters. Furthermore, the patient coverage criteria

appears to be less relevant than pathway coverage and some other

coverage properties that have not been explicitly investigated in the

literature. Nevertheless, we observe that the choice of the weights

may be completely governed by the user, and that the increase in

one weight may produce better results in one performance category

while reducing the performance in another category.

We used four statistical methods to assess the performance of the

algorithms which reflect both the statistical and biological signifi-

cance of the clusters found.

Mutual Exclusivity. To evaluate the degree of mutual exclusivity

in a cluster, we performed a Fisher’s exact test (Fisher, 1922) for

each pair of genes in the cluster. The Fisher’s exact test uses a hyper-

geometric distribution to calculate the probability of observing a

2�2 contingency table of a total of n samples, with a samples that

have an alteration in two genes (say, gi and gj), b samples with an al-

teration in gene gi only, and c samples with an alteration in gene gj

only. If d is the number of samples with no alteration in either gene,

then the probability of co-mutation is evaluated according to

Pðgi; gjÞ ¼

aþ b

a

 !
cþ d

c

 !

n

aþ c

 ! : (20)

We also evaluated the overall exclusivity of a cluster as the me-

dian value of each pairwise exclusivity test, for each pair of genes gi,

gj in the network. The pairwise Fisher’s method has also been used

by the Mutex suite to establish mutual exclusivity (Babur et al.,

2015). However, because in our context the Fisher’s exact test is

used as an evaluation rather than as a discovery tool, we used the

median pairwise P-value rather than the maximum P-value to get a

better sense of the overall exclusivity of genes within a cluster. It is

also important to note that while CoMEt has a built-in method that

generalizes the exclusivity test to a 2k contingency table for a cluster

size k � 2, the exponential size of their test set makes evaluation for

large cluster sizes computationally impractical. An alternative test

for overall mutual exclusivity is a permutation test, as implemented

by MEMo, which compares the exclusivity of a gene set by sampling

random gene sets and patients with multiple alterations.

Coverage. To compare and evaluate the overall coverage of a

cluster found by C3 or CoMEt, we calculated and reported the pro-

portion of patients with at least one alteration in a gene belonging to

the given cluster.

Network Clustering. We performed an additional pathway ana-

lysis for the potential cancer gene drivers. As pointed out in the pre-

vious section, driver genes tend to be, on average, closer to each

other in a pathway compared to randomly selected genes. Our tests

involved assessing the shortest network distance of genes within the

discovered clusters. We remind the readers that the distances were

evaluated using Dijkstra’s Algorithm on 8726 genes from Ciriello

et al. (2012).

Biological Significance. In addition to testing the quality of the

algorithm in terms of optimizing mutual exclusivity and coverage,

we also investigated the biological significance of the C3 and CoMEt

methods from the perspective of gene discovery and pathway ana-

lysis. Although there is no overarching gold standard to determine

biological significance, a commonly accepted metric employed by

MEMo, Dendrix, Mutex, CoMEt and other similar tools is to count

the number of known driver genes found within the best clusters ac-

cording to the given criteria. These clusters usually contain known

driver genes. To determine the driver gene-based biological signifi-

cance, we calculated the proportion of drivers found in the ten most

mutually exclusive C3 and CoMEt clusters using a comprehensive,

curated list of known drivers from the CGC.

It is important to point out that while the four test benchmarks

we introduced are a reliable way to test the optimization quality and

performance of CoMEt and C3, no perfect benchmark exists for de-

tecting mutually exclusive and biologically significant genes clusters.

The hope is that multiple evaluation methods taken together may

provide a better understanding of which methods outperform others

in a given parameter and criteria setting.

