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Abstract

Many biological processes are governed
by protein-ligand interactions. One such
example is the recognition of self and non-
self cells by the immune system. This im-
mune response process is regulated by the
major histocompatibility complex (MHC)
protein which is encoded by the human
leukocyte antigen (HLA) complex. Un-
derstanding the binding potential between
MHC and peptides can lead to the de-
sign of more potent, peptide-based vac-
cines and immunotherapies for infectious
autoimmune diseases.

We apply machine learning techniques
from the natural language processing
(NLP) domain to address the task of
MHC-peptide binding prediction. More
specifically, we introduce a new dis-
tributed representation of amino acids,
name HLA-Vec, that can be used for a
variety of downstream proteomic machine
learning tasks. We then propose a deep
convolutional neural network architecture,
name HLA-CNN, for the task of HLA
class I-peptide binding prediction. Exper-
imental results show combining the new
distributed representation with our HLA-
CNN architecture acheives state-of-the-art
results in the majority of the latest two
Immune Epitope Database (IEDB) weekly
automated benchmark datasets. We fur-
ther apply our model to predict binding on
the human genome and identify 15 genes
with potential for self binding. Codes
are available at https://github.com/uci-
cbcl/HLA-bind.

1 Introduction

The major histocompatibility complex (MHC) are
cell surface proteins used to bind intracellular
peptide fragments and display them on cell sur-
face for recognition by T-cells [Janeway et al.,
2001]. In humans, the human leukocyte antigens
(HLA) gene complex encodes these MHC pro-
teins. HLAs displays a high degree of polymor-
phism, a variability maintained through the need
to successfully process a wide range of foreign
peptides [Jin et al., 2003, Williams, 2001].

The HLA gene lies in chromosome 6p21 and
is comprised of 7.6Mb [Simmonds et al., 2007].
There are different classes of HLAs including
class I, II, and III corresponding to their location
in the encoding region. HLA class I is one of
two, the other being class II, primary classes of
HLA. Its function is to present peptides from in-
side cells to be recognized either as self or non-
self as part of the immune system. Foreign anti-
gens presented by class I HLAs attracts killer T-
cells and provoke an immune response. Simi-
larly, class II HLAs are only found on antigen-
presenting cells, such as mononuclear phagocytes
and B cells, and presents antigen from extracellu-
lar proteins [Ulvestad et al., 1994]. Unlike class I
and II, class III HLAs encode proteins important
for inflammation.

The focus of this paper is on HLA class I pro-
teins. As these molecules are highly specific, they
are able to bind with only a tiny fraction of the
peptides available through the antigen presenting
pathway [Nielsen et al., 2016, Yewdell, 1999].
This specificity makes binding to the HLA protein
the most critical step in antigen presentation. Due
to the importance of binding, accurate prediction
models can shed understanding to adverse drug
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reactions and autoimmune diseases [Gebe et al.,
the 2002, Illing et al., 2012], and lead to the de-
sign of more effective protein therapy and vac-
cines [Chirino et al., 2004, van der Burg et al.,
2006].

Given the importance of MHC to the immune
response, many algorithms have been developed
for the task of MHC-peptide binding predic-
tion. The following list is by no means exhaus-
tive but a small sample of previously proposed
models. Wang et al. proposed using quantita-
tive structure-activity relationship (QSAR) mod-
eling from various amino acid descriptors with
linear regression models [Wang et al., 2015].
Kim et al. derived an amino acid similarity
matrix [Kim et al., 2009]. Luo et al. pro-
posed both a colored and non-colored bipar-
tite networks [Luo et al., 2016]. Shallow and
high-order artificial neural networks were pro-
posed from various labs [Hoof et al., 2009, Koch
et al., 2013, Kuksa, 2015, Nielsen et al., 2003].
Of these approaches, NetMHC/NetMHCpan have
been shown to achieve state-of-the-art for MHC-
peptide binding prediction [Nielsen et al., 2016,
Trolle et al., 2015].

In this article, we apply machine learning
techniques from the natural language processing
(NLP) domain to tackle the task of MHC-peptide
binding prediction. Specifically, we introduce
a new distributed representation of amino acids,
named HLA-Vec, that maps amino acids to a 15-
dimensional vector space. We combine this vec-
tor space representation with a deep convolutional
neural network (CNN) architecture, named HLA-
CNN, for the task of HLA class I-peptide bind-
ing prediction. Finally, we provide evidence that
shows HLA-CNN achieves state-of-the-art results
for the majority of different allele subtypes from
the IEDB weekly automated benchmark datasets.

