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Abstract
Motivation: Understanding the specificity of protein receptor-ligand interactions is pivotal for our

comprehension of biological mechanisms and systems. Receptor protein families often have a certain

level of sequence diversity that converges into fewer conserved protein structures, allowing the

exertion of well-defined functions. T and B cell receptors of the immune system and protein kinases

that control the dynamic behaviour and decision processes in eukaryotic cells by catalysing

phosphorylation represent prime examples. Driven by the large sequence diversity, the receptors within

such protein families are often found to share specificities although divergent at the sequence level.

This observation has led to the notion that prediction models of such systems are most effectively

handled in a receptor-specific manner.

Results: We show that this approach in many cases is suboptimal, and describe an alternative

improved framework for generating models with pan-receptor predictive power for receptor protein

families. The framework is based on deep artificial neural networks and integrates information from

individual receptors into a single pan-receptor model, leveraging information across multiple

receptor-specific data sets allowing predictions of the receptor specificity for all members of a given

protein family including those described by limited or no ligand data. The approach was applied to the

protein kinase superfamily, leading to the method NetPhosPan. The method was extensively validated

and benchmarked against state-of-the-art prediction methods and was found to have unprecedented

performance in particularly for kinase domains characterized by limited or no experimental data.

Availability and Implementation: The method is freely available to non-commercial users and can be

downloaded at http://www.cbs.dtu.dk/services/NetPhospan-1.0.

Contact: mniel@bioinformatics.dtu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction
A plethora of biological functions and processes are

controlled by receptor-ligand interactions. Conventionally,

extensive lab-work combined with bioinformatics and

machine-learning efforts have, in many cases, been

employed to arrive at predictive models capturing the

specificity of a given receptor-ligand system. The outcome

of such analyses has revealed that receptors within a given

protein family have evolved to obtained highly divergent

specificities. This has primed the notion that each receptor

represents a unique biological problem that best can be

described in isolation. One such example is protein kinases

that phosphorylate residues in other proteins; a process

involved in the control of dynamic behaviour and decision

processes in eukaryotic cells. More than 510 different

protein kinases have been annotated within the human

proteome (Manning, et. al. 2002), and many of these have

been functionally characterized to have very different

specificities. This high sequence and specificity diversity

make it a very costly undertaking to experimentally

characterizing a receptor superfamily, priming the need for

bioinformatics models capable of predicting receptor

specificities. An essential prerequisite for the development

of bioinformatics prediction models is the availability of

high quality and abundant data characterizing the given

problem at hand. This is also the case for receptor-ligand

systems. For the kinase system, data that covers both the

phosphorylation site and phosphorylating kinase is scarce

and only a minor fraction of the ~500 kinases described in

the human genome have been characterized with

phosphosite information (most of these with no more than

30 phosphosites identified, see Supplementary figure 1).

This data scarcity makes the training of machine learning

methods for prediction of phosphorylation sites challenging

since the volume of data is critical to achieving an

acceptable performance for such data-driven approaches.

Earlier work has thus typically either taken a

receptor-generic (describing the average specificity of the

protein family, adapted for instance in the early kinases

phosphorylation method NetPhos (Blom, et. al. 2004),

where the data available at the time made it impossible to

create kinase-specific models) or receptor-specific

(describing each receptor on its own) approach to address

the issue of characterizing the specificities of different

receptor protein families including kinases (examples

include kinase phosphorylation (Blom, et. al. 1999), SH2

(Hjerrild, et. al. 2004), SH3 (Gao, et. al. 2010) and PDZ

(Obenauer, et. al. 2003) domains). Work within the Major

Histocompatibility Complex (MHC) receptor system of the

immune system has revealed that this approach in many

cases suboptimal, and that the characterization of receptor

specificities within large protein families can benefit from

taking a holistic approach, integrating information from

multiple individual receptor data sets into a single

pan-receptor framework (Hoof, et. al. 2009 and Karosiene,

et. al. 2013).

Here, we illustrate how such a pan-receptor approach can

readily be extended to any receptor protein superfamily

system, using the protein kinase family as an example. We

here use the term receptor to describe protein binding

domains capable of binding small peptide fragments, and

we will interchangeably use the term kinase and kinase

domain to refer to the catalytic protein kinase receptor.

Protein phosphorylation requires the physical binding of a

protein kinase to its ligand. After recognition of conserved

linear protein segments (motifs), kinases catalyze the

transfer of a phosphate from ATP to a hydroxyl group in a

serine, threonine or tyrosine in the target protein. Most

protein kinases share a common phylogenetic origin that is

evidenced by a common structural core, the protein kinase

domain. This common structural framework allows for the

accommodation of a considerable degree of structural

variance, as well as a wide range of sequence divergence

and substrate specificities while preserving the conserved

basic catalytic mechanism.