4 Results

In what follows, we demonstrate that C3 outperforms CoMEt in al-

most all of the aforementioned benchmarking criteria, or more pre-

cisely, for three out of the four chosen criteria. This is achieved

without any special parameter tuning or optimization. As a rule of

thumb, C3 can be made to outperform CoMEt in any chosen single,

pair of triple of criteria by adjusting the weights. This observation

may be explained by the fact that the weights trade off the strengths

of different modeling assumptions. We supplement our statistical

analysis with a discussion of the biological relevance of our findings,

and explore the role of the new potential drivers found by C3 within

their driver gene communities. In particular, we discuss the signifi-

cance of large mutually exclusive clusters that cannot be recovered

by other methods. Recall that we restrict our attention to the ten best

performing clusters according to mutual exclusivity, as this approach

was used in the original evaluation process of the CoMEt algorithm.

4.1 Performance evaluation
The results of our extensive comparison between C3 and CoMEt, re-

garding mutual exclusivity, coverage, driver identification and

pathway-level evaluation, are shown in Figure 3. Both algorithms

were tested on the same server with a 256 GB RAM memory. Both

methods ran uninterruptedly when the cluster sizes were constrained
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to k ¼ 5;6; 7 and 10. CoMEt reported segfault memory errors for

k¼15, and for this case, only C3 was benchmarked.

To assess the biological significance of the two methods in terms

of their ability to cluster high-impact drivers from the CGC reposi-

tory together, we compared the results of C3 and CoMEt both to

each other and to a ‘baseline’ value equal to the average proportion

of drivers in the ten most mutually-exclusive clusters found, in this

case 0.067, using uniform random sampling of genes (see Fig. 3A).

In BRCA, we found that C3 detected a median driver proportion of

0.160 and CoMEt detected a median driver proportion of 0.117 in

the top ten clusters. C3 outperformed CoMEt for each cluster size.

We also used a Mann–Whitney Rank Sum test (Rosner and Grove,

1999) to compare the overall performance of the algorithms with re-

spect to mutual exclusivity, for all cluster sizes. We chose a rank-

sum test because it is unclear that the drivers are following a normal

distribution due to the small amount of data points available. The

results show that C3 outperforms CoMEt (P-value of 0.0079) in

terms of amount of drivers in clusters. C3 also outperforms CoMEt

on GBM, with a median proportion of drivers per cluster equal to

0.170, compared to a 0.12 proportion of drivers per cluster found

by CoMEt. This finding holds for every cluster size, with a rank-sum

test P-value of 0.0361. Both methods succeed in finding biologically

significant drivers within clusters exhibiting high mutual exclusivity,

and both methods significantly outperform the expected number of

drivers per cluster in the random setting (P-value 1:594� 10�5 and

P-value 1:312� 10�3 for C3 and CoMEt, respectively).

We next tested the clusters found by each method based on their

mutual exclusivity (see Fig. 3B). To do so, we used the previously

described pairwise Fisher’s exact test to obtain a P-value for each of

the top ten clusters of the two methods. For better visualization, we

performed a negative log transform on the P-values, and plotted the

transformed P-value distribution. Hence, in this system, larger val-

ues indicate more mutually exclusivity. We again used a Mann–

Whitney rank-sum test to evaluate the performance of C3 and

CoMEt. For BRCA, one can see that while both methods have sig-

nificant median exclusivity values (P ¼ 7:541� 10�6 for C3 and P

¼ 3:337� 10�4 for CoMEt), C3 has an overall more significant p-

values for each cluster size. The median P-value of C3 for each clus-

ter size is lower than its CoMEt counterpart except for the case

k¼10. However, C3 does have superior performance overall with a

rank-sum P-value of P ¼ 4:0202� 10�4. For GBM, the median ex-

clusivity results are not as strong as for the BRCA set, for both the

C3 and CoMEt method. C3 has a median P-value of 0.3795 as

opposed to CoMEt’s 0.5022. The general drop in significance may

be attributed to a lower confidence of the Fisher’s test due to a small

number of samples available; recall that the GBM set involved 291

samples, compared to 959 BRCA samples. This indicates that one

should look at individual significant clusters to evaluate mutual ex-

clusivity. Even for the reduced median P-value regime, C3 outper-

forms CoMEt in significance, having lower median P-values for

each cluster size. Overall, the C3 P-values are consistently and sig-

nificantly lower than those produced by CoMEt for mutual exclusiv-

ity (the rank-sum test P-value equals 0.04401).