2 Methods

2.1 Dataset

To control for data pre-processing variabilities, we
decided to use an existing post-processed training
dataset so prediction algorithms could be more di-
rectly compared. The dataset used was filtered,
processed, and prepared by Luo et al. [Luo et al.,
2016]. This dataset contained HLA class I binding
data curated from four widely used, publicly avail-
able MHC datasets: IEDB [Vita et al., 2015], An-
tiJen [Toseland et al., 2005], MHCBN [Lata et al.,

Figure 1: We illustrate our CNN architecture for
MHC-peptide binding prediction of size 9-mers.
The input is the peptide. The embedding layer
substitues the individual amino acids with their
15-dimensional vector space representation. This
is followed by two 1-dimensional convolutional
layers preserving input length using 32 filters of
size 7. The output of the 2nd convolutional layer
is reshape into a 1-dimensional vector and is fully
connected to the next layer of the same size. This
fully connected layer is then fully connected to a
logistic output unit. The architecture is generaliz-
able to allele subtypes of any length.

2009], and SYFPEITHI [Rammensee et al., 1999].
Target indicator indicating binding or nonbinding
was readily given as one of the column in the pro-
cessed dataset. Peptides that contained unknown
or indiscernible amino acids, denoted as ”X” or
”B”, were removed from the dataset prior to train-
ing. Dataset was split into 70% training set and
30% validation set.

The test datasets were obtained from
IEDB automatic server benchmark page
(http://tools.iedb.org/auto bench/mhci/weekly/).
Allele subtypes with less than 500 training ex-
amples were excluded from testing. The lack of
training data is a well-known weakness of deep
neural networks as the model may not converge
to a solution or worst yet, may overfit to the small
training set. Indicators of binding were given
as either binary values or ic50 (half maximal
inhibitory concentration) measurements. Binary
indicators were used directly while values given
in ic50 measurements were denoted as binding if
ic50 < 500 nM.

2.2 Distributed Representation

Distributed representation has been successfully
used in NLP to train word embeddings, the map-
ping of words to real-value vector space repre-
sentations. More generally, distributed represen-
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Table 1: HLA-Vec, an amino acids distributed representation.

