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Abstract

Summary: Summary level data of GWAS becomes increasingly important in post-GWAS data min-

ing. Here, we present GIGSEA (Genotype Imputed Gene Set Enrichment Analysis), a novel method

that uses GWAS summary statistics and eQTL to infer differential gene expression and interrogate

gene set enrichment for the trait-associated SNPs. By incorporating empirical eQTL of the disease

relevant tissue, GIGSEA naturally accounts for factors such as gene size, gene boundary, SNP

distal regulation and multiple-marker regulation. The weighted linear regression model was used to

perform the enrichment test, properly adjusting for imputation accuracy, model incompleteness and

redundancy in different gene sets. The significance level of enrichment is assessed by the permuta-

tion test, where matrix operation was employed to dramatically improve computation speed. GIGSEA

has appropriate type I error rates, and discovers the plausible biological findings on the real data set.

Availability and implementation: GIGSEA is implemented in R, and freely available at www.

github.com/zhushijia/GIGSEA.

Contact: shijia.zhu@mssm.edu or ke.hao@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have been successfully

applied to many diseases and traits. However, the genome-wide sig-

nificant variants only account for a minority of the trait heritability,

whereas SNPs below the genome-wide significance level may also

harbor real association. Enrichment analysis is an important tool in

prioritizing variants from GWAS. Instead of conducting analysis

for every single SNP or gene, enrichment analysis tests disease

association at the level of a group of functionally related SNPs or

genes, such as those belonging to the same biological pathway.

These approaches aim to increase power by combining association

signals. Further, gene set analysis can also shed more light on the

biological processes underlying complex diseases. Many methods

have been proposed (de Leeuw et al., 2015; Lee et al., 2012), how-

ever, many challenges and limitations remained, for example, arbi-

trary thresholds in selecting GWAS loci, differentially expressed

genes, gene boundaries, long-range regulation and multiple-marker

regulation for effective snps, and how to adjust various bias from

the gene size, linkage disequilibrium (LD) and the redundancy

among gene sets.

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 160

Bioinformatics, 35(1), 2019, 160–163

doi: 10.1093/bioinformatics/bty529

Advance Access Publication Date: 13 July 2018

Applications Note

http://www.github.com/zhushijia/GIGSEA
http://www.github.com/zhushijia/GIGSEA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty529#supplementary-data
https://academic.oup.com/


The expression quantitative trait locus (eQTL) of the disease

relevant gene provides an empirical and unbiased link between

GWAS loci and genes potentially mediating the genetic effects

(Nicolae et al., 2010). Recently, several methods, e.g. TWAS (Gusev

et al., 2016), PrediXcan (Gamazon et al., 2015) and MetaXcan

(Barbeira et al., 2016) were proposed to integrate GWAS summary

data with eQTL to impute transcription levels of disease-associated

genes, providing a path to aggregate multiple markers at the gene

level. However, genes identified by these methods are still picked

with arbitrary thresholds and then enter the enrichment analysis.

Herein, we proposed a novel method for the gene set enrichment

analysis on GWAS summary data, called GIGSEA (Fig. 1), which is

an elegant extension to TWAS and MetaXcan. GIGSEA carried out

the enrichment analysis on the imputed gene expression, where the

inheritability and imputation uncertainty were accounted for by the

weighted linear regression model.

2 Methods

2.1 Genotype imputed differential gene expression
We used MetaXcan (Barbeira et al., 2016) to impute the trait-

associated differential gene expression (DGE). MetaXcan integrates

GWAS summary with eQTL to map trait-associated genes. The eQTL

dataset or the 1000 Genomes can be used as LD reference among

markers. The eQTL summary was pre-calculated from gene expres-

sion studies, such as GTEx (Lonsdale et al., 2013) and Depression

Genes and Networks (DGN, blood tissue eQTL) (Battle et al., 2014).

Users provide the GWAS summary data to impute the genetically

regulated gene expression and conduct gene set enrichment test.

2.2 Enrichment analysis
Based on the imputed DGE (Z-score), we used the linear regression

model to build a threshold-free gene set enrichment test, examining

whether genes are overrepresented in a particular gene set.

Apparently, the gene expression cannot be perfectly predicted only

using genotype, and the uncertainty is quantified as correlation (r2)

between the measured and predicted gene expression from cross-

validation by MetaXcan. We took the uncertainty as weights, build-

ing a weighted linear regression model. Two kinds of tests were

developed (detail in Supplementary Material):

1. Single gene-set enrichment analysis (SGSEA)

For each gene-set, we built a weighted simple linear regression

model, regressing the imputed gene expression on that gene set.

2. Multiple gene-set enrichment analysis (MGSEA)

To address the redundancy among gene sets, we built a weighted

multiple linear regression model, taking into account all gene sets in

one model. The redundancy in one gene set can be adjusted by con-

sidering all other gene sets as covariates.