Decades of studies and the recent use of high throughput

mass spectrometry have identified thousands of in vivo

phosphorylation sites. Given this, prediction of kinase

specificities becomes increasingly amenable for machine

learning approaches. Inspired by the earlier work within the

peptide-MHC system (Nielsen, et. al. 2007), we propose

here a framework to develop pan-receptor prediction
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models for any protein receptor superfamily using protein

kinases as an example. By integrating properties contained

within the kinase domain protein sequence with

kinase-specific ligands into a machine-learning framework,

we expect the approach to leverage information between

different receptor molecules and thus enabling accurate

predictions also in situations where limited or even no

ligand data is available for a given receptor sequence.

Earlier work has described frameworks for predicting

binding specificities for novel receptors within a given

protein family by use of inference from receptors with

experimentally characterized binding specificity driven by

sequence similarity of substrate-determining residues of the

receptor protein sequences (Creixell, et. al. 2015 and Zhang,

et. al. 2009). Applying such approaches to the kinase

system is however not trivial due to the vast sequence

diversity of the kinase domain receptors, making alignment

of kinase domain sequences unto a common framework

highly challenging and error-prone. To solve this problem,

we apply an alignment-free convolutional neural networks

(CNN) machine-learning approach. Integrating this CNN

representation of the receptor with the ligand information in

a conventional feed-forward network, allow us to

implement a predictor for peptide phosphorylation with true

pan-receptor power, allowing kinase-specific predictions of

peptide phosphorylation for any kinase domain of known

protein sequence. We develop the method from data in the

public domain and perform exhaustive benchmarking

including cross- and leave-one-kinase-out validation,

mutation analysis, performance comparison to other

state-of-the-art methods, and identification of specificity

defining positions in a given kinase domain.

2 Materials and Methods
2.1 Dataset construction

A data set of 21-mer peptides was retrieved from

PhosphoSitePlus (Hornbeck, et. al. 2015) and

Phospho.ELM (Dinkel, et. al. 2011). By training several

generic phosphorylation-site predictors using datasets of

peptides with lengths ranging from 7 to 27, an optimal

performance for peptides of length 21 was observed and

this length was maintained in this work without further

optimization. Each peptide reports a known

phosphorylation site in its central position (11th position).

Peptides are accompanied by information on the specific

kinases catalysing the phosphorylation reactions. Only

phosphorylations attributed to the 478 human, eukaryotic,

protein kinase (ePK) (Manning, et. al. 2002) were selected,

leaving out 40 kinases corresponding to the 13 atypical

kinase families (aPK). Filtering out receptors represented

with less than 10 data points, we arrive at a final positive

dataset containing 10,344 peptides (originating from both

kinases and other proteins) covering 154 different protein

kinases. In figure 1, we show how the protein kinases in the

datasets are distributed over the phylogeny of the (ePK)

superfamily confirming a broad coverage of the taxonomy.

Only one branch belonging to the “Other” group (shown in

blue, in between CKI and TK groups) is left uncovered.

Figure 1. Phylogeny of the eukaryotic protein kinase (ePK)

superfamily. Each of the major groups is shown in different

colours. Under the group names are denoted the number of

kinases included in the training set that belong to that group

(high lighted as red leaves with circles). The tree structure was

retrieved from KinBase1 and plotted using HyperTree (Bingham,

et. al. 2000).

A negative set was constructed by compiling all 21-mer

peptides with a central S/T/Y from the source proteins of

the positive dataset not reported as phosphorylated in any of

the two databases. This negative dataset consisted of
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122,974 negative peptides also covering the 154 different

kinases. The kinase domain of each kinase was retrieved

from KinBase (Manning, et. al. 2002). The whole dataset

was divided into five partitions to fit a typical five-fold

cross-validation scheme (CV) where 4/5 of the data are

used for training and the remaining 1/5 is used for testing.

To address data redundancy, peptides with identity >= 50%

were grouped in the same partition. Peptides with that

shared identity with elements in more than one partition

were left out of the data set (for details on the data and data

partitioning see Figure 2).

The amino acid sequence of both peptides and protein

kinase domains were represented using Blosum encoding

(Henikoff, et. al. 1992); each amino acid was encoded as a

vector of twenty elements from the corresponding row of a

Blosum50 substitution matrix. This encoding scheme

allows the data to retain information about the relation

between the different amino acids.

Figure 2. Dataset construction and Cross-validation set-up. Positive examples were taken from PhosphoSitePlus and

Phospho.ELM, the negative set was constructed with the potential phosphosites in the positives source proteins not reported as such.

