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Abstract

Motivation: Large-scale molecular data have been increasingly used as an important resource for

prognostic prediction of diseases and detection of associated genes. However, standard

approaches for omics data analysis ignore the group structure among genes encoded in functional

relationships or pathway information.

Results: We propose new Bayesian hierarchical generalized linear models, called group spike-and-

slab lasso GLMs, for predicting disease outcomes and detecting associated genes by incorporating

large-scale molecular data and group structures. The proposed model employs a mixture double-

exponential prior for coefficients that induces self-adaptive shrinkage amount on different coeffi-

cients. The group information is incorporated into the model by setting group-specific parameters.

We have developed a fast and stable deterministic algorithm to fit the proposed hierarchal GLMs,

which can perform variable selection within groups. We assess the performance of the proposed

method on several simulated scenarios, by varying the overlap among groups, group size, number

of non-null groups, and the correlation within group. Compared with existing methods, the pro-

posed method provides not only more accurate estimates of the parameters but also better predic-

tion. We further demonstrate the application of the proposed procedure on three cancer datasets

by utilizing pathway structures of genes. Our results show that the proposed method generates

powerful models for predicting disease outcomes and detecting associated genes.

Availability and implementation: The methods have been implemented in a freely available R

package BhGLM (http://www.ssg.uab.edu/bhglm/).
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1 Introduction

Large-scale omics data provide extraordinary opportunities for

detecting new biomarkers and building accurate prognostic and pre-

dictive models. However, such data also introduce statistical and

computational challenges. One particular challenge is that these

data are typically high dimensional, which makes penalized sparse

models a good fit for analyzing such data. Since the original pro-

posal of the lasso by Tibshirani (1996), penalized regressions for

variable selection in high-dimensional settings have attracted consid-

erable attention in modern statistical research (Hastie et al., 2009,

2015; Tibshirani, 1996). These methods put L1-penalty on the coef-

ficients and shrink many coefficients exactly to zero, thus perform-

ing variable selection. Zhang (2007, 2010) introduced a minimax

concave penalty (MCP) for high-dimensional regressions, which is

motivated by and similar to the smoothly clipped absolute deviation

(SCAD) penalty function (Fan and Li, 2001). Both MCP and SCAD

aim to eliminate unimportant predictors from the model while leav-

ing important predictors un-penalized. MCP and SCAD are thus

asymptotically oracle-efficient (Zhang, 2007, 2010). These penaliza-

tion approaches have been widely applied for disease prediction and

prognosis using large-scale molecular data (Barillot et al., 2012;

Rapaport et al., 2007; Sohn et al., 2013; Yuan et al., 2014; Zhang

et al., 2013; Zhao et al., 2015).

Furthermore, researchers have noticed that molecular predictors

possess natural group structures which can be used in improving

analysis. For example, when analyzing gene expression data, one

can group genes into functionally similar sets as in Gene Ontology

(GO) terms (Gene Ontology, 2015) or into known biological path-

ways as in the Kyoto encyclopedia of genes and genomes (KEGG)

pathways (Kanehisa et al., 2016). In genetic association studies,

some single nucleotide polymorphisms (SNPs) may fall within the

intragenic and regulatory regions of a given gene, where the genetic

region can be considered as a group structure. In microbiome

research, microbes are classified at multiple taxonomy levels (i.e.

phylum, class, order, family, genus and species), within each taxon-

omy level having many subdivisions, where these taxonomy levels

can be considered as a group structure. These examples show com-

plex group structures among predictors, in various forms including

hierarchical and overlapping groups, which have been often ignored

in genetic modeling. Nonetheless, it is desirable to incorporate such

biological grouping information into modeling, since it may improve

both the interpretability and prediction accuracy of the models.

Several methods have been recently proposed to utilize the

grouping information of high-dimensional data. A popular method

is the group Lasso (Yuan and Lin, 2006), which performs group

level selection, including or excluding an entire group of variables.

Meier et al. (2008) extended the group lasso to logistic regression

models and presented an efficient algorithm for high-dimensional

problems. Zhao et al. (2009) proposed a general composite absolute

penalty for group selection, which includes the group lasso as a spe-

cial case. However, the group lasso does not achieve sparsity within

each group, which may introduce a suboptimal model. To overcome

this deficiency, Friedman et al. (2010a,b) proposed the sparse group

lasso (SGL) to achieve sparsity at both group and predictor levels.

Simon et al. (2013) recently proposed a generalized gradient descent

algorithm for SGL, and considered applications of this method for

linear, logistic and Cox regressions. Several other methods have also

been developed for bi-level selection, such as group bridge (Huang

et al., 2009), composite MCP (cMCP) (Breheny and Huang, 2009),

group exponential Lasso (Breheny, 2015), group variable selection

via convex log-exp-sum penalty (Chen et al., 2014a,b) and doubly

sparse approach for group variable selection (Kwon et al., 2016).

Overlapping is a common phenomenon in biological pathway

strusctures (i.e. a gene can belong to more one pathway). To deal

with overlapping structures, a direct solution is to duplicate overlap-

ping predictors into different groups so that predictors belonging to

more than one group can enter the model separately (Jacob et al.,

2009; Silver et al., 2012), which has been used to identify pathways

associated with a trait of interest (Silver et al., 2013). Several other

methods were also proposed for handling overlapping group struc-

ture (Chen et al., 2014a,b; Obozinski et al., 2011; Yuan et al.,

2013). Ogutu and Piepho (2014) reviewed and compared these regu-

larization methods in genomic prediction. Huang et al. (2012) gave

a selective review of group selection methods, described several

applications of these methods in non-parametric additive models,

semiparametric regression, seemingly unrelated regressions, genomic

data analysis and genome-wide association studies, and highlighted

some issues for further study.

The aforementioned approaches are non-Bayesian approaches.