Amino Acid dim-1 dim-2 dim-3 dim-4 dim-5 dim-6 dim-7 dim-8 dim-9 dim-10 dim-11 dim-12 dim-13 dim-14 dim-15
A -0.1428 0.1384 0.0579 -0.2463 0.3611 0.2930 -0.2692 -0.1532 0.0249 -0.0250 0.4739 -0.1261 -0.1988 0.0109 -0.0323
C 0.1210 -0.4359 -0.2869 -0.3863 0.2308 0.0282 0.0265 -0.0629 -0.0820 0.2711 0.2992 -0.3216 0.0350 -0.1972 0.0464
E -0.0669 0.2425 0.0402 -0.2557 -0.0065 0.1357 0.0091 -0.2227 -0.2217 0.0975 0.4011 -0.0615 -0.0142 -0.2462 -0.1409
D -0.0493 0.0821 -0.0815 -0.3480 0.0629 0.2017 0.2364 -0.1319 -0.0762 0.2678 0.1717 -0.1500 0.0241 -0.1535 -0.2351
G -0.1611 0.0342 -0.1203 -0.1648 0.2604 0.0739 0.1568 -0.2627 0.0374 0.0746 0.2992 -0.3769 -0.1973 -0.0003 -0.1831
F -0.1002 -0.0711 -0.2272 -0.1740 0.2519 0.1076 0.1501 -0.1994 -0.0486 0.0774 0.1696 -0.0822 0.2303 -0.1641 -0.2655
I -0.0833 0.1719 -0.2545 -0.2451 0.1372 0.3516 0.0905 -0.0902 -0.1880 0.0864 0.0773 0.0309 0.1380 -0.2591 -0.1420
H -0.1433 -0.0003 -0.0744 -0.1195 0.3056 0.1037 0.0642 -0.0514 -0.1960 0.2619 0.1837 -0.2322 0.1123 -0.0715 -0.2034
K 0.0276 0.1958 -0.2127 -0.1873 0.0951 0.0930 0.0423 -0.2705 -0.1871 0.2797 0.2675 0.0294 0.0429 -0.2417 -0.0357
M -0.1812 0.1389 -0.1602 -0.1305 0.3983 0.2286 -0.2404 -0.1206 0.1616 0.3216 0.0079 -0.2107 -0.0639 -0.2552 -0.0892
L -0.0360 0.0927 -0.1824 -0.1546 0.2046 -0.0066 -0.0146 -0.2175 -0.1835 0.2056 0.4694 0.0770 0.0804 -0.1424 0.0520
N -0.1220 0.1053 -0.1168 -0.4092 -0.0007 0.2341 0.0629 -0.0610 -0.1055 0.4091 0.1039 0.0990 0.2457 -0.1396 -0.2956
Q -0.5482 0.0352 0.1479 -0.0171 -0.1638 0.0976 -0.0539 -0.3098 -0.1891 0.0823 0.3988 -0.1479 0.0769 -0.2872 -0.1089
P -0.3671 -0.1098 -0.0392 0.0031 0.2176 0.3222 0.1557 -0.1623 0.0569 0.1854 0.2744 -0.2758 0.2775 0.0526 0.0957
S -0.0774 -0.0416 -0.2532 -0.1159 0.2320 0.0761 -0.0995 -0.2774 -0.0892 0.2454 0.1238 -0.1930 0.0999 -0.1710 -0.1671
R 0.3854 0.1272 -0.3518 -0.1442 0.2487 0.0564 0.1701 -0.1434 0.1015 -0.0507 0.2773 -0.0669 0.2507 -0.0338 -0.0685
T -0.0935 0.0087 -0.1558 -0.1983 0.2365 0.2426 0.0244 -0.0749 -0.1608 0.0807 0.2357 -0.1303 0.1860 -0.1256 -0.0830
W -0.4829 -0.0159 0.0106 0.0676 0.3279 -0.1073 -0.0050 -0.1282 -0.1045 -0.0425 0.1982 -0.2086 -0.0252 -0.4396 -0.3651
V -0.11540 .0944 -0.1744 -0.0475 0.2863 0.3909 0.1128 -0.1018 -0.1815 0.0061 0.1972 -0.1604 0.0812 -0.2151 0.1363
Y -0.1308 -0.0410 -0.1395 0.0534 0.3133 0.2197 0.1469 -0.1309 -0.3230 0.2696 0.0919 -0.0462 0.0193 -0.2942 -0.0820

This table lists the 15-dimensional vector space distributed representation of amino acid trained
unsupervised on HLA class I peptides of all allele subtypes and lengths from the training dataset. The
dimensions are arbitrary and have no physicochemical interpretation.

tation is a means to represent an item by its re-
lationship to other items. In word embeddings,
this means semantically similar words are mapped
near each other in the distributed representation
vector space. The resulting distributed represen-
tation can then be used much like how BLO-
SUM is used for sequence alignment of proteins
[Henikoff et al., 1992] or peptide binding predic-
tion by NetMHCpan [Andreatta et al., 2015]. That
is, we encode amino acids with their vector space
distributed representation to be useable by down-
stream machine learning algorithms. Other amino
acid encoding includes Atchley factors [Atchley
et al., 2005] and Kidera factors [Kidera et al.,
1985], both of which were constructed explicitly
to summarize amino acid physicochemical prop-
erties. In the end-to-end machine learning ap-
proach we propose, the encoding is learned di-
rectly from the raw amino acid sequences in an
unsupervised manner. The vector representation is
obtained without any manual input, and as a result,
the vector space has no explicit interpretations un-
like Atchley or Kidera factors.

Recently, distributed representation had been
explored for bioinformatics applications. Specif-
ically, trigram (sequence of 3 amino acids) protein
distributed representation of size 100-dimensions
was used to encode proteins for protein fam-
ily classification and identifying disordered se-
quences, resulting in state-of-the-arts performance
[Asgari et al., 2015]. The distributed representa-
tion was further shown to grouped trigram proteins
with similar physicochemical property closer to

each other by mapping the 100-dimensional space
to 2-dimension.

Distributed representation approaches can be
classified into two broad classes: prediction-
based and count-based. Two of the most popu-
lar prediction-based, neural probabilistic language
models commonly used to develop a distributed
representation are the skip-gram model and con-
tinuous bag-of-words (CBOW) model [Mikolov
et al., 2013]. Both models are similar and is of-
ten thought of as inverse of one another. In the
skip-gram model, the adjacent context-words are
predicted based on the center (target) word. Con-
versely in the CBOW model, the center word is
predicted based on adjacent context-words.