The dataset was divided in 5 partitions grouping peptides with 50 or more %identity. The partitions were used in a typical five-fold

cross-validation experiment, where four partitions are used in turn to train the network and the remaining one to evaluate its

performance. In the Leave-One-Out experiment, every data point from a given kinase domain is removed from all partitions. The

cross-validation is next performed using four partitions devoid of the data from the kinase domain in question as training data and

evaluated on the kinase domain specific data from the remaining partition. This set-up ensures to exclude not only information from

the left out kinase but also from similar peptides in the network training.

2.2 Artificial Neural Networks

2.2.1 Kinase-specific predictors

Kinase-specific predictors were trained individually for

each kinase domain as a baseline to compare improvements

induced using different strategies and architectures. To train

these models, data were split by protein kinase, maintaining

the original partitioning in the training set (see above).

Networks were trained using stochastic gradient descent
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back-propagation for 100 epochs in a typical

cross-validation scheme without early stopping. In this way,

the left-out evaluation data was independent of the training

(see figure 2). The architecture was shared among all the

kinase-specific networks having 420 input neurons

(corresponding to 21 ligand positions each encoded with 20

digits), 50 hidden neurons and one output. Other more

complex architectures and hyper-parameter settings were

investigated but did not demonstrate a consistent

performance gain (data not shown).

2.2.2 The pan-receptor kinase predictor

A single pan-receptor predictor was developed to allow

prediction of phosphorylations specific to any kinase

domain of know protein sequence. Inspired by the

pan-specific predictor developed for peptide MHC binding

(Hoof, et. al. 2009, Karosiene, et. al. 2013), the

pan-receptor kinase predictor was constructed combining

the sequence of the complete kinase domain of the kinase

attributed the phosphorylation with the peptide sequence for

each data point. This was achieved by representing the

kinase domain as a 1D-convolutional layer followed by a

pooling layer. The convolution was obtained using 40 filters

of size 3, 5 and 7 amino acids leading to a total of 120

filters. The pooling layer performs a global max-pooling,

selecting the maximum value for each filter and these

maximum values were then used as input together with the

encoded peptide sequence (encoded with 420 input values

as for the kinase-specific networks) in a feed-forward layer

with 90 neurons (see figure 3c) connected to the output

neuron. The model was trained in a five-fold

cross-validation scheme using stochastic gradient descent

back-propagation for 100 epochs, with a batch size of 20, a

learning rate of 0.05 and a sigmoid activation function for

all neurons including the output neuron. This means that the

model output is quantitative (and not qualitative/binary).

Weights were initialized using a Gaussian distribution with

a mean of 0 and a standard deviation of 0.01. All

hyper-parameters, except the number of filters, were chosen

from experience in previous works (Jurtz, et. al. 2017a,

Jurtz, et. al. 2017b) and were not optimized to this

particular case. The implementation was done using the

Lasagne library (Dieleman et. al. 2015), which manages

Theano (Al-Rfou et. al. 2016) to build and train neural

networks.

2.3 Validation

2.3.1 Overall performance

The performance of the different methods was estimated

from the combined test set predictions; the test predictions

of all the partitions were concatenated and the area under

the receiver operating characteristic curve (AUC) was

calculated for each individual kinase. The comparison

between different methods was done by applying a binomial

test without ties, where the highest AUC determines the

best performing method.

2.3.3 Leave-one-out

To estimate the performance of the pan-receptor predictor

for kinase domains not included in the training, a

leave-one-kinase-out (LOO) experiment was conducted.

Here, a set of pan-receptor predictors was trained, each by

removing all data points for a specific kinase domain in

each partition. The predictor was next trained using 5-fold

cross-validation on the remaining data, as described above.

Each left-out partition was next predicted; i.e. left-out

peptides from partition 0 were predicted from an LOO

network trained on partitions 1, 2, 3 and 4, etc. (for details

on the LOO experiment setup refer to figure 2). This

strategy is naturally not applicable to the kinase-specific

method. Here, predictions for the left-out kinase domain

were performed using a nearest neighbour approach. The

nearest neighbour was identified from the sequence

similarity of the given kinase domain to the other receptors

in the dataset using a blosum50 based alignment and

translated to distance as one minus the sequence identity

divided the alignment length, and the distance to the nearest

neighbour was calculated as 1 – nid/alen, where nid is the
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number of identical amino acids in the alignment and alen

the alignment length. Next, the nearest neighbour

kinase-specific model was used to make predictions for the

data of the left-out domain in each partition using the

network trained without its partition of origin, as was the

case for the pan-receptor LOO evaluation (for details see

Figure 2).