Recently, Ro�cková and George (2016a,b) proposed a new

Bayesian approach, called the spike-and-slab lasso, for high-

dimensional normal linear models using the spike-and-slab

mixture double-exponential prior distribution. The spike-and-slab

prior is the fundamental basis for most Bayesian variable selection

approaches and has proved remarkably successful (Chipman,

1996; Chipman et al., 2001; George and McCulloch, 1993, 1997;

Ro�cková and George, 2014, 2016a). The mixture priors have been

applied to predictive modeling and variable selection in large-scale

genomic studies (de los Campos et al., 2010; Ishwaran and Rao,

2005; Lu et al., 2015; Partovi Nia and Ghannad-Rezaie, 2016;

Shankar et al., 2015; Shelton et al., 2015; Yi et al., 2003; Zhou

et al., 2013). We have recently incorporated this prior with GLMs

and Cox models, and developed the spike-and-slab lasso GLMs

and Cox models for prediction and gene detection, respectively

(Tang et al., 2017a,b).

In this article, we propose a novel group spike-and-slab lasso

GLMs (gsslasso GLMs) for predicting disease outcomes and detect-

ing associated genes by incorporating biological group structures

into the spike-and-slab lasso framework. We propose an efficient

algorithm to fit the group spike-and-slab lasso GLMs by integrating

Expectation-Maximization (EM) steps into the extremely fast cyclic

coordinate descent algorithm. We assess the performance of the pro-

posed method via extensive simulations and compare with several

commonly used methods. We apply the proposed procedure to three

cancer datasets with binary outcomes and thousands of molecular

features with pathways information. Our results show that the pro-

posed method not only generates powerful prognostic models for

predicting disease outcome but also excels at detecting associated

genes.

2 Materials and methods

2.1 The group spike-and-slab lasso GLMs
We consider generalized linear models (GLMs) with a large number

of structured predictors. For individual i, we denote the observed

value of a continuous or discrete response by yi, and the jth predictor

by xij. The predictor variables include numerous molecular predic-

tors (e.g. gene expression) and some relevant covariates. Assume

that the molecular predictors can be organized into G groups (e.g.

biological pathways), and the predictors within one group are bio-

logically related. In certain applications, some variables may belong
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to more than one group: e.g. genes can belong to more than one bio-

logical pathway. Following the idea of overlap group lasso (Hastie

et al., 2015; Jacob et al., 2009; Silver et al., 2012, 2013), we expand

the vector of predictors by replicating a variable in whatever group

it appears.

In GLMs, the mean of the response variable is related to the lin-

ear predictor Xib via a link function h (Gelman et al., 2014;

McCullagh and Nelder, 1989):

h E yi jXið Þ½ � ¼ b0 þ
XJ

j¼1
xijbj ¼ Xib; (1)

where b0 is the intercept, bj is the coefficient of the jth predictor, Xi

contains all variables, and b is a vector of the intercept and all the

coefficients. The data distribution is expressed as

p y jXb;/ð Þ ¼
Yn

i¼1
p yi jXib;/ð Þ; (2)

where / is a dispersion parameter, and the distribution p yi jXib;/ð Þ
can take various forms, including Normal, Binomial, and Poisson

distributions. Some GLMs (e.g. the binomial and Poisson distribu-

tions) do not require a dispersion parameter; that is, / is fixed at 1.

For high dimensional and/or correlated data, the model is often

unreliably fitted using the classical maximum likelihood procedure.

The problem can be solved by using Bayesian hierarchical modeling

or penalization approaches (Gelman et al., 2014; Gelman and Hill,

2007; Hastie et al., 2015). We employ a Bayesian hierarchical mod-

eling approach, which allows us to obtain reliable estimation and

more importantly provides an efficient way to incorporate group

information. Our hierarchical GLMs specify the spike-and-slab mix-

ture double-exponential (de) prior on the coefficients:

bj j cj � deð0; ð1� cjÞs0 þ cjs1Þ

¼ 1

ð1� cjÞs0 þ cjs1
exp �

jbjj
ð1� cjÞs0 þ cjs1

 !
; (3)

where cj is the indicator variable: cj ¼ 1 or 0, and the scale parame-

ters, s0 and s1 (s1 > s0 > 0), are small and relatively large (e.g. s0 ¼
0.05, s1 ¼ 1), inducing strong or weak shrinkage on bj respectively.

Thus the prior is a mixture of the shrinkage prior de(0, s0) and the

weakly informative prior de(0, s1), which are spike and slab compo-

nents, respectively.

We specify the distributions of indicator variables by incorporat-

ing the group structure. For predictors in group g, the indicator vari-

ables are assumed to follow the binomial distribution with the

group-specific probability hg:

cj j hg � Bin cj j1; hg

� �
¼ h

cj
g 1� hg

� �1�cj : (4)

The parameter hg will be estimated to be large if group g has impor-

tant predictors, encouraging other predictors in the group more

likely to be important. Therefore, the group-specific probability

parameters, hg, play a role on incorporating the biological similarity

of genes within a same pathway into the hierarchical model. For

simplicity and convenience, we use the uniform prior for hg:

hg � U 0;1ð Þ. Hereafter, the hierarchical GLMs with the group

spike-and-slab mixture double-exponential priors are referred to as

the group spike-and-slab lasso GLMs.