A recently proposed distributed representation
based on more traditional count-based method is
GloVe [Pennington et al., 2014]. In this approach,
the authors worked on co-occurrence statistics ex-
plicitly and cast the problem as a weighted least
square problem with the aim to minimize the dif-
ference between the inner product of each pair
of word vectors and the logrithm of their co-
occurrences. With certain assumption, the au-
thors showed that the skip-gram model’s cost
function can be formulated equivalently to the
GloVe model. However, it has been shown that
prediction-based models are superior to count-
based models [Baroniet al., 2014], and under
equal conditions where both models’ hyperparam-
eters were highly tuned, the skip-gram model con-
sistently outperformed GloVe model on a number
of NLP tasks [Levy et al., 2015].
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In this paper, the skip-gram model is used. The
interested reader is encourage to consult the rele-
vant references for further details of the CBOW or
GloVe models.

A short overview of the skip-gram model is
given here for completeness. As originally for-
mulated by Mikolov [Mikolov et al., 2013], in
the skip-gram model, given a sequence of words
w1, w2, ..., wT , the objective is to maximize the
average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wj) (1)

where T is the total number of words (i.e. to-
tal number of amino acids) in the dataset, c is the
context window size (i.e. number of words to the
right or left of the target word, and p(wt+j |wt) is
defined as:

p(wO|wI) =
exp (v

′
wO

ᵀ
vwI )∑W

w=1 exp(v′
wO

ᵀ
vwI )

(2)

Here, vw and v
′
w are two vector space repre-

sentations of the word w. The subscripts O and
I correspond to the output (context-words) word
and input (target) word respectively. W is the total
number of unique words in the vocabulary. In typ-
ical NLP text corpus with large vocabulary, calcu-
lating the gradient of the log probability becomes
impractical. An approximation to the log proba-
bility is obtained by replacing every log p(wO|wI)
with

log σ(v
′
wO

ᵀ
vwI )+

k∑
i=1

Ewi∼Pn(w)[log σ(v
′
wi

ᵀ
vwI )]

(3)

where σ(x) = 1/(1 + exp(−x)) and k are neg-
ative samples. This was motivated by the idea that
a good model should be able to differentiate real
data from false (negative) ones.

By formulating protein data as standard se-
quence data like sentences in a text corpus, stan-
dard NLP algorithms can be readily applied. More
concretely, individual peptides are treated as in-
dividual sentences and amino acids are treated
as words. In this paper, the skip-gram model is
used with a context window of size 5, 5 negative

samples, and 15-dimensional vector space embed-
ding. Various other dimensional size were ex-
plored, however, 15-dimensions gave the best re-
sults on 10-fold cross-validation of HLA-A*02:01
subtype. The entire post-processed dataset by Luo
et al. [Luo et al., 2016] was used to learn this new
distributed representation. The 15-dimensional
vector space distributed representation, HLA-Vec,
is summarized in Table 1. Experimental results
indicate using our proposed HLA-Vec encoding
showed performance gains over Asgari’s represen-
tation, Atchley factors, or Kidera factors. Descrip-
tion of the experiements results can be found in the
Supplementary Material.

2.3 Convolutional neural network

Convolutional neural networks (CNN) have been
studied since the late 1980s and have made a
comeback in recent years along with renewed in-
terested in artificial neural networks, and in par-
ticular of the deep architecture varieties. Much
of the recent fervor has been spurned in part by
both accessibility to large training datasets con-
sisting of over millions of training examples and
advances in cheap computing power needed to
train these deep network architectures in a rea-
sonable amount of time. Although originally pro-
posed for the task of image classification [LeCun
et al., 1989, Krizhevsky, 2012, Simonyan et al.,
2014], CNN have been found to work well for gen-
eral sequence data such as natural language sen-
tences [Kalchbrenner et al., 2014, Kim, 2014]. It
is with this insight that we propose a convolutional
neural network for the task of MHC-peptide bind-
ing prediction.

The CNN architecture we propose in this paper
consists of both convolutional and fully connected
(dense) layers. Convolutional layers preserve local
spatial information [Taylor et al., 2010] and thus is
well suited for studying peptides where spatial lo-
cations of the amino acids are critical for bonding.