2.3.4 Receptor mutation analysis

This experiment was set up to identify positions in the

kinase domain that the network identifies as important. We

performed an alanine scan where every amino acid in the

receptor sequence was mutated to alanine and predictions

were made for a set of thousand random phosphorylatable

peptides in natural protein sequences. The selection of

random ligands instead of high binders was used to measure

both gain and loss in predicted score in comparison with the

predictions using the wild-type molecule. Comparing the

predictions from the mutated with the native kinase

sequence a score for each position in the kinase domain was

calculated as:

where Swt is the prediction with the wild-type kinase domain

sequence and Sm is the prediction with its mutated version.

This score was mapped to the structure of the kinase to

visualize the location of relevant positions.

The structures of the kinase domains used in the alanine

scan assay were retrieved from the protein data bank

(Berman, et. al. 2000).

2.3.5 Ligand mutation analysis

To validate the performance of the pan-receptor kinase

predictor in recognizing the effect of mutations on the

phosphorylation target sequence, peptides with an identified

mutation that resulted in either loss or gain of

phosphorylation were retrieved from Reimand et. al. 2013.

In each case, predictions were made for both wild-type and

mutated peptide. The assigned score to each pair was

calculated as Sm-Swt and a scatter plot of these values

plotted to visualize the changes induced by the mutations.

2.3.6 Model comparisons

The performance of NetPhosPan, was compared to GPS

(Xue, et. al. 2008), Musite (Gao, et. al. 2010), NetPhos-3.1

(Blom, et. al. 1999 and Blom, et. al. 2004) as well as the

recently published, MusiteDeep method (Wang, et. al.

2017). These methods use different strategies to solve the

same problem, GPS is a kinase-specific phosphorylation

site predictor implemented in JAVA based on

similarity-based clustering that covers 464 protein kinases,

Musite, on the other hand, uses multiple support vector

machines trained on protein disorder, local sequence

similarity and amino acid frequencies around sites

phosphorylated as features to address 67 kinases,

NetPhos-3.1 is based on feed-forward neural networks

trained with peptides containing the phosphorylated amino

acid at the central position and is trained with 17 different

kinase substrates, and finally, MusiteDeep is a

kinase-specific predictor based on deep convolutional

neural networks trained on data spanning 5 kinase families,

covering 61 kinases. It takes as input 33-mers peptides with

a central potential phosphosite. Default options of the

standalone versions of each tool were used. The only

modifications were for Musite where the model

H.sapiens.kinase.specific was selected in order to use its

human kinase-specific version. The data for the comparison

was retrieved from PhosphositePlus, excluding all examples

included in the training data of NetPhosPan and

MusiteDeep. The latter information was obtained from

github.com/duolinwang/MusiteDeep/tree/master/testdata.

Given that this data was published after the release of the

first three tools used in this benchmark, we consider this a

fair comparison in relation to NetPhosPan. Since GPS,

Musite, MusiteDeep and NetPhos are all kinase-specific

methods, only kinases shared by at least three methods were

tested. The resulting subset featured seven kinases with

only two shared between all four predictors. The metrics
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used for comparison purposes were AUC, AUC0.1 (area

under the ROC curve integrated up to a false positive rate of

10%), predictive positive value, sensitivity and specificity.

The latter two requires classification of the different

prediction into positive and negatives. For this default

values for each method were used. P-values associated with

each comparison were estimated using Bootstrap analyses.

Here, one thousand re-samples of the original benchmark

dataset, allowing replacement, were constructed (requiring

the dataset to have at least one data point of each positive

and negative class). Next, the p-value for one method

outperforming the other was estimated as the percentage of

re-sampled datasets where the other method had superior

performance.

3 Results
Protein kinases are a prime example of a receptor

superfamily displaying a very high diversity in binding site

specificity. This diversity is manifested in the different

binding motifs of individual kinase domains derived from

kinase-specific ligand data. A few such examples are shown

in figure 3A. The specificity of a kinase domain is as a first

approximation encoded in its primary protein sequence. By

integrating the kinase domain protein sequence with

kinase-specific ligands in a machine-learning framework,

one should, therefore, be able to construct a pan-receptor

predictor, leveraging information between different kinase

domain specificities, allowing for accurate phosphorylation

predictions for any kinase of interest.
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Figure 3. (a) Different kinases show specific preferences in the sequence that surround the phosphorylated amino acid, this

preference is usually maintained within kinase families. (b) Illustration of the main challenge of the pan-receptor approach. The

right panel shows two representations of the diversity in kinases at the sequence level, a small window taken from the alignment of

478 human kinase domains, containing the catalytic aspartic acid. Regions of insertions and deletions can be found along the entire

alignment. In the logo, the thickness of each character depends on the number of gaps at the given positions. The left panel shows

the structural differences of three kinases (CDC42BPB (DMPK), VRK3 (VRK), and CDK2 (CDK)). The coloured circles present a

particular structure specific to each individual kinase. (c) The architecture of the artificial neural network used to train NetPhosPan.