2.2 Algorithm
We develop a fast deterministic algorithm to fit the group spike-and-

slab lasso GLMs. Our algorithm, called the EM coordinate descent

algorithm, incorporates EM steps into the cyclic coordinate descent

procedure for fitting the penalized lasso GLMs. We derive the EM

coordinate descent algorithm based on the log joint posterior density

of the parameters # ¼ b;/; c; hð Þ:

log pð# j y;XÞ /
Pn

i¼1 log pðyi jXib;/Þ þ
PJ

j¼1 log pðbj j cjÞ

þ
PJ

j¼1 log pðcj j hgÞ þ
PG

g¼1 pðhgÞ

/
Pn

i¼1 log pðyi jXib;/Þ �
PJ

j¼1 ½ð1� cjÞs0 þ cjs1��1jbjj

þ
PJ

j¼1 log ½hcj
g ð1� hgÞ1�cj �

(5)

The EM coordinate decent algorithm treats the indicator variables

as ‘missing values’ and estimates the parameters (b;/; h) by averag-

ing the missing values over their posterior distributions, where

h ¼ h1; . . . ; hGð Þ. For the E-step, we calculate the expectation of the

log joint posterior density with respect to the conditional posterior

distributions of the missing data. For predictors in group g, the con-

ditional posterior expectation of the indicator variable cj can be

derived as

pg
j ¼ pðcj ¼ 1 j bj; hgÞ

¼
pðbj j cj ¼ 1; s1Þpðcj ¼ 1 j hgÞ

pðbj j cj ¼ 0; s0Þpðcj ¼ 0 j hgÞ þ pðbj j cj ¼ 1; s1Þpðcj ¼ 1 j hgÞ
;

(6)

where pðcj ¼ 1 j hgÞ ¼ hg, pðbj j cj ¼ 1; s1Þ ¼ deðbj j 0; s1Þ, and

pðbj j cj ¼ 0; s0Þ ¼ deðbj j 0; s0Þ. Therefore, the conditional posterior

expectation of ½ð1� cjÞs0 þ cjs1��1 can be obtained by

kj ¼ Eð½ð1� cjÞs0 þ cjs1��1 j bjÞ ¼
1� pg

j

s0
þ

pg
j

s1
: (7)

For the M-step, we update (b;/; h) by maximizing the posterior

expectation of the log joint posterior density with cj and

½ð1� cjÞs0 þ cjs1��1 replaced by their conditional posterior expecta-

tions pg
j and kj. From the log joint posterior density, we observe that

(b;/), and h can be updated separately, because the parameters

(b;/) are only involved in the first two terms of the log joint poste-

rior density and the probability parameters hg are only involved in

the third term. Therefore, the parameters (b;/) are updated by max-

imizing the expression:

Q1 b;/ð Þ ¼
Xn

i¼1
log p yi jXib;/ð Þ �

XJ

j¼1
kjjbjj: (8)

The term
PJ

j¼1 kjjbjj serves as the L1 lasso penalty with kj as the pen-

alty factors, and thus the coefficients can be updated by maximizing

Q1 b;/ð Þ using the cyclic coordinate decent algorithm (Friedman

et al., 2010a,b; Hastie et al., 2015). Therefore, the coefficients can

be estimated to be zero. The probability parameters {hg} are updated

by maximizing the expression:

Q2 hð Þ ¼
XJ

j¼1
pg

j log hg þ 1� pg
j

� �
log 1� hg

� �h i
: (9)

We can easily obtain: hg ¼ 1
Jg

P
j2gpg

j , where Jg is the number of pre-

dictors belonging to group g.

In summary, the EM coordinate decent algorithm proceeds as

follows:

i. Choose a starting value for b0, /0 and h0
g . For example, we can

initialize b0 ¼ 0, /0¼ 1 and h0
g ¼ 0.5.

ii. For t¼1, 2, 3 . . .,

E-step: Update cj and ½ð1� cjÞs0 þ cjs1��1 by their conditional poste-

rior expectations.

Group spike-and-slab lasso GLMs 903



M-step:

i. Update (b;/) using the cyclic coordinate decent algorithm;

ii. Update h1; . . . ; hG.

We assess convergence by the criterion: jd tð Þ � d t�1ð Þj=ð0:1þ
jd tð ÞjÞ < e, where d tð Þ ¼ �2

Pn
i¼1 log pðyi jXib

ðtÞ;/ðtÞÞ is the esti-

mate of deviance at the tth iteration, and e is a small value

(say 10�5).

2.3 Evaluating the predictive performance of a fitted

model
There are several measures to evaluate the quality of a fitted GLM

(Steyerberg, 2009), including: (i) Deviance: d ¼ �2
Pn

i¼1 log pðyi j
Xi
bb; b/Þ; (ii) Mean squared error (MSE): MSE ¼ 1

n

Pn
i¼1 yi � byið Þ2,

where byi ¼ h�1ðXi
bbÞ; For logistic models, we can use two additional

measures: (iii) area under the ROC curve (AUC) and (iv) misclassifi-

cation: 1
n

Pn
i¼1 I j yi � byi j > 0:5ð Þ, where I j yi � byi j > 0:5ð Þ¼ 1 if

j yi � byi j > 0:5, and I j yi � byi j > 0:5ð Þ ¼ 0 if j yi � byi j � 0:5.

To assess the predictive performance of the model, we use the

pre-validation method, a variant of cross-validation (Hastie et al.,

2015; Tibshirani and Efron, 2002), that randomly partitions the

data to K subsets of roughly the same size and uses (K – 1) subsets

to fit a model. Denote the estimate of coefficients from the data

excluding the kth subset bybb �kð Þ
. We calculate the linear predictorbg kð Þ ¼ X kð Þbb �kð Þ

for all individuals in the k-th subset of the data,

called the cross-validated or pre-validated predicted index. Cycling

through K parts, we obtain the cross-validated linear predictor bg i

for all individuals. We then use fyi;bg ig to compute the measures

described above. The cross-validated linear predictor for each indi-

vidual is derived independently of the observed response of the indi-

vidual, and hence the ‘pre-validated’ dataset fyi;bg ig can essentially

be treated as a ‘new dataset’. Therefore, the pre-validation proce-

dure provides valid assessment of the predictive performance of the

model (Hastie et al., 2015; Tibshirani and Efron, 2002). To get

more stable results, we can run K-fold cross-validation multiple

times and average the measures over the replicates.

