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Abstract

Genome-scale gene networks contain regulatory
genes called hubs that have many interaction part-
ners. These genes usually play an essential role in
gene regulation and cellular processes. Despite re-
cent advancements in high-throughput technology,
inferring gene networks with hub genes from high-
dimensional data still remains a challenging prob-
lem. Novel statistical network inference methods
are needed for efficient and accurate reconstruction
of hub networks from high-dimensional data.
To address this challenge we propose DW-Lasso, a
degree weighted Lasso (least absolute shrinkage and
selection operator) method which infers gene net-
works with hubs efficiently under the low sample
size setting. Our network reconstruction approach
is formulated as a two stage procedure: first, the
degree of networks is estimated iteratively, and sec-
ond, the gene regulatory network is reconstructed
using degree information. A useful property of the
proposed method is that it naturally favors the
accumulation of neighbors around hub genes and
thereby helps in accurate modeling of the high-
throughput data under the assumption that the
underlying network exhibits hub structure. In a
simulation study, we demonstrate good predictive

∗nurgazy.sulaimanov@bcs.tu-darmstadt.de
†heinz.koeppl@bcs.tu-darmstadt.de

performance of the proposed method in comparison
to traditional Lasso type methods in inferring hub
and scale-free graphs. We show the effectiveness of
our method in an application to microarray data of
E.coli and RNA sequencing data of Kidney Clear
Cell Carcinoma from The Cancer Genome Atlas
datasets.

1 Introduction

With the advent of high-throughput technologies
such as microarrays and RNA sequencing, inference
of gene regulatory networks has attracted much
scientific interest over the last decade. The tech-
nologies enable simultaneous measurement of large
numbers of genes. This leads to the challenge of
inferring large-scale gene regulatory networks from
high-dimensional data (Marbach et al. (2012); Hill
et al. (2016)). On the other hand, high-throughput
experiments still remain costly and therefore ex-
periments are usually carried out for a setting with
far less samples than genes. Shrinkage methods
from high-dimensional statistics such as the graphi-
cal Lasso (Glasso) (Friedman et al. (2008)) and the
nodewise regression (Meinshausen and Bühlmann
(2006)) are a good choice for the graph recon-
struction in this scenario. Gene regulatory net-
works contain regulatory genes with many inter-
action partners called hubs that are essential for
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the viability of the organism because they are a
central part of the interaction network (Blais and
Dynlacht (2005)). This property also makes the
hub genes potential drug targets. Hub genes have
been shown to be conserved in several organisms
and it was suggested that their normal function is
to act as genetic buffers, minimizing the effects of
mutations in other genes (Lehner et al. (2006)). For
example, the tumor suppressor Tp53 is a central
hub in a molecular network that controls cell pro-
liferation and death in response to oncogenic condi-
tions (Collavin et al. (2010)). The protein encoded
by Tp53 is a powerful tumor suppressor, as proven
by a studies of in vivo models and confirmed by
frequent mutation in human cancers (Donehower
and Lozano (2009)). It is very challenging to re-
construct such networks with hubs and the tradi-
tional l1-based methods such as Glasso and node-
wise regression perform poorly for these type of net-
works under the setting of less samples than genes.
The edges of networks estimated from the standard
l1-norm based methods correspond to a maximum
posterior mode where independent, two sided ex-
ponential prior distribution are placed on the edge
coefficients (Hans (2009)). Such approaches in-
directly assume that each edge is treated equally
which in turn corresponds to an Erdös-Rényi net-
work in which most of the nodes have similar de-
grees (Tan et al. (2014), Erdös and Rényi (1959)).

A number of methods have been developed by
different authors to tackle the problem of hub net-
work inference from high-dimensional data. For ex-
ample, Peng et al. (2009) proposed a joint sparse
regression model called SPACE (sparse partial cor-
relation estimation) that allows to incorporate es-
timated degree information as a prior. However,
their method does not perform well when the graph
contains a few hubs that are highly connected to
other nodes. Liu and Ihler (2011) proposed a
reweighted method to infer scale-free and hub type
networks that performs better than graphical Lasso
and nodewise regression. However, the networks
considered in their study contain hub nodes that
are far less connected than the hubs which we con-
sider in our study. Tan et al. (2014) proposed
l1-based method involving three penalty parame-
ters that control hub sparsity, a selection of hub
nodes and overall sparsity. The method performs
well in the presence of highly connected nodes in
the graph, however, it includes three penalty pa-

rameters and final estimates are highly dependent
on how well these penalty parameters are chosen.
In the context of Ising graphical models, Tandon
and Ravikumar (2014) provided theoretical guar-
antees for l1-based logistic regression to recover the
networks with a few hubs that have large degrees.
Moreover, the authors provided a quantitative cri-
terion to detect hub and non-hub nodes in the net-
work. Other authors proposed methods to screen
the hubs in the network in the context of graphical
models (Firouzi and Hero (2013); Hero and Ra-
jaratnam (2012)). However, these methods do not
aim at estimating the hub network.