The catalytic domain is processed by a convolutional layer that applies several filters in order to extract a fixed number of features.

The encoded peptide is concatenated to the convolutional layer output and used as input to a conventional feed-forward layer. The

output neuron predicts a likelihood of whether the given residue in the input peptide is phosphorylated. Note, therefore, that the

method is not a classifier.
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3.1 NetPhosPan performance

Like earlier pan-specific prediction methods (Hoof, et. al.

2009, Karosiene, et. al. 2013, Andreatta, et. al. 2015,

Creixell, et. al. 2015 and Nielsen, et. al. 2016), the

pan-receptor NetPhosPan phosphorylation predictor takes

into account not only information contained within the

ligand, but also incorporates information from the kinase

domain of the receptor. To address the challenge of

sequence and structural diversity of the kinase domains

illustrated in figure 3B, the receptor sequences are

represented as max-pooled convolutional neural networks

(CNN). In essence, these networks consist of filters

(linear models) trained to capture short linear motifs in the

input data. Using max-pooling conforms each

convolutional filter to contribute with one value to the

model. Having a fixed number of CNN filters, all

receptors are transformed into an equal-sized feature

space (equal to the number of filters), that in turn is

combined with the ligand, allowing the method to infer

the rules relating the kinase receptor sequence to its

functional specificity (see figure 3C and details in

Materials and Methods). As observed for the MHC

system, this pan-receptor predictor should be capable of

leveraging information between kinase domains and

achieve improved performance compared to conventional

receptor-specific methods trained on ligand data specific

for single kinase domains. This in particular in situations

where ligand data are either scarce or completely absent.

The model was trained on 10,344 positive phosphorylated

peptides covering 154 different protein kinases (for details

on the data and method see Materials and Methods).

Figure 4A reports the predictive performance of the

model and confirms that this is indeed the case. Here, the

performances of the pan-receptor and kinase-specific

methods are compared (details are given in Table S1) and

show that the pan-receptor method significantly

outperforms the kinase-specific version. This is the case

for kinase domains regardless of the amount of ligand

data available. However, the gain is (as expected) most

pronounced when the number of ligands is small (p-value

< 0.001, binomial test comparing the performance of the

two methods for kinase domains characterized by fewer

than 30 positive data points). The performance of the

pan-receptor predictor was further compared to a naïve

sequence similarity-based predictor where for each

peptide, the target value (phosphorylated or

not-phosphorylated) was inferred from the target value of

the most similar peptide in the training data for the given

kinase. As expected, the similarity-based model had a

very poor predictive performance with an average of

0.709 of AUC (compared to an average performance of

the pan-specific method of 0.878, see supplementary

Table S1) confirming that the data partition adequately

deals with the redundancy in the ligand dataset and that

the method has captured signals allowing for

extrapolation beyond a simple lookup table.

3.2 Exposure analysis

A residue must be accessible to the kinase in order to be

phosphorylated. NetPhosPan, however, does not explicitly

incorporate any information related to the surface

exposure of the residues predicted to be phosphorylated,

and one could speculate that the method learns to

discriminate between buried and exposed residues rather

than phosphorylation. To assess to what degree this was

the case, the performance was evaluated on the subset of

exposed potential phosphorylation sites, predicted by

NetSurfP-1.1 (Petersen, et. al. 2009). In every case, the

performance loss is less than 5% (supplementary table S5),

confirming that the captured signal describes the

phosphorylation potential of a given residue, rather than

the exposed/buried condition of each peptide.

3.3 Leave-One-Out performance

One of the objectives of NetPhosPan is to predict

phosphorylation of peptides by kinases not characterized

by ligand data. In order to emulate this situation, a

leave-one-out (LOO) experiment was performed. Here,

methods were trained using the setup described earlier for

the pan-receptor method, each time excluding all data of a

single kinase from the training data. Next, the data from

the left-out kinase domain was used as an evaluation set
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to measure the performance of the method. As a

comparison, a nearest neighbour approach was used. Here,

the data set of a given kinase domain was predicted using

the receptor specific network trained on data from the

most similar other kinase domain (for details on the LOO

and nearest neighbour approaches see material and

methods). The result of the LOO experiment is

summarized in figure 4B and shows across all distances to

the nearest neighbour a clear improved performance of

the pan-receptor predictor over the nearest neighbour

approach (p-value = 0.004, binomial test excluding ties

over all data points).

Figure 4. Performance of the different methods. The kinases

were grouped according to the number of positive data points

in the dataset and the AUC values of each group were plotted

for each method. (a) Performance of NetPhosPan and the

kinase-specific methods. The pan-receptor method outperforms

the kinase-specific method in every group with a large

improvement when there are only a few data points. (b)

Comparison of leave-one-out and nearest neighbour methods in

novel data prediction. The leave one out experiment shows an

improvement when compared to the nearest neighbour.