We also perform the pre-validated linear predictor analysis

(Hastie et al., 2015; Tibshirani and Efron, 2002), i.e. using the pre-

validated linear predictor bg i as a continuous covariate to fit the

model: E yi jbg ið Þ ¼ h�1 lþ bg ibð Þ. We then look at the P-value for

testing the hypothesis b ¼ 0 or the measures to evaluate the predic-

tive performance. We can transform the continuous pre-validated

linear predictor bg i into a categorical factor ci ¼ ci1; . . . ; ci6ð Þ based

on the quantiles of bg i, e.g. 5, 25, 50, 75 and 95% quantiles, and

then fit the model: Eðyi j ciÞ ¼ h�1ðlþ
P6

k¼2 cikbkÞ. This allows us

to compare statistical significance and prediction between different

categories.

2.4 Selecting optimal scale values
The performance of the group spike-and-slab lasso approach can

depend on the scale parameters (s0, s1). Rather than restricting atten-

tion to a single model, we fix the slab scale s1 (e.g. s1 ¼ 1) which

provides no or weak shrinkage, and consider a sequence of L

decreasing values fsl
0g: 0 < s1

0 < s2
0 < � � � < sL

0 < s1, for the spike

scale s0 (Ro�cková and George, 2014, 2016a; Tang et al., 2017a,b).

Increasing the spike scale s0 tends to include more non-zero coeffi-

cients in the model. We can use one of the measures described in the

last section to choose a model. This procedure is similar to the lasso

implemented in the widely used R package glmnet, which quickly

fits the lasso model over a grid of values of k covering its entire

range, giving a sequence of models for users to choose from

(Friedman et al., 2010a,b; Hastie et al., 2015).

2.5. Implementation
We have created an R function bmlasso for setting up and fitting the

spike-and-slab lasso GLMs and several other R functions for simu-

lating predictor data and several outcomes, for summarizing the fit-

ted models and for evaluating the predictive performance. We have

incorporated these functions into the freely available R package

BhGLM (http://www.ssg.uab.edu/bhglm/). A clear instruction is

also included in the help file of the package.

3 Simulation study

We used simulations to assess the proposed approach, and compare

with the lasso implemented in the R package glmnet and several

penalization methods that can incorporate group information,

including SGL in the R package SGL, overlap group lasso (grlasso),

overlap group MCP (grMCP), overlap group SCAD (grSCAD) and

overlap group cMCP in the R package grpregOverlap (Zeng and

Breheny, 2016). Although the proposed method can be applied to

any GLMs, we focused on the hierarchical logistic model because

we analyzed binary outcomes in our real datasets (see the next sec-

tion). In each situation, we simulated two datasets, and used the first

one as the training data to fit the models and the second one as the

test data to evaluate the predictive values. Our simulation method

was similar to Tang et al. (2017a,b), but accounted for additional

complexities of varied group structures. We considered five simula-

tion scenarios with different complexities, including non-overlap or

overlap groups, group sizes, number of non-null groups, and corre-

lation coefficients (r) (Table 1). In simulation Scenarios 2–5, overlap

structures were considered. To handle the overlap structures, we

duplicated overlapping predictors into groups that predictors belong

to (Jacob et al., 2009; Silver et al., 2012).

For each dataset, we generated n (¼ 500) observations, each

with a binary response yi and a vector of m (¼ 1000) continuous

predictors Xi ¼ xi1; . . . ; ximð Þ. The 1000 predictors were organized

into 20 groups. The vector Xi was randomly sampled from multi-

variate normal distribution N1000 0;Rð Þ, where the covariance

matrix R was set to account for varied grouped correlation and over-

lapped structures under different simulation scenarios. The predic-

tors within a group were simulated to be correlated and those

Table 1. The preset non-zero coefficients and their values of the dif-

ferent simulation scenarios

Simulation scenarios Non-zero coefficients and effect size

1. Non-overlap group

b5 b20 b40 b210 b220 b240 b975 b995

2. Overlap group

b5 b20 b40 b210 b220 b240 b975 b995

3. varying group size

¼4/20/50 b1 b2 b3 b4 b501 b502 b503 b504

4. varying number of non-null groups

¼8 b5 b55 b305 b355 b505 b555 b905 b955

¼3 b5 b15 b25 b355 b365 b375 b905 b915

¼1 b5 b10 b15 b20 b25 b30 b35 b40

5. varying correlation within group

r¼ 0.0/0.3/0.5/0.7 b5 b20 b40 b210 b220 b240 b975 b995

Effect size

0.8 �0.7 1.0 �0.9 �0.8 0.9 �1.0 0.7
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predictors in different groups were independent. Except for Scenario

5, the correlation coefficient r was set to be 0.6. To simulate the

binary response, we first generated Gaussian response zi from uni-

variate normal distribution N gi; 1:62
� �

, where gi ¼ b0 þ
Pm

j¼1 xijbj,

and then transformed the continuous response to a binary data by

setting individuals with the 30% largest continuous response Z as

‘affected’ (yi ¼ 1) and the other individuals as ‘unaffected’ (yi ¼ 0).

For all the scenarios, we set eight coefficients to be non-zero and the

others to be zero (see Table 1).

For each simulation setting, we replicated the simulation 100 times

and summarized the results over the replicates. We reported the results

on the predictive measures including deviance, MSE, AUC, misclassifi-

cation in the test data and the accuracy of parameter estimates. We

used deviance to choose an optimal model. For the penalization meth-

ods, we used 10-fold cross-validation to select an optimal penalty value,

which determines an optimal model, and reported the results based on

the optimal model. For the proposed spike-and-slab lasso GLMs

approach, we fixed slab scale as s1 ¼ 1, and ran a grid value of spike

scales: s0¼ f0:01� k; k ¼ 1; . . . ; 7g to select an optimal model.