Our CNN model, dubbed HLA-CNN, can be
seen in Fig. 1. The input into HLA-CNN net-
work is the character string of the peptide, a 9-mer
peptide in this example. The input feeds into the
embedding layer that substitutes each amino acid
with their 15-dimensional vector space represen-
tation. The output encoding is a 2-dimensional
matrix of size 9x15. The vector space matrix is
then 1-dimensionally convolved with 32 filters of
length (rows) 7 and returns the same output se-
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Table 2: Performance comparison of NetMHCpan, sNebula, and HLA-CNN on IEDB datasets.

Dataset IEDB HLA Peptide length Peptide count Measurement NetMHCpan sNebula HLA-CNN
2015-08-07 1029125 B*27:05 9 21 binary 0.751 0.959 0.752 0.959 0.684 0.918
2015-08-07 1029061 B*57:01 9 26 ic50 0.612 0.943 0.169 0.575 0.443 0.807
2015-08-07 1028928 A*02:01 9 13 binary 0.570 0.955 0.539 0.909 0.570 0.955
2015-08-07 1028928 B*07:02 9 12 binary 0.648 1.000 0.522 0.900 0.648 1.000
2015-08-07 315174 B*27:03 9 11 binary 0.657 0.893 0.179 0.607 0.837 1.000
2015-08-07 1028790 A*02:01 9 55 ic50 0.615 0.574 0.505 0.778 0.580 0.681
2015-08-07 1028790 A*02:01 10 35 ic50 0.407 0.677 0.432 0.704 0.327 0.589
2015-08-07 1028790 B*02:02 9 55 ic50 0.582 0.713 0.372 0.680 0.426 0.804
2015-08-07 1028790 A*02:03 9 55 ic50 0.539 0.696 0.477 0.629 0.373 0.746
2015-08-07 1028790 A*02:03 10 35 ic50 0.208 0.750 0.419 0.697 0.307 0.837
2015-08-07 1028790 A*02:06 9 55 ic50 0.630 0.770 0.510 0.848 0.578 0.819
2015-08-07 1028790 A*02:06 10 35 ic50 0.572 0.768 0.525 0.680 0.638 0.920
2015-08-07 1028790 A*68:02 9 55 ic50 0.534 0.806 0.482 0.713 0.581 0.909
2015-08-07 1028790 A*68:02 10 35 ic50 0.272 0.620 0.591 0.813 0.722 0.991

Average: .511 .778 .436 .735 .521 .836
These benchmark datasets came from IEDB and encompasses the two most recent datsets. Allele sub-
types with fewer than 500 training examples were excluded from these test datasets. SRCC stands
for Spearman’s rank correlation coefficient and AUC stands for area under the receiver operating
characteristic curve.

quence length as input, resulting in a matrix of
size 9x32. 1-dimensional convolution automati-
cally constrains the current filter’s column size to
be identical to the incoming input matrix’s column
size. Therefore each of the 32 filters in the conv1
layer are of size 7x15, and in the conv2 layer are
of size 7x32. With appropriate zero-padding of the
input matrix, the same output sequence length, e.g.
9, is returned. More formally, the 1-d convolution
formula is defined as:

G[i, k] = Fk∗H =
∑
u

M∑
v=0

Fk[u, v]H[i−u,M−v]

(4)

where Fk is the kth filter, H is the input matrix,
G is the output matrix, M is the column size of
H minus 1, and u ranges from −bfilter length

2 c to
bfilter length

2 c.
The activation unit use is the leaky rectified lin-

ear units (LeakyReLU) with default learning rate
of 0.3. LeakyReLU is similar to rectified linear
units except there is no zero region which results
in non-zero gradient over the entire domain [Maas
et al., 2013]. Dropout is used after each of the
convolutional layers. Dropout acts as regulariza-
tion to prevent overfitting by randomly dropping a
percentage of the units from the CNN during train-
ing [Srivastava et al., 2014]. This has the effect
of preventing co-adaptation between neurons, the
state where two or more neurons detect the same

feature. In our architecture, the dropout percent-
age is set to 25%. The output then feeds into a sec-
ond convolutional layer with the same filter length,
activation unit, and dropout as the first convolu-
tional layer. The 9x32 matrix outputted by the sec-
ond convolutional layer is reshaped into a single
1-D vector of size 288 which is fully connected to
another layer of the same size with sigmoid activa-
tion units. This dense layer is then fully connected
to a logistic regression output unit to make a pre-
diction.