To illustrate why the LOO outperformed the nearest

neighbour method, we visualized the binding specificity

of two kinases as sequence logos (figure 5). The logos

were constructed using Seq2logo (Thomsen, et. al. 2012)

from the top 1% highest scoring peptides from a set of

100,000 random natural peptides (each containing S or T

at the central position) predicted by the two prediction

methods. The two kinases were selected as one with a

close nearest neighbour (JNK1), and one with a far

nearest neighbour (CHK1). From the plots, it is clear that

both methods succeed at predicting the specificity of

JNK1. For CHK1 on the other hand, the nearest neighbour

motif shows a clear deviation from the experimental data

in particular at the C-terminal side of the phosphorylation

site where this to a much lesser degree is the case for the

LOO method. This thus confirming that the pan-receptor

method is capable of leveraging information from the

different kinase receptors, and in turn use this information

to make accurate predictions for novel data.

Figure 5. Sequence logo representation of kinase specificities

of JNK1 and CHK1. The left column gives the logo derived

from the experimental data, the central column the logo derived

from the LOO predictions, and the right column the logo derived

from the nearest neighbour predictions. Logos were estimated as

described in the text.

In summary, NetPhosPan was demonstrated to have a

consistent and high predictive performance with AUC

values above 0.9 within all kinase groups (see

supplementary table S1), and an average AUC over all

kinases included in the benchmark of 0.878. When

compared with a receptor-specific predictor, the method

showed comparable performance when the training data

was abundant and a significant improvement in cases

when only a few data points were available. This and the

robust performance showed in the leave-one-out

experiment, suggests that the cross-learning between

different receptors allows the method to infer

ligand-receptor relations boosting its performance beyond

that obtained by the receptor-specific models. Further,

filtering out data points predicted as buried, we could

prove that the signal contained within NetPhosPan was

indeed related to phosphorylation and not just to the
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identification of amino acid compositions found in

exposed regions of the protein of interest.

3.4 Ligand mutation analysis

Mutations in a ligand can lead to a gain or loss of

phosphorylation capacity. This event is tightly related to

modifications of the phosphorylation pathways and

signalling network rewiring often observed in diseases

with a high mutational load such as cancer. To investigate

if the NetPhosPan method can be used to predict the

impact on phosphorylation of such single mutation

variants, a set of ligands with experimentally confirmed

alternation in phosphorylation between wild-type and

mutant variant were retrieved from an independent dataset

published by Reimand et. al. 2013. Peptides with 100%

identity to any peptide in the training set were discarded.

Predictions were performed using NetPhosPan for both

wild-type and mutated versions of these ligands, and the

predicted change was compared to the experimentally

observed alternation. The results of the analysis are shown

in figure 6, where ligands that lose or gain

phosphorylation are analysed separately. The analysis

shows that NetPhosPan to a very high degree (in

particular for the ligands that lose phosphorylation) is

capable of predicting loss of phosphorylation upon

mutation. The relatively poor performance of NetPhosPan

for predicting the events of gained phosphorylation is to a

high degree explained by a very poor correlation between

the motives of the specificities of the given kinase in

question (as reported in both PhosphositePlus, and the

training data, and derived from NetPhosPan) and the

nature of the mutation that should induce the increased

likelihood of phosphorylation. A striking example of this

includes SPSQLSKW[P/S]GSPTSRSSDELD where the

mutant variant [S] is annotated to gain phosphorylation to

the kinases ERK1 and ERK2 when compared to the

wildtype [P] (highlighted with void circles in figure 6).

These kinases are both described to have a preference for

proline (P) at the P-2 position (two amino acids to the N

terminal side of the phosphosite). It is not clear what is

the source of these seeming inconsistencies.

Figure 6. Mutation analysis of ligands. The score variation

between wild-type and mutated peptides is plotted for both

groups: peptides that lose its capacity of being phosphorylated

(Loss) and peptides which become prone to interact with a

kinase (Gain). A negative ΔScore means a drop in prediction

score from the wild-type ligand to its mutated version

corresponding to a loss of phosphorylation potential while a

positive ΔScore corresponds to the opposite effect.

3.5 In-silico kinase mutations

Having demonstrated that the NetPhosPan predictor has

pan-receptor potential and can be applied to gain insights

to the impact of mutations in phospho-ligands, we next

investigated to what degree the signal captured by the

method matches properties of the protein structure and

function of the kinase domains. To assess this, an alanine

scan was performed. Here, each amino acid in a given

kinase domain protein sequence was mutated to alanine

and the mutant variant used to predict the phosphorylation

of a thousand random natural peptides (containing S or T

at the central position). Next, a score was calculated for

each kinase domain position measuring the variations in

predicted values between wild-type and mutant domain

(for details see materials and methods) and this score was

mapped to the domain 3D protein structure, lighting

positions where the difference in prediction was high. The

result of these analyses is shown in figure 7 for two kinase

domains and reveals that most of the positions with the

higher variation score were found in the vicinity of the

active site in the kinase domain. These results suggest that
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the machine-learning framework in a fully automated and

unsupervised manner has captured essential biologically

and functionally relevant information stored in the kinase

domain sequence.