3.1. Scenario 1: non-overlap group
In this scenario, there was no overlap among groups. Eight non-zero

predictors were placed in three groups. The group sizes and overlap

structure are presented below:

Table 2 summarizes the deviance, MSE, AUC, and misclassification

in the test data. With the deviance as a general measure, we can see that

the group spike-and-slab lasso GLMs performed similarly to cMCP, but

better than the other methods. The group spike-and-slab lasso GLMs

had AUC value similar to that of cMCP, higher than those from the

other methods. With the measures, MSE and misclassification, we also

observed similar results that the group spike-and-slab lasso GLMs

matched the performance of cMCP and outperformed other methods.

Supplementary Figure S1 shows the estimates of coefficients from

the group spike-and-slab lasso GLMs and the other methods over 100

replicates. It can be seen that the group spike-and-slab lasso GLMs and

cMCP produced estimates close to the simulated values for all the coef-

ficients. This is expected, because the spike-and-slab prior can induce

weak shrinkage on larger coefficients and strong shrinkage on zero

coefficients. In contrast, other methods gave a strong shrinkage amount

on all the coefficients and resulted in the solutions that non-zero coeffi-

cients were shrunk and underestimated compared with true values.

3.2. Scenario 2: overlap grouping
In this scenario, we considered overlapped grouping structure, that

is, some of the predictors can belong to more than one group. The

group sizes and overlap structure are presented below:

For all the scenarios with overlaps, SGL method was not used

for comparison since it cannot handle overlap situation directly.

Table 2 summarizes the results from different methods in these sce-

narios. We can see that for all four measures for the group spike-

and-slab lasso GLMs showed better performance than all the other

methods. Figure 1 shows the estimates of coefficients from the group

spike-and-slab lasso GLMs and the other methods over 100 repli-

cates. It can be seen that the group spike-and-slab lasso GLMs

slightly outperformed cMCP and significantly outperformed the

other methods. This result suggests that, with complex overlap

among groups, the proposed method could still perform well.

Similar to the lasso, the group spike-and-slab lasso GLMs is a

path-following strategy for fast dynamic posterior exploration.

To fully investigate the impact of the spike scale s0 on the

parameter estimation, we varied the spike scale s0 over the grid of

values: 0:001; 0:005� k; k ¼ 1; . . . ; 39f g, leading to 40 models.

Group ID: 1 2 3 . . . 19 20

Predictors

and

groupsizes:

x1�x50 x51�x100 x101�x150 x901�x950 x951�x1000

Table 2. Estimates of four measures over 100 replicates under sim-

ulation Scenarios 1 and 2

Deviance MSE AUC Misclassification

Scenario 1

gsslassoa 470.76(28.04) 0.15(0.01) 0.85(0.02) 0.23(0.02)

lasso 521.40(22.43) 0.17(0.01) 0.82(0.02) 0.26(0.02)

grMCP 575.49(20.32) 0.19(0.01) 0.76(0.02) 0.30(0.03)

grSCAD 583.25(20.43) 0.19(0.01) 0.76(0.02) 0.30(0.02)

cMCP 468.69(31.13) 0.15(0.01) 0.85(0.02) 0.23(0.02)

SGL 538.15(27.01) 0.25(0.02) 0.77(0.02) 0.26(0.02)

Scenario 2

gsslassoa 439.46(33.91) 0.14(0.01) 0.87(0.02) 0.21(0.02)

lasso 487.42(26.65) 0.16(0.01) 0.84(0.02) 0.24(0.02)

grMCP 549.41(20.94) 0.18(0.01) 0.80(0.02) 0.27(0.03)

grSCAD 526.93(22.25) 0.17(0.01) 0.83(0.02) 0.25(0.02)

cMCP 454.56(40.80) 0.15(0.01) 0.87(0.03) 0.22(0.03)

Note: Values in the parentheses are SDs. ‘gsslasso’ represents the proposed

group spike-and-slab lasso GLMs. The slab scales, s1, are 1 in the analyses.
aThe optimal s0 ¼ 0.05 for gsslasso method under both Scenarios 1 and 2.

Group ID: 1 2 3 . . . 19 20

Predictors

and

group size:

x1�x50 x46�x100 x96�x150 x896�x950 x951�x1000

Fig. 1. The parameter estimation averaged over 100 replicates for the group

spike-and-slab lasso GLMs (gsslasso), the lasso, grlasso, grMCP, grSCAD and

cMCP methods for Scenario 2. Cycles denote the simulated non-zero values.

Black points and lines represent the estimated values and the interval esti-

mates of coefficients, respectively
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We estimated the coefficients averaged over 100 replicates, to show

the characteristics of the group spike-and-slab lasso GLMs.

Supplementary Figure S2 presents the solution path for Scenario 2

by the proposed method and the lasso. The solution path of the pro-

posed method is essentially different from that of the lasso model.

For the lasso solution, non-zero coefficients can be over-shrunk.

However, a spike-and-slab mixture prior has self-adaptive and flexi-

ble characteristics, and can help the larger coefficients escape the

gravitational pull of the spike.

3.3. Scenario 3: varying group sizes
In this scenario, we assumed that non-zero predictors, fx1; x2; x3; x4g
and fx501; x502; x503; x504g, belong to two groups. To investigate the

group size effect on modeling, based on Scenario 2, we simulated the

group size and overlap structures as below:

(i) only four non-zero predictors included in a group:

(ii) 20 predictors included in a group:

(iii) 50 predictors included in a group:

Supplementary Table S1 summarizes the four measures over 100

replicates for all the methods. We can see that the group spike-and-

slab lasso GLMs performed slightly better than cMCP, and signifi-

cantly better than the other methods, especially when the group size

increased to 50 predictors. Supplementary Figures S3 and S4 present

the estimates of coefficients for all the methods. We can find that

the proposed method and cMCP method always produced accurate

estimations under varying group sizes. However, the other methods

generated shrinkage on the non-zero coefficients and underestimated

these larger coefficients.