The loss function used is the binary cross en-
tropy function and the optimizer used is the Adam
optimizer with learning rate 0.004. We use a
variable batch size instead of a fixed one, choos-
ing instead to force all allele subtypes to have
100 batches no matter the total number of train-
ing samples of each subtype. The convolutional
layers’ filters are initialized by scaling a random
Gaussian distribution by the sum of edges com-
ing in and going out of those layers [Glorot et al.,
2010]. Finally, the embedding layer of HLA-CNN
is initialized to the previously learned HLA-Vec
distributed representation with the caveat that the
embedding layer is allowed to be updated during
the supervised binding prediction training for each
allele subtypes. This allows for the distributed rep-
resentation to be fined-tuned for each allele sub-
types uniquely and for the task of peptide binding
specifically. The number of epoch was less impor-
tant as we arbitrarily set max epoch to 100 but en-
force early stoppage if the loss function stops im-
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proving for 2 consecutive epochs. Solutions were
found to have converged under 40 epochs for all
test sets.

The dataset was most abundant in 9-mer HLA-
A*02:01 allele (10547 samples) therefore this spe-
cific 9-mer subtype was used for network architec-
tural design and hyperparameter tuning. Dataset
split of 70% training and 30% validation was used
to determine the optimal architecture and hyper-
paramters. While the network architecture was
designed using a single allele subtype of length
9, HLA-CNN framework is robust enough to ac-
cept and make prediction for allele subtypes of any
length.

Each test datasets of different allele subtypes
and peptide lengths are treated as completely sep-
arate tests. For a specific test dataset, the training
dataset is filtered on the allele subtype and pep-
tide length. The resulting smaller training sub-
set is then used to train the HLA-CNN model.
Due to the random nature of initialization in the
deep learning software framework used, five pre-
diction scores are made for each test sets. The
final prediction used for evaluation purposes is
taken as the average predicted score of the five
predictions. Two commonly used evaluation met-
ric for peptide binding prediction task are the
Spearman’s rank correlation coefficient (SRCC)
and area under the receiver operating character-
istic curve (AUC). The state-of-the-art NetMHC-
pan [Andreatta et al., 2015, Trolle et al., 2015], a
shallow feed forward neural network, and a more
recently developed bipartite network-based algo-
rithm, sNebula [Luo et al., 2016], will be used to
compared the performance of our proposed HLA-
CNN prediction model.

3 Results

We have introduced the HLA class I dataset. We
formulated the HLA class I peptide data as an
equivalence of text data used in NLP machine
learning tasks. We have proposed a model to learn
a vector space distributed representation of amino
acids from this HLA class I dataset. We have also
described our deep learning method and how it
takes advantage of this new distributed represen-
tation of amino acids to solve the problem of HLA
class I-peptide binding prediction. Next, we show
the result of the learned distributed representation
followed by the performance of our model against
the state-of-the-art prediction model and another

recently developed model.

3.1 Distributed Representation
The 15-dimensional distributed representation of
amino acids is shown in Table 1. Each of the 15
dimensions on their own have no explicit physic-
ochemical interpretation, unlike in Atchley factors
[Atchley et al., 2005] or Kidera factors [Kidera
et al., 1985]. They are simply the result of the al-
gorithm and our choice of embedding size for the
representation.

To see if the learned, 15-dimensional distributed
representation of the twenty amino acids was able
to capture any interesting pattern, we reduce the
15-dimensional vector space to a visualizable 2-
dimensional representation using a dimension re-
duction technique called t-distributed stochastic
neighboring embedding (t-SNE) [Maaten et al.,
2008]. t-SNE is capable of preserving local struc-
ture of the data, e.g. points closer to each other in
the original, high-dimensional space are grouped
closer together in the low 2-dimensional space.
We color this low dimensional representation with
various physicochemical properties to see if any
pattern can be discerned using this unsupervised
machine learning technique.

In Fig 2, we see the 2-D visualization of HLA-
Vec colored by various physicochemical proper-
ties, including hydrophobicity, normalized van der
waals volume, polarity, and net charge [Asgari
et al., 2015] from the Amino acid Physicochem-
ical properties Database (APDbase) [Mathura
et al., 2005]. As can be seen, there are some struc-
ture in the graphs for hydrophobicity, polarity, and
net charge; factors important for covalent chem-
ical bonding. The clusters of magenta-colored
amino acids are almost separable from clusters of
green-colored amino acids with the exception of a
few outliers. This gives validation to distributed
representation as an effective technique to auto-
matically learn encoding that is able to preserve
some important physicochemical properties with-
out explicitly constructing such an encoding by
hand.