The results of the coverage tests are depicted in Figure 3C. In the

coverage benchmark, CoMEt outperforms C3 for GBM, but neither

method outperforms the other for BRCA. In BRCA, both methods

show comparable performance, with a median result for the fraction

of samples covered equal to 0.5505 for C3, and 0.5662 for CoMEt.

This rather poor performance of both methods is observed for all

values of k, with no P-value based on Student’s T-test (Zimmerman,

1987) being less than 0.05. The largest difference in coverage re-

corded for the two methods is present for k¼6. In conclusion, there

appears to be no statistical difference between C3 and CoMEt in

terms of BRCA coverage percentage (P-value of 0.5127). In GBM,

the median P-value for coverage difference is more pronounced. The

median coverage of C3 is 0.632 and the median coverage of CoMEt

is 0.696. CoMEt finds significantly higher-coverage clusters accord-

ing to Student’s t-test, with P-value 0.0345, and the most pro-

nounced coverage percentage differences exist for small values of k

(0.3745 versus 0.6495 for k¼5 C3 and CoMEt, respectively). It is

also important to note the wide distribution of coverage score values

produced by C3 for small k: the IQR (Interquartile range) value is

roughly 0.35 for k¼5. The most likely reason behind this result is

that our test weights were chosen to boost the relevance of mutual-
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each benchmark test. (A) The results based on the driver gene evaluation criteria. The y-axis represents the proportion of drivers found by each method, con-
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exclusivity and biological significance rather than coverage. Mutual

exclusivity accounts for 100% of the negative weights of edges,

while coverage accounts for only 16.7% of the positive weights. We

justify this weight choice by the fact that it leads to multiple signifi-

cant cluster discovery and with our assumption that coverage is a

less significant driver property compared to mutual exclusivity. We

also point out that it appears that a biologically more relevant cover-

age constraint is pathway coverage, rather than patient sample

coverage.

As already mentioned in the previous sections, one advantage of

C3 is that the user can adjust the weights according to her/his own

belief about the significance of patient coverage. For example, by

changing the averaging weights in our GBM run to w1 ¼ 0:60

(coverage), w2 ¼ 0:20 (network) and w3 ¼ 0:20 (expression), we

obtain a coverage percentage of 0.7903 for k¼5. However, this ex-

cellent coverage comes at a cost of a less significant mutual exclusiv-

ity score (fractional value 0.4288) and a lower proportion of

detected drivers (fractional value 0.1267). As may be seen from the

above example, C3 can be adapted to the user’s specification to best

reflect the scope and preferences of the analysis.

Another setting in which we analyzed C3 and CoMEt involves

pairwise distances of drivers in the network (see Fig. 3D). Here, we

calculated the average pairwise distance between all pairs of genes

clustered together. We then used Student’s t-test to determine the

statistical significance of this value. We also compared the values for

both algorithms based on 1000 randomly selected genes by using a

permutation test. For BRCA, we found no significant performance

difference between the two methods in terms of the average pairwise

distance: 3.110 for C3 and 3.070 for CoMEt, with a P-value of

0.9330. In GBM, C3 showed a smaller average pairwise distance of

2.908 compared to CoMEt’s 3.097. This difference is statistically

significant, with a P-value of 0.0379. The small average network

distance results of C3 for GBM, coupled with the low coverage,

leads to the conclusion that C3 favors niche, exclusive clusters in

biologically relevant cancer pathways. Hence, the method may be

useful for discovering specific molecular cancer subtypes. Both

methods had an average pairwise distance well below the permuta-

tion benchmark of 3.903: the P-values of both C3 and CoMEt were

less than 2� 10�16 for both cancers.