Figure 7. Alanine scan experiment. Each amino acid in the

kinase domain of the kinase domain from CDK2 (a) and

ROCK1 (b) molecules is coloured (in a scale from red to blue,

with red being high) and enlarged using the prediction variation

score. In the centre, the conserved aspartic acid, which is

important for the catalytic activity of the enzyme is shown in

magenta. CDK2 domain is in complex with a peptide (in dark

grey), its phosphosite is highlighted in magenta. (PDB ID:

1QMZ and 2ETR, respectively).

3.6 Method comparison

To compare the predictive power of NetPhosPan, the

method was challenged against a panel of five widely

used phosphorylation site predictors (for details see

Materials and Methods). Only kinases covered by at least

three methods were included in the benchmark. The

scores predicted for each potential phosphosite were used

to calculate the performance values of each method.

Reported phosphosites were tagged as positives while

every other potential phosphorylatable amino acid was

taken as negative. Since most of these methods only

report predicted phosphorylation sites, every non-reported

site was assigned a prediction score of zero. (for details on

the benchmark and performance corresponding measures

see materials and methods). Table 1 and 2 display the

performance values (AUC and PPV) for each method on

the different datasets. Here, AUC was calculated as

described earlier, and PPV (predicted positive value) was

calculated as the proportion of true positives among the

top N highest scoring predictions, where N is equal to the

number of positive peptides in the given data set.

Supplementary tables S2, S3 and S4 give the sensitivity,

specificity and AUC0.1 values of each method for each

dataset.

Kinase Training AP AN GPS-3.0 NetPhos-3.1 Musite-1.0 MusiteDeep Kinase-specific NetPhosPan

PKACA 715 25 1667 0.720 0.854 0.599 0.867 0.860 0.846

CDK1 509 318 18768 0.899 0.428 0.839 0.922 0.931 0.947*

ERK1 339 10 623 0.871 - 0.825 0.876 0.887 0.975

ERK2 441 15 698 0.950 - 0.855 0.988 0.986 0.986

PKCB 68 51 2314 - 0.735 0.736 0.955* 0.864 0.912

P38A 182 8 626 0.827 - - 0.836 0.911 0.941

CK2A1 541 17 761 0.897 - - 0.934 0.849 0.874

Table 1. Comparison of the predictive performance of the different methods included in the benchmark. Training gives the

number of positive ligands for the given kinase in the training data, AP and AN is the number of positive and negative data in the

evaluation data set. The 6 methods included in the benchmark are GPS-3.0 ,(Xue, et. al. 2008) NetPhos-3.1 (Blom, et. al. 1999 and

Blom, et. Al. 2004), Musite-1.0 (Gao, et. al. 2010), MusiteDeep (Wang, et. al. 2017), the kinase-specific method described here,

and NetPhosPan. The AUC value is calculated as described in the text assigning phosphosites as positives while all other potential

phosphorylatable peptides were taken as negatives. In bold, is denoted the highest performance value achieved for a given kinase.

Results denoted with (*) resulted statistically significant (p<0.05) in a bootstrap analysis performed between the two methods

(MusiteDeep and NetPhosPan) with the best overall performance.
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Kinase Training AP AN GPS-3.0 NetPhos-3.1 Musite-1.0 MusiteDeep Kinase-specific NetPhosPan

PKACA 715 25 1667 0.32 0.28 0.24 0.28 0.32 0.28

CDK1 509 318 18768 0.20 0 0.29 0.26 0.31 0.37*

ERK1 339 10 623 0.30 - 0.10 0.20 0.20 0.40

ERK2 441 15 698 0.40 - 0.53 0.67 0.47 0.53

PKCB 68 51 2314 - 0.18 0.31 0.43 0.39 0.37

P38A 182 8 626 0.13 - - 0.13 0.13 0.00

CK2A1 541 17 761 0.53 - - 0.65* 0.53 0.12

Table 2. Positive predictive value (PPV) for each kinase in the benchmark. Displayed are the number of positive data points in

the training set (Training), the number of positive and negative peptides in the benchmark (AP and AN respectively) and the PPV

obtained by each method, calculated as the proportion of true positives in the subset of size AP of best scoring peptides. In bold, is

denoted the highest performance value achieved for a given kinase. Results denoted with (*) resulted statistically significant

(p<0.05) in a bootstrap analysis performed between the methods with the best overall performance.