3.2 HLA-peptide binding prediction
The results of our HLA-CNN prediction model
against NetMHCpan and sNebula on the two lat-
est IEDB benchmarks are shown in Table 2. As
AUC is a better measure of the goodness of bi-
nary predictors compared to SRCC, for evaluation
purposes between models, we say one algorithm is
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Figure 2: In these plots, each point represents the 2-D mapping of an amino acid from the 15-dimensional
distributed representation using t-SNE. The color indicates the scale of each physicochemical property.
Each amino acid is labeled with its one-letter code.

superior to another if it scores higher on the AUC
metric.

On these latest IEDB benchmark datasets, our
algorithm achieved state-of-the-art results in 10 of
15 (66.7%) test datasets. This is in contrast to
NetMHCpan, which acheived state-of-the-art re-
sults in only 4 out of 15 (26.7%) and sNebula in
4 out of 15 (26.7%). In the 10 allele subtypes
where our model achieved state-of-the-art results,
our model averaged a 9.3% improvement over the
previous state-of-the-art.

As the binary cross-entropy loss function for
this binding prediction problem operates on
binary-transformed indicator values, any sort of
ranking information encoded in ic50 binding mea-
surements are loss in the objective and is a sec-
ondary task. Indeed, we observed no strong corre-
lation or monotonicity between SRCC and AUC.
Our algorithm scored highest for the SRCC metric
on 7 of 15 test sets. NetMHCpan scored highest
on 7 test sets as well and sNebula highest on 3
test sets. However, on average performance over
all subtypes, our model gained a modest 1% im-

provement over netMHCpan.
In Fig. 3, the ROC curves are shown for all five

predictions of the HLA-A*68:02 9-mer subtype as
an example of the improvement our model gives
over the previous state-of-the-part. As can be seen,
all five curves are outperforming NetMHCpan’s
curve at almost all thresholds.

The results suggests that HLA-CNN can ac-
curately predict HLA class I-peptide binding
and outperforms the current state-of-the-art algo-
rithms. The results also confirmed that the hy-
perparamters of HLA-CNN learned on the HLA-
A*02:01 9-mer subtype generalizes well to cover
a variety of other allele subtypes and peptide
lengths, demonstrating the robustness of our algo-
rithm.

3.3 Model Ablations

In order to understand whether the distributed rep-
resentation or the CNN was responsible for the
performance of HLA-CNN, we perform a model
ablation analysis where we remove one compo-
nent of our algorithm at a time. The result shown
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Figure 3: The ROC curves for HLA-A*68:02 9-
mer test set is shown for all five predictions and
their mean compared against NetMHCpan. Our
model shows improvement across all five predic-
tions and the average prediction.

in Table 3 is of average SRCC and AUC scores
over the different allele subtypes. The table in-
dicates that the CNN is most important. In the -
CNN architecture, we run a one hidden layer (66
units) neural network like NetMHCpan [Nielsen
et al., 2016] using the HLA-Vec distributed repre-
sentation encoding and allow for fine-tuning dur-
ing training step. In the -Distributed Rep. archi-
tecture, we use a sparse, one-hot encoding with the
CNN. Performance for each allele subtypes under
these two models are available in the Supplemen-
tary Material.

3.4 Run-time Analysis

Though we did not do so, due to the relatively
small peptide binding dataset compared to ones
typically seen in NLP, both HLA-Vec and HLA-
CNN can be parallelized on a GPU for faster com-
putation. Using a single thread of a quad 3.5GHz
Intel Core i7 machine, HLA-Vec learned on the
entire dataset took 33 seconds. HLA-CNN trained
on the largest allele subtype, A*02:01 9-mers,
took less than 10 minutes to run.

Table 3: Average benchmark datasets performance
with model ablations. We find that the CNN is
most important.

SRCC AUC
HLA-CNN .521 .836

-Distributed Rep. .521 .819
-CNN .513 .818

Table 4: Top 15 human 9-mers predicted by HLA-
CNN to bind to HLA-A*02:01.