In conclusion, from our detailed evaluation we conclude that al-

though C3 does not simultaneously outperform CoMEt with respect

to all four evaluation criteria, but only three of them (which already

represents a significant advantage), the C3 performance indicates a

strong overall propensity to select biologically more relevant and

more mutually exclusive clusters, with a higher degree of flexibility

compared to CoMEt.

4.2 Discovering potential driver pathways
We examine next the potential of the C3 algorithm to detect clusters

whose genes may be new candidate cancer drivers. We focus our

search on clusters that contain biologically significant driver genes

and known biological network interactions, and exhibit high mutual

exclusivity and coverage. At the same time, we only consider the large

cluster size regime, as results in this domain have not been previously

reported in the literature and as they offer many new interesting in-

sights. Two examples of our analysis are shown in Figures 4 and 5.

In BRCA, one candidate cluster with several potential novel

driver genes is the cluster containing PTEN, HUWE1, CNTNAP2,

GRID2, CACNA1B, CYSLTR2, MYH1 depicted in Figure 4. The

genes in the candidate cluster are mutually exclusive

(P� value ¼ 0:0084). The genome landscape of this cluster is

dominated primarily by mutations in PTEN and HUWE1, and sec-

ondarily by homozygous deletions in PTEN and CYSLTR2. The

most frequently altered gene in this set is a common driver gene

PTEN, a tumor suppressor gene that negatively regulates the AKT/

PKB apoptosis pathway (Stambolic et al., 1998). The remaining six

Fig. 4. A cluster of potential driver genes inferred from BRCA. (A) The alter-

ation landscape of the cluster, with blue representing mutation events, red

representing copy number deletions and green representing copy number

amplifications. (B) A known subnetwork which contains 6 genes (out of 7) in

(A). The more intense the red, the higher the alteration frequency of the gene.

Nodes highlighted in black represent driver candidates identified by C3 within

a small subnetwork. Edges are depicted in black if there exists a direct inter-

action between two genes. Green edges represent an interaction that under-

goes a protein state change. Purple edges are other interactions

Fig. 5. A cluster of potential driver genes inferred from GBM. (A) The alter-

ation landscape of the cluster, with blue representing mutation events, red

representing copy number deletions and green representing copy number

amplifications. (B) A known subnetwork which contains 6 genes (out of 10) in

(A). The more intense the red, the higher the alteration frequency of the gene.

Nodes highlighted in black represent driver candidates identified by C3 within

a small subnetwork. Edges are depicted in black if there exists a direct inter-

action between two genes. Green edges represent an interaction that under-

goes a protein state change. Purple edges are other interactions
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genes in the cluster are potential driver candidates. HUWE1 is a

part of the Mule multidomain complex of the HECT domain family

of E3 ubiquitin ligases responsible for apoptosis suppression, DNA

damage repair, and transcriptional regulation (Inoue et al., 2013).

CNTNAP2 is a neurexin protein with functions in cell-to-cell adhe-

sion and an epidermal growth factor and was found to be hypome-

thylated in breast cancer cell lines (Shann et al., 2008).

Hypomethylation and the association with epidermal growth fac-

tors, coupled with a large number of amplifications in the alteration

landscape of CNTNAP2 suggest potential oncogenic functions of

the gene. GRID2 is an ionotropic glutamate receptor that is fre-

quently deleted in lymphomas (Roy et al., 2011). CACNA1B codes

for a N-type calcium channel which is responsible for calcium in-

flux. Defects in the calcium influx channel can lead to alteration in

the apoptosis, proliferation, migration and invasion pathways of

breast cancer (Azimi et al., 2014). CYSLTR2 is a proinflammatory

cysteinyl leukotriene receptor that plays a role in cancer cell differ-

entiation and is associated with breast cancer survival

rates (Magnusson et al., 2011). MYH1 is a myosin heavy

chain protein that plays a role in cell signaling and pro-apotosis

pathways.