2.3 Permutation test to assess significance level
The weights used in the regression model make the regression

residual potentially deviate from the homoscedasticity assumption,

resulting in a non-uniform distribution of P-values under the null

(Supplementary Material). Therefore, we used the permutation test

to assess the P-values of regression coefficients from the weighted

regression model. We repeatedly randomized the imputed DGE to

obtain a global null distribution of no associated gene sets and calcu-

lated the empirical P-value for each gene set. For the GIGSEA,

especially with many gene sets tested, a large number of regression

models would be interrogated, resulting in very intensive computa-

tion. To speed up, the large matrix operation was used in GIGSEA.

For SGSEA, we used the weighted Pearson correlation to rank the

regression coefficient, as they take the same test statistic, and fur-

thermore, we expressed the weighted Pearson correlation in terms of

large matrix inner product to calculate all correlations in one step,

therefore substantially improving the time efficiency. Taking GO

(16 339 GO terms) as an example, the weighted single regression

model takes �3.6 days to run 1000 permutations (a single Intel i7

2.1 G CPU and 16 G memory), while the weighted Pearson correl-

ation takes only 2.5 min, improving the efficiency by �2000 times.

Likewise, to accelerate MGSEA, we used the matrix solution of

the weighted multiple linear regression model, which also largely

improves the time efficiency. Furthermore, to correct the multiple

hypothesis testing, we used the Bayes Factor, which accounts for

both local fdr (Efron and Tibshirani, 2002) and prior odds ratio be-

tween null and nonnull classes (details in Supplementary Material).

2.4 Gene sets
GIGSEA used weighted linear regression model to perform gene set

enrichment test, so, it allowed both discrete and continuous-valued

gene sets. Multiple collections of gene sets have already been incor-

porated in the current tool:

1. Discrete-valued gene set: MsigDB (Subramanian et al., 2005)

(186 KEGG pathways, binding targets of 221 miRNAs and 615

transcriptional factors), and 16 339 Gene Ontology terms (GO,

addressed the offspring gene sets);

2. Continuous-valued gene set: Fantom5 promoter based binding

target prediction for 500 PWMs of transcriptional factors

(Pachkov et al., 2013), and TargetScan binding target prediction

for 87 miRNA seeds (Friedman et al., 2009);

3. Users can also provide their own gene sets of interest.

3 Simulation study on type I error rate

In order to assess the type I error rates of GIGSEA, we simulated a

dataset, for which no enriched gene sets are expected, from the real

psychiatry disease GWAS (Consortium, 2014) as the following. The

psychiatry GWAS summary data and the pre-calculated DGN eQTL

database were used as input for MetaXcan to impute the psychiatry-

associated DGE, where the mean MetaXcan prediction r2 is 12.5%,

60.4% SNPs were used in the model, and 11 230 genes were pre-

dicted. Next, we randomized the genes in the DGE but keep the

gene-weight pairs intact. We took MSigDB KEGG pathway as an

example, and applied the GIGSEA to the shuffled DGE, to investi-

gate the false positive enriched pathways by setting the alpha level

as 5%. We repeated the shuffling for 10 times, and treated the aver-

age false positive rate as type I error rate. Based on the simulation,

we evaluated the type I error rates of four analyses: SGSEA without

Fig. 1. The flowchart of GIGSEA. GIGSEA performs two levels of aggregation:

from SNPs (GWAS and eQTL) to genes, and from genes to gene sets

GIGSEA 161

Deleted Text: I
Deleted Text: D
Deleted Text: G
Deleted Text: E
Deleted Text: A
Deleted Text: File
Deleted Text: T
Deleted Text: A
Deleted Text: S
Deleted Text: L
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty529#supplementary-data
Deleted Text: ,
Deleted Text: , 
Deleted Text: utes
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty529#supplementary-data
Deleted Text: S
Deleted Text: ,
Deleted Text: ,
Deleted Text: 2
Deleted Text: S
Deleted Text: T
Deleted Text: E
Deleted Text: R
Deleted Text: ,


weights, MGSEA without weights, SGSEA with weights and

MGSEA with weights. For each analysis, we calculated the empirical

P-values based on 10 000 times permutation. We found that all type

I error rates were below the alpha level.

4 Application to a cardiovascular GWAS dataset

We applied GIGSEA to cardiovascular disease (CVD) GWAS,

CARDIoGRAMplusC4D (60 801 cases, 123 504 controls and

9.4 M SNPs) (Nikpay et al., 2015). To impute the genes associated

with CVD, we used DGN blood eQTL (Battle et al., 2014) and

the 1000 Genomes as LD reference. 11 537 genes were imputed

with high quality prediction. On average, the gene expression pre-

diction r2 is 12.4%, and the majority of SNPs (98.88%) used for

prediction are available in the CARDIoGRAMplusC4D GWAS. We

tested different classes of gene sets (Supplementary Tables and

Supplementary Material) and yield biologically plausible findings

with convincing literature support:

• MSiGDB KEGG pathway: out of 186 pathways, SGSEA detected

6 significantly enriched pathways (empirical P-value<0.05 and

BayesFactor>3), e.g. KEGG vascular smooth muscle contrac-

tion, and all of them are supported by literatures, while MGSEA

found two significantly enriched pathways (both overlap with

SGSEA), and both of them are supported by biochemical know-

ledge and literatures.
• Fantom5 transcriptional factor: out of 500 transcriptional fac-

tors, SGSEA found six significant TFs, out of which four are sup-

ported by literatures, while MGSEA found six significant TFs

(two overlap with SGSEA), out of which three are supported;
• TargetScan miRNA: out of 87 miRNAs, SGSEA found six signifi-

cant enriched miRNAs and five are supported by literatures, e.g.