3.4. Scenario 4: varying the number of non-null group
We varied the number of non-zero groups, to show its effect on

modeling:

i. There are eight non-null groups including non-zero coefficients:

fx5g, fx55g, fx305g, fx355g, fx505g, fx555g, fx905g, and fx955g;

ii. There are three non-null groups including non-zero coefficients:

fx5;x15; x25g, fx355; x365; x375g, and fx905; x915g;
iii. There is 1 non-null group including non-zero coefficients:

fx5;x10; x15; x20;x25;x30; x35; x40g. Other groups were the same

as Scenario 2. The effect sizes of these non-zero coefficients are

summarized in Table 1.

Supplementary Table S2 summarizes the four measures over 100

replicates for all the methods. The performance of the group spike-

and-slab lasso GLMs and cMCP were similar, and both better than

lasso, grlasso, grMCP and grSCAD. When the number of non-null

groups was reduced, these methods tended to perform similar with

lasso. Supplementary Figures S5 and S6 show the estimates of coeffi-

cients for all the methods. Similar to the conclusion of Scenario 3,

the proposed method and cMCP method always generated stable

and accurate estimations under varying number of non-null groups.

Altough for grlasso, grMCP, and grSCAD methods, the increased

number of non-null groups usually introduced stronger shrinkage

amount and much more noise.

3.5. Scenario 5: varying the correlation within group
In Scenario 2, the correlation coefficient within group was set as

0.6. In this scenario, we set different correlation coefficients within

a group: r ¼ 0.0, 0.3, 0.5, and 0.7. Others were the same as in

Scenario 2. Supplementary Table S3 summarizes the four measures

over 100 replicates. We observe that the performances of the group

spike-and-slab lasso GLMs and cMCP were consistently better than

the other methods, and when the correlation was high, the proposed

method was slightly better than cMCP. The comparisons for the

estimates of coefficients were similar to those of other scenarios.

4. Applications to real data

We applied our method to analyze three real datasets, sarcoma,

ovarian cancer and breast cancer downloaded from The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov/) (updated at

March 2016). To construct the pathways, we used genome annota-

tion tools to map genes to pathways. We first mapped gene symbols

to Entrez ids with R/bioconductor package AnnotationDbi and

mygene, and then mapped all the genes to KEGG pathways using

the R/bioconductor package clusterProfiler (Yu et al., 2012). The

details of the three datasets are described below.

4.1 TCGA sarcoma dataset (mRNA-sequencing data)
The first dataset includes clinical information and RNAseq expres-

sion on sarcoma extracted from TCGA. First, we combined the clini-

cal files with new tumor event records. Clinical data is available for

261 patients. Secondly, the expression data included 259 patients

for 20 502 genes with gene names after removing duplicated patients

from raw data with 265 samples. We filtered the genes with expres-

sions less or equal to 10 as they showed almost no expression.

Furthermore, genes with >50% of zero expression values in the

samples were removed. We calculated the variance of expression for

each gene, and kept the genes with variance of >20% quantile. We

then merged the standardized expression data with new tumor event

outcome, and obtained 218 patients with 13 837 genes expression

profiles for final analysis. We mapped these genes to 249 pathways

including 4919 genes.

Group ID: 1 2 3 . . . 11 12 . . . 19 20

Predictors and

group size:

x1 x5 x96 x501 x505 x896 x951

j j j j j j j
x4 x100 x150 x504 x600 x950 x1000

Group ID: 1 2 3 . . . 11 12 . . . 19 20

Predictors and

group size

x1 x21 x96 x501 x521 x896 x951

j j j j j j j
x20 x100 x150 x520 x600 x950 x1000

Group ID: 1 2 3 . . . 11 12 . . . 19 20

Predictors and

group size

x1 x46 x96 x501 x546 x896 x951

j j j j j j j
x50 x100 x150 x550 x600 x950 x1000
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4.2 TCGA ovarian cancer dataset (microarray mRNA

data)
The second dataset included microarray mRNA expression data and

relevant clinical outcome for ovarian cancer from TCGA.

Microarray mRNA expression data (Agilent Technologies platform)

included 551 tumors with 17 785 genes profiled after removing

duplications. We selected the top 80% genes filtered by variance for

further analysis. We merged the individuals with gene expression

data and those with new tumor events. After removing individuals

with missing response, 362 tumors with 14 227 genes were included

in our analysis. We mapped these genes to 276 pathways including

4764 genes.

4.3 TCGA breast cancer dataset (mRNA-sequencing

data)
The raw data contains 1220 patients and 20 530 genes. After remov-

ing the duplication and unknown gene names, there are 1097

patients with 20 502 used for further quality control. Similar with

the steps for sarcoma dataset, we filtered the genes with expressions

less or equal to 10. Then, genes with >50% of zero expression val-

ues in the samples were removed. We calculated the variance of

expression for each gene, and kept the genes with variance of >20%

quantile. Furthermore, we cleaned the clinical data with clear

records about new tumor event, and included 962 patients in our

analysis. We then merged the clinical data and expression data, and

obtained 960 patients with 14 068 genes. We mapped these genes to

266 pathways including 5026 genes.

The detailed information of genes shared by different pathways

are listed in Supplementary Materials S1–S3. Supplementary Table

S4 and Supplementary Figure S7 show the distribution of number of

genes shared by different number of pathway.

On these three cancer datasets, we aimed to build a logistic

model for predicting new tumor event by integrating gene

expression data and pathway information. Prior to fitting the

models, we standardized all the predictors. For hierarchical (and

also penalized) models, it is important to use a roughly common

scale for all predictors. For both datasets, we fixed the slab scale s1

to 1, and varied the spike scale s0 over the grid of values:

0:001;k� 0:01; k ¼ 1; . . . ; 10f g, leading to 11 models. We per-

formed 10-fold cross-validation for 10 times, and selected an opti-

mal spike scale s0 based on the minimum deviance. We firstly

performed analysis using the genes included in the pathways.