Perhaps more important than the propensity of each individual

gene to be a driver is the collective interaction pattern of the seven

genes in the cluster in a cancer pathway. From Figure 4, it is clear

that the each gene in the cluster interacts with each other in a

tightly-connected community with no gene more than three nodes

away when plotted in the network, using the cBioPortal visualiza-

tion tool. The seven genes in the cluster PTEN, HUWE1,

CNTNAP2, GRID2, CACNA1B, CYSLTR2, MYH1 are strong can-

didates to define a novel driver pathway. This conclusion is rein-

forced by the presence of high impact common drivers (TP53, MYC,

AKT and PIK3R1) which define several important cancer pathways

such as apoptosis, DNA repair and cell cycle arrest (Stemke-Hale

et al., 2008; Vazquez et al., 2008).

We also examined a cluster containing potential cancer drivers

relevant for GBM. In GBM, we found a cluster of size 10 with four

known drivers and many potential drivers. The cluster includes

GLI1, WNT2, BRAF, PLCG1, FAS, CREBBP, BRCA2, GLI2,

PIK3R5, VAMP3 (see Fig. 5). This large cluster has a P-value of

0.0901 in terms of mutual exclusivity, which is actually low as com-

pared to other GBM clusters. The cluster also contains several im-

portant driver genes such as WNT2, BRAF, BRCA2 and CREBBP

which encompass pathways such as sonic hedgehog signaling, cell

fate determination, cell growth and apoptosis, checkpoint activation

and DNA repair.

Additionally, six out of the ten members are within the same

compact network community (GLI1, PLCG1, FAS, CREBBP,

BRCA2, PIK3R5). Of these six genes, GLI1 and GLI2 are hedgehog

signaling genes that are common and first isolated in glioblastoma.

These genes are responsible for cell differentiation and stem cell self-

renewal (Clement et al., 2007). PLCG1 is involved in intracellular

transduction of receptor-mediated tyrosine kinase activators, and it

has been classified as a biomarker in GBM (Ser~ao et al., 2011). FAS

is a cell surface receptor that mediates apoptosis. FAS is known as a

histological hallmark of GBM, affecting both apoptosis and necrosis

factors (Gratas et al., 1997). Finally, PIK3R5 is a subunit of phos-

phatidylinositol 3-kinases who together have important effects on

cell growth, proliferation, differentiation, motility, survival and

intracellular trafficking.

Additional cluster analysis examples are relegated to the

Supplementary materials, focussing on clusters that contain lesser

known and documented driver genes.

5 Discussion and conclusion

We described a novel method, termed C3, which has the potential to

precisely and efficiently identify clusters of gene modules with mutu-

ally exclusive mutation patterns. The C3 algorithm uses large-scale

cancer genomics datasets which are pre-processed to yield param-

eters governing novel constrained correlation clustering techniques.

The optimization criteria used in clustering include patterns of mu-

tual exclusivity of mutations, patient sample coverage and network

driver concentration.

There are several major advancements of our method when com-

pared to previously known approaches. Unlike methods that use

randomized approaches without the guarantee that multiple runs of

the methods on the same data will produce compatible results (such

as CoMEt), C3 is ‘consistent’ in so far that by running the same LP

solver, the same results will be generated. Also, C3 has computa-

tional complexity that does not depend on the chosen cluster sizes,

and is hence much more appropriate for large cluster problems than

other methods. Furthermore, it partitions the gene set and hence cre-

ates clusters covering all genes used in the analysis, although it may

also be adapted to accommodate overlapping clusters. This is in con-

trast with the results produced by other methods that tend to iden-

tify only a small number of modules with limited number of genes.

None of the previous methods were able to identify clusters uti-

lizing different sources of information via a weighting mechanism.

This is important because it gives us flexibility to focus more on cer-

tain aspects based on the analysis. For example, we can focus more

on mutual exclusivity instead of coverage to identify clusters specific

to a group of samples which may facilitate the discovery of subtype-

specific modules.

By addressing the above challenges, we believe our new method C3

represents a unique tool to efficiently and reliably identify mutation

patterns and driver pathways in large-scale cancer genomics studies.
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