miR-138 and miR-216, while MGSEA found five significant

miRNAs (three overlap with SGSEA), and four are supported.
• GO: the number of GO terms is close to or even larger than the

imputed genes, making the regression model difficult to be esti-

mated, and therefore, we only performed SGSEA. The top rank-

ing enriched GO terms are GO: 0031116 (Positive regulation of

microtubule polymerization), GO: 0001818 (Negative regulation

of cytokine production), and similar GO terms. However, they

fail to survive the heavy multiple testing correction, due to the

large number of GO terms. In experimental studies, microtubules

were shown to be accumulated, thereby impeding sarcomere

motion and promoting cardiac dysfunction, and the pro-

inflammatory cytokines are also found to be involved in cardiac

depression and in the complex syndrome of heart failure.

Although the empirical P-values by SGSEA and MGSEA demon-

strated largely consistent trend, they also revealed different

gene sets (Supplementary Fig. S1a–c), e.g. KEGG_METABOLISM_

OF_XENOBIOTICS_BY_CYTOCHROME_P450 (SGSEA empiric-

al P-value¼4.4e-03, MGSEA empirical P-value¼0.35). Such

different significance is mainly because of the sharing information

between KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTO

CHROME_P450 and multiple other pathways (Pearson correlation

r>0.22 with P-value < 2.2e-16, Supplementary Fig. 1d), which

are also associated with the disease, and furthermore,

different from the SGSEA, the MGSEA can regress away the sharing

information, with the P-values calculated only for the unique

information. In addition, the MGSEA also found significant gene

sets which failed to be detected by the SGSEA, including the

FATTY_ACID_METABOLISM pathway (MGSEA empirical

P-value¼1.0e-02), the ESRRA_ESR2 TF (MGSEA empirical

P-value¼5.0e-04), and the hsa-miR-128 miRNA (MGSEA empiric-

al P-value¼6.4e-03). Their involvements in the cardiac disease are

also supported by literatures. This fact suggests that the MGSEA can re-

move the redundant information existing in gene sets, thereby enabling

a better detection of the true associations. This is quite similar to the ad-

justment for covariates in the GWAS study. Taken together, we showed

the effectiveness of both SGSEA and MGSEA and also their comple-

mentary capabilities in uncovering the trait or disease relevant gene sets.

5 Comparison with another GWAS-based GSEA
tool: FUMA

There are few GWAS-based gene set enrichment methods, which use

both GWAS summary data and eQTL information. We only com-

pared to a very recent published online tool: Functional Mapping

and Annotation of Genome-Wide Association Studies (FUMA)

(Watanabe et al., 2017), which can map SNP-gene pairs based on

both position [annotations from ANNOVAR (Wang et al., 2010)],

and eQTL (independent significant SNPs in user-defined tissues).

We analyzed the CVD GWAS using FUMA. To make fair compari-

son, we employed the blood eQTL in FUMA (same tissue type as in

GIGSEA analysis), and investigated the enriched gene sets for

MSigDB KEGG pathways. Compared to GIGSEA, FUMA found

different and less KEGG pathways: glycerolipid metabolism (adjP-

value¼0.040), beta alanine metabolism (adjP-vlaue¼0.029), and

selenoamino acid metabolism (adjP-value¼0.041). Importantly, we

tested FUMA with and without eQTL mapping (without eQTL,

FUMA solely relies on positional mapping), and surprisingly,

FUMA returned exactly the same pathways, suggesting that the

eQTL information does not significantly contribute to the enrich-

ment analysis in FUMA. Further, GIGSEA incorporated more com-

prehensive information into a regression model for enrichment test

than FUMA, including both association strength and inheritabilities.

6 Summary

GIGSEA uses GWAS summary data and disease relevant eQTL for

gene set enrichment analysis. GIGSEA addressed such challenges in

SNP enrichment as gene size, gene boundary, SNP long-range regu-

lation, multiple-marker regulation, arbitrary cutoff on GWAS and

eQTL effect size or significance. Our method can be viewed as an

extension of the SNP-imputed gene-level test (e.g. TWAS and

PrediXcan) into the gene set level. It is a timely tool leveraging three

recent advances in genetic study (i) availability of summary level

data of large GWAS of many diseases/traits; (ii) availability of eQTL

data of disease relevant tissues, e.g. GTEx (Lonsdale et al., 2013)

and (iii) new approaches to impute the gene expression level (e.g.

MetaXcan). Application to real data demonstrated the good per-

formance and discovered the biologically meaningful findings.

GIGSEA is based on permutation test, and extensively optimized for

time efficiency. GIGSEA would have wide utility in the post-GWAS

era to mine GWAS summary data and reveal molecular mechanisms

mediating genetic predisposition of diseases.
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