Second, we set the rest genes not included in the pathways as a new

group, and then performed analysis again. For comparison, we also

analyzed the data using the five existing methods described in the

simulation studies.

Table 3 summarizes the measures of performance on these three

datasets. For all the three datasets, the proposed group spike-and-

slab lasso GLMs generally performed better than the other methods

based on the four measures. Supplementary Figure S8 shows the

genes detected by the proposed method by using the genes included

in the pathways. The results of pathway enrichment analyses were

summarized in Supplementary Materials S4–S6. For sarcoma, the

detected genes are mainly associated ATP associated genes, similar

to several previous studies (Buondonno et al., 2016; Slotkin et al.,

2015). For ovarian cancer, the detected genes spread over a wide

range of pathways. For breast cancer, there were two pathway

involved, according to the detected five genes. Many of these

detected genes for the three datasets have not been validated yet in

literatures. In addition, we noticed that the genes detected by the

existing methods are different. Most of detected genes are not

overlapped among these methods, which may be due to the model

assumption and the complexity of real data.

We further estimated the pre-validated linear predictor, gi ¼ Xi
bb,

for each patient, and then grouped the patients on the basis of the pre-

validated linear predictor into categorical factor according to 5th,

25th, 50th, 75th and 95th percentiles, denoted by ci ¼ ci1; . . . ; ci6ð Þ.
We fitted the univariate model E yi jbg ið Þ ¼ h�1 lþ bg ibð Þ and the

multivariate model Eðyi j ciÞ ¼ h�1ðlþ
P6

k¼2 cikbkÞ by using the

pre-validated linear predictor and the categorical factors, respectively.

The results are summarized in Supplementary Table S5 for both data-

sets. Here, we only used the genes included in the pathways and

excluded the genes not included in the pathways. As expected, the

two models for the datasets showed significant results, indicating that

the resulting prediction models were informative.

5. Discussion

The group structure of variables arises naturally in many real statis-

tical modeling problems. Such group structure can be incorporated

into a model to take advantage of prior knowledge that is theoreti-

cally meaningful and intrinsically encoded in the underlying data. If

the group structure is present yet ignored by using models taking

into account of solely individual predictors, such models may be

inefficient or even inappropriate, leading to low accuracy of

genomic prediction. In the article, we have developed a novel hier-

archical modeling approach to integrate the variable group informa-

tion for gene detection and prognostic prediction. The proposed

group spike-and-slab lasso GLMs are capable of analyzing large-

scale data using various GLMs with group structure, although we

focus on modeling molecular profiling data and binary outcome in

this study.

The key to our group spike-and-slab lasso GLMs is the introduc-

tion of a new prior distribution, i.e. the mixture spike-and-slab dou-

ble-exponential prior, on the coefficients of each group. The

mixture spike-and-slab prior improves the accuracy of coefficient

estimation and prognostic prediction by adaptively inducing differ-

ent amounts of shrinkage for different predictors and thus achieving

nice effect of removing irrelevant predictors while supporting the

larger coefficients. Similar to other Bayesian approaches, most

spike-and-slab variable selection approaches proposed previously

use the mixture normal priors on coefficients and employ Markov

Chain Monte Carlo (MCMC) algorithms to fit the model (Lu et al.,

2015; Partovi Nia and Ghannad-Rezaie, 2016; Shankar et al., 2015;

Shelton et al., 2015). However, these MCMC methods are computa-

tionally intensive for analyzing large-scale and high-dimensional

genetic data. Instead, we develop an efficient EM coordinate descent

algorithm to fit the proposed model, which incorporates EM steps

into the fast cyclic coordinate descent algorithm. The E-steps involve

calculating the posterior expectations of the indicator variable cj and

the scale Sj for each coefficient of each group, and the M-steps

employ a fast algorithm, i.e. the cyclic coordinate descent algorithm

(Friedman et al., 2010a,b; Hastie et al., 2015; Simon et al., 2011), to

update the coefficients group by group. The resulted EM coordinate

descent algorithm converges rapidly, and is capable of identifying

important predictors and building promising predictive models from

a large number of candidates organized into various groups.

The group spike-and-slab lasso proposed in this study maintains

the advantages of two popular methods for high-dimensional

data analysis (Ro�cková and George, 2016a), i.e. Bayesian variable

selection (Chipman, 1996; Chipman et al., 2001; George and

McCulloch, 1993, 1997; Ro�cková and George, 2014) and the
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penalized lasso (Hastie et al., 2015; Tibshirani, 1996, 1997), and

bridges these two methods into one unifying framework. Similar to

the lasso, the proposed method can shrink many coefficients exactly

to zero, thus automatically achieving sparsity within group for fea-

ture selection, and the output is characterized by the solution path.

Without the slab component, the output of the proposed model

would be equivalent or similar to the lasso solution path. Instead,

the solution path of the model with the spike-and-slab prior is differ-

ent from the lasso. The large coefficients are usually included in the

proposed model with weak or none shrinkage, while the lasso may

undesirably shrink large coefficients.

The proposed group spike-and-slab lasso GLMs well suit to han-

dle both overlapping group structure and non-overlapping group sit-

uations. The proposed group spike-and-slab lasso approach always

outperforms other methods on the simulated datasets covering dif-

ferent scenarios with overlapping or non-overlapping group struc-

tures. Not surprisingly, the performance of the proposed method

depends on the scale parameter of the double-exponential prior. We

evaluated the performance of the proposed model on the different

combinations of prior scales (s0, s1). Our results showed that slab

scale s1 had little influence on the deviance, while the spike scale s0

strongly affected model performance (Tang et al., 2017a,b). A slab

scale s1 value introducing weak shrinkage amount would be helpful

to include relevant variables into the model. Hence, we suggest a

path-following strategy for fast dynamic posterior exploration of

the proposed models, which is similar to the approach of Ro�cková

and George (2014, 2016a). Usually, a path-following strategy can

be implemented by first fixing the slab scale s1 (e.g. s1 ¼ 1), running

a grid of values of spike scale s0 from a reasonable range, e.g. (0,

0.1), and then selecting an optimal according to cross-validation.