9-mer Gene Name
RAWRVVFEA AEGP
APGPRGFPG COAA1
PTYTVWYLG FA43B
PSAVAHVVV FAT1
LKEGEEDGR MTA1
PSKLHNYST NMDE2
QLAQLSSPC ROBO4
MWALCSLLR ELAC2
QAPGSVLFQ SALL4
MAGIRVTKV TGM6
PPVASFDYY TNR
SLMRQKFQW MRC1
HVSNGAPVP MSH2
KRGYFDFRI PGBD1
LNRGELKLI PIM1

3.5 UniProtKB Human Gene binding
prediction

We perform binding prediction experiment on the
entire 20,162 human protein-coding genome from
UniProtKB [The UniProt Consortium., 2017] and
randomly generated 9-mers. The 20,162 human
genes are chopped into 9-mers, with duplicates
and those containing amino acids X, B, and U fil-
tered out, leaving 1,0873,314 unique self 9-mers.
An equivalent number of nonself 9-mer proteins,
exclusive the self 9-mers, were obtained by ran-
domly permuting the 20 amino acids.

The HLA class I - A gene alone is reported to
have almost 4000 different alleles [Marsh et al.,
2010], each estimated to bind between 1,000 and
10,000 individual peptide sequences [Brusic et al.,
2004]. As each allele subtype is highly specific
and binds to only a small subset of peptides that
exhibits a particular motif [Eisen et al., 2012], we
were interested to see if any pattern could be dis-
cerned using our model to make binding predic-
tions on the sets of self and nonself 9-mers.

Fig. 4 shows the distributions of binding pre-
diction for self and nonself 9-mers using HLA-
CNN trained on the A*02:01 allele subtype. The
distribution of predicted binding probablities be-
tween the two sets of self and nonself 9-mers are
nearly identical. This was not unexpected as the
small number of training data points compared to
the overall size of the test sets led us to believe the
model would exhibit similar level of false positives
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(a) human genome peptides (b) artificially generated peptides

Figure 4: Distributions of prediction binding probabilities using HLA-CNN trained on A*02:01 allele
subtype. (a) shows the predicted distribution of human chromosome 9-mers. (b) shows the predicted
distribution of random generated 9-mers.

between the two 9-mer sets.
What is interesting is the fact that our model

predicts a high number of potential self binding 9-
mers. Table 4 shows the top 15 human 9-mers with
highest predicted binding probabilities. Shown
next to each of these 9-mers are the name of the
genes where these 9-mers originated from. A lit-
erature review shows that these 15 genes are novel
and not involved in any pathway of known auto-
immune diseases. Our model indicates that these
genes have the potential for self binding and may
be worth validating in future experiments that are
beyond the scope of this work.

4 Conclusion

In this work, we have described how machine
learning techniques from the NLP domain could
be applied to bioinformatics setting, specifically
HLA class I-peptide binding prediction. We pre-
sented a method to extract a vector space dis-
tributed representation of amino acids from avail-
able HLA classI-peptide data that preserved prop-
erty critical for covalent bonding. Using this
vector space representation, we proposed a deep
CNN architecture for the purpose of HLA class I-
peptide binding prediction. This framework is ca-
pable of making prediction for any length peptides
or any allele subtype, provided sufficient train-
ing data is available. Experimental results on the
IEDB benchmark datasets demonstrate our algo-
rithm achieved state-of-the-art binding prediction
performance on the majority of test sets over ex-
isting models.

On future work, allele-specific affinity thresh-

olds instead of a general binding affinity ic50
threshold of 500 nM can be used to identify pep-
tide binders in different subtypes. This approach
had shown superior predictive efficacy in previous
work [Paul et al., 2013]. From an architecture de-
sign standpoint, one possibility to extend the net-
work is to replace the dense layer with a convolu-
tional layer, thereby creating a fully convolutional
network (FCN). The motivation being since con-
volutional layers preserve spatial information in
the peptide, perhaps a FCN could improve perfor-
mance over the existing network if all layers in the
network had this capability. Another option is to
generalize the single output architecture to multi-
outputs. Specifically, a secondary output layer and
loss function can be added to minimize the mean
square error between gold standard ic50 values
and predicted ic50 values alongside the existing
binary cross-entropy output layer. The underlying
convolutional and fully connected layers would be
shared between these two output layers/loss func-
tions as the motivation would be to learn a model
that has both good AUC quality as well as SRCC
quality.
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