In summary, these results demonstrated suggest a

comparable or superior predictive performance of

NetPhosPan compared to the other methods included in

the benchmark. Note, that all the kinases included are

characterized by more than 65 positive data points in the

training dataset hence allowing a high performance of

receptor-specific methods, and thus not fully capturing the

predictive potential of NetPhosPan. This is also reflected

in the fact that the kinase-specific predictor developed

here and included in the benchmark demonstrates a

performance comparable to that of NetPhosPan. To fully

appreciate the predictive power of the proposed method,

the result of this benchmark must be aligned with the

results of the leave-one-out experiments described earlier

(in particular figure 2B). Such an alignment suggests that

the high performance of the NetPhosPan method observed

here can be extrapolated to the complete space of kinases;

an ability that is not covered by the other methods

included in the benchmark.

4. Discussion
We have here outlined a framework enabling the

development of pan-receptor models capable of predicting

the ligand-binding specificity for any member of a

receptor protein family with a known protein sequence.

The only prerequisite for a successful application of the

approach is the availability of a representative set of

receptor-specific ligand data. The proposed framework

was used here to develop a pan-receptor model for

prediction of the ligand specificity of protein kinases.

The developed prediction method is as the name suggests

pan-specific, meaning that the method can make

predictions of phosphorylation for any kinases domain

characterized by a protein sequence. Previous methods

capable of inferring kinase domain specificity of novel

kinases have been described earlier (Brinkworth, et. al.

2006 and Creixell, et. al. 2015). However, these methods

all rely heavily on a multiple sequence alignment of the

different kinase domains to identify substrate-determining

residues and use this information to predict binding

preferences for kinases with no available ligand data.

Such alignment-based methodologies are highly

error-prone when working with sequence diverse protein

families. Usually, multiple alignments should be manually

reviewed to correct errors which prevent the development

of fully automatic methods that can predict over new

sequences i.e. mutated versions. In contrast, is the

framework underlying NetPhosPan alignment-free and

allows in a fully automated manner to identify shared

patterns in the kinase domains avoiding any kind of
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alignment-related error. The method was benchmarked

using cross-validation, leave-one-kinase-out and against

other publicly available phosphorylation predictors, and

was in all cases found to perform at par or better than all

methods tested. In particular, in the

leave-one-kinase-domain-out validation, the method was

found to maintain high performance also for kinase

domains characterized by limited or no ligand data point.

This is a unique property of NetPhosPan since all other

available methods are kinase-specific and hence limited to

make predictions for the small subset of kinases

characterized by a sufficiently large set of ligands.

In cancer, a common example of a complex disease, cells

present hypermutated phenotypes where somatic

mutations accumulate rapidly (Nebot-Bral, et. al. 2017).

Furthermore, a common observation in the clinical

treatment of cancer is that patients rapidly develop

resistance to treatment. These resistance mechanisms

often imply the generation of new specificities that rewire

the canonical protein-protein network and allow for the

generation of alternative escape pathways. Using a large

set of experimentally peptides containing validated

phosphorylation inducing and phosphorylation depleting

mutations, we illustrate how NetPhosPan could be used to

aid the understanding of such mutation-driven rewiring of

the phosphorylation network. Comparing wild-type and

mutant variants, we observed a consistent increase in the

predicted phosphorylation potential for the peptides

containing phosphorylation inducing mutations and

likewise a decrease in phosphorylation potential for

peptides containing mutants experimentally found to

abolish phosphorylation. These results suggest that the

proposed method can be applied to predict the acquisition

of novel kinase-substrate interactions that would deviate

from the canonical phosphorylation signalling pathways.

To further illustrate how NetPhosPan can be used to guide

the understanding of kinase specificity, we conducted a

mutation analysis on the kinase domains. Doing this, we

could identify specificity defining positions in a given

kinase domain. This observation thus further points to that

the method also from the kinase receptor point of view,

can be used to identify mutations that could modify the

kinase specificity and hence potentially lead to

modifications of the phosphorylation pathways and

signalling network rewiring.

In conclusion, we have developed the first pan-receptor

predictor of protein phosphorylation. The method has

been benchmarked and demonstrated to be state of the art.

The framework described for developing the method was

here applied solely to kinase phosphorylation, however,

this represents one of the hardest problems to describe due

to its large sequence and structural diversity. Given the

high success of the obtained model, we find it very likely

that the framework can be readily applied to any other

receptor-ligand interaction system and could, in our view,

form the cornerstone for future developments of

receptor-ligand prediction models related to most of the

essential regulatory processes in cellular organisms.

NetPhosPan is publicly available at

www.cbs.dtu.dk/services/NetPhospan-1.0.
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