The fast speed of the proposed algorithm makes it feasible to con-

sider several or 10 of reasonable values for selecting an optimal s0.

To evaluate this strategy, we compared the performance of the

proposed method and several other methods under different simula-

tion settings. The prediction performance of the proposed method is

always slightly better than cMCP method, and significantly better

than all other methods, especially when the variables within group

are highly correlated as often observed in genetic data. In addition,

for most of real data, like the sarcoma and ovarian cancer datasets,

the sample size and effect size might be small. To evaluate the per-

formance of the proposed method under these conditions, we further

performed simulation study based on Scenario 2 with only half sam-

ple size (n ¼ 250) and half effect size for eight non-zero predictors.

The results are summarized in Supplementary Table S7. It could be

found that the proposed could still perform slightly better than other

methods.

Due to the complexity of group structures in real datasets, as

expected, the prediction accuracy of the proposed method incorpo-

rating pathway information was improved on the TCGA datasets.

In addition to pathways used in this study, more sophisticated

grouping strategies could potentially enhance prediction accuracy

and further improve the models (Ogutu and Piepho, 2014). Such

complex grouping strategies could result from a single or mixture of

various sources reflecting the underlying biological structure includ-

ing haplotype blocks or genetic regions covering nearby genetic

markers, subnetworks, communities, clusters or modules of many

types of biological networks (e.g. regulatory networks, signaling net-

works, protein–protein interaction networks, metabolic networks).

Therefore, we expect that the proposed models will be further

improved by more strategically designed grouping strategy that cap-

tures the complicated grouping structure in real genetic data.

The method we present here has attractive features which point

to several further extensions. For example, the proposed group

spike-and-slab lasso GLMs can be extended to Cox proportional

hazards model for censored survival data, truncated regressions for

extreme phenotyping designs, ordered logistic or probit regressions

Table 3. The measures of optimal group spike-and-slab lasso (gsslasso) and the five penaliztion models for TCGA sarcoma, ovarian cancer

and breast cancer dataset by 10 times 10-fold cross validation

No. of pathway/gene Methods Deviance AUC MSE Misclassification No. non-zero gene

TCGA sarcoma (n ¼ 218)

249/4919a gsslassob 257.72 (3.08) 0.69 (0.01) 0.20 (0.00) 0.30 (0.02) 14

lasso 265.60 (8.76) 0.66 (0.03) 0.21 (0.01) 0.32 (0.01) 52

grlasso 246.31 (6.23) 0.73 (0.02) 0.19 (0.01) 0.29 (0.02) 13

grMCP 260.13 (4.82) 0.67 (0.02) 0.21 (0.01) 0.33 (0.01) 31

grSCAD 248.86 (5.54) 0.72 (0.02) 0.20 (0.01) 0.29 (0.02) 422

cMCP 267.21 (4.83) 0.62 (0.02) 0.21 (0.00) 0.32 (0.01) 15

TCGA ovarian cancer (n ¼ 362)

276/4764 gsslassob 434.17 (4.01) 0.67 (0.02) 0.20 (0.00) 0.29 (0.01) 116

lasso 442.62 (3.69) 0.64 (0.01) 0.21 (0.00) 0.31 (0.02) 48

grlasso 465.03 (3.04) 0.55 (0.03) 0.22 (0.00) 0.33 (0.01) 10

grMCP 461.39 (0.49) 0.51 (0.02) 0.22 (0.00) 0.33 (0.00) 19

grSCAD 460.78 (0.50) 0.53 (0.01) 0.22 (0.00) 0.33 (0.00) 919

cMCP 450.71 (7.38) 0.62 (0.02) 0.23 (0.01) 0.32 (0.02) 25

TCGA Breast cancer (n ¼ 960)

266/5026 gsslassob 976.83 (27.82) 0.63 (0.01) 0.16 (0.00) 0.21 (0.00) 5

lasso 957.89 (5.33) 0.62 (0.01) 0.16 (0.00) 0.21 (0.00) 8

grlasso 973.87 (1.38) 0.50 (0.00) 0.16 (0.00) 0.20 (0.00) 11

grMCP 972.95 (4.95) 0.57 (0.01) 0.16 (0.00) 0.21 (0.00) 11

grSCAD 975.60 (3.61) 0.55 (0.01) 0.16 (0.00) 0.21 (0.00) 11

cMCP 975.23 (21.55) 0.60 (0.02) 0.16 (0.00) 0.21 (0.00) 2

Note: Values in the parentheses are SDs.
ain TCGA sarcoma data, we mapped 4919 genes into 249 pathways. The rest genes were put together as an additional group. The results using all genes are

provided as Supplementary Table S6. The same is true for ovarian and breast cancer datasets.
bThe optimal s0 for gsslasso are s0 ¼ 0.03, s0 ¼ 0.07 and s0 ¼ 0.0005 for the three datasets, respectively.
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for ordinal response (e.g. disease severity), and conditional logistic

regression for matched case-control studies. These models can also

be extended to incorporate multiple level group structure, such as

multiple taxonomy levels in microbiome data (i.e. phylum, class,

order, family, genus and species), which is difficult for SGL or many

other methods. Additionally, incorporating multiple level group

structures, like three-level group structure, i.e. SNP-gene-pathway,

might also be an interesting topic. Besides the spike-and-slab mix-

ture double-exponential prior used in the proposed models, we

should investigate theoretical and empirical properties of other pri-

ors. An important example is Cauchy distribution, a special case of

Student-t distribution. Cauchy distribution has a spike at zero and

includes heavier tails, and thus can be included as an appropriate

prior to handle high-dimensional data.
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