In this manuscript, we address the problem of
estimating hub graphs from data in small n large p
scenarios and propose a method (DW-Lasso) that
consists of an iterative degree estimation step fol-
lowed by a graph reconstruction step (Figure 1).
Our method in spirit is close to the method by Tan-
don and Ravikumar (2014), however, our method is
designed for Gaussian graphical models and treats
the genes as continuous variables. We demonstrate
the increased performance of our approach in com-
parison to traditional l1-based methods under high-
dimensional settings both on simulated and exper-
imental data.

2 Methods

2.1 Notation

Consider a p-dimensional random vector X =
(X1, . . . , Xp)

T , which represents the expression lev-
els of p genes. We assume that X follows the mul-
tivariate normal distribution with zero mean and
covariance matrix Σ. We have a design matrix
X = (X1, . . . ,Xp) of size n × p, where n is the
number of observations that are independently and
identically distributed.
We consider a undirected graph G = (V,E), with
a set of nodes, V = {1, . . . , p} and a set of edges,
E ⊆ V ×V . In our case, V represents a set of genes
and E represents a set of conditional dependencies
between the genes.
Under the multivariate normal distribution as-
sumption, the concentration matrix Θ ≡ Σ−1 en-
codes the conditional independence relationships
between genes through the graph G. In particu-
lar, the genes i and j are conditionally indepen-
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dent given the other genes, if (i, j)-th entry of the
concentration matrix is zero.

Let ρij denote a partial correlation between any
two genes Xi and Xj . It is related to the elements
of the concentration matrix through the relation

ρij = − Θij√
ΘiiΘjj

, (1)

for i 6= j and ρij = 1 for i = j. There is an edge
between genes i and j, if ρij 6= 0 and no edge if
ρij = 0 for i 6= j. Furthermore, we define the degree
of gene i by di which represents the number of genes
directly connected to gene i. It is computed using
the following expression

di =

p∑
j=1,j 6=i

1{Θij 6= 0},∀i ∈ V. (2)

2.2 Degree estimation using a node-
wise regression method

Tandon and Ravikumar (2014) proposed a theoret-
ical criterion that allows to differentiate between
hubs and non-hubs. This makes possible to in-
fer the network using the non-hubs estimates by
ignoring the estimates from hub nodes under the
assumption that the underlying network contains
a few hubs with large degrees. Motivating by this
fact, we attempt to distinguish the hub genes based
on their degrees using the nodewise regression ap-
proach (Meinshausen and Bühlmann (2006)). For
example, simulation results on scale-free networks
indicate that nodewise regression is able to differen-
tiate between hub and non-hubs nodes for some val-
ues of penalty parameter (Figure 4A and for more
information see Section 2.4).

For nodewise regression, we assume Xi is a re-
sponse vector corresponding to gene i and X\i is
the submatrix after excluding the i-th column of
the design matrix X. In order to reconstruct the
graph, we assume a linear relationship between the
genes. Therefore, we linearly regress gene i given
the remaining genes, using the following model

Xi = X\iβi + εi, (3)

where βi is a coefficient vector of length p− 1 and
εi ∼ N (0, σ2I). Each element of the vector βi can

Infer the gene network using 
the weighted node-wise 

regression

Compute the degree of the 
inferred gene network

Compute weights from the 
predicted degree

Infer the gene network with 
updated weights

A
Gene expression

Sa
m

pl
es

Hub graph Scale-free graph

B

Figure 1: (A) Workflow of the network inference with

the degree weighted Lasso method (DW-Lasso). Ini-

tially, the network is reconstructed using nodewise re-

gression (MB-Lasso) which corresponds to the weighted

nodewise-regression with the same weights. In the sec-

ond step, the degree of the resulting network is com-

puted. In the third step, the weights are computed from

the estimated degrees. These weights are incorporated

into the weighted nodewise regression and updated un-

til the algorithm attains a steady state. The weights at

the steady state are then used to reconstruct the final

network. Red nodes represent the hub nodes. (B) Il-

lustration of hub and scale-free networks considered in

the study.

be expressed in terms of partial correlations by

βij = −ρij
√

Θjj

Θii
, (4)

where ρij is defined in (1). Under the high-
dimensional setting (p > n), the coefficient vec-
tor βi cannot be uniquely estimated, because
(X\i)TX\i is not invertible. Therefore, we adopt
a Lasso approach (Tibshirani (1996)) to estimate
the coefficient vector for gene i using the following
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objective function

β̂i = arg min
βi

(
1

n
||Xi −X\iβi||22 + λ1||βi||1

)
,

(5)
where λ1 > 0 is the penalty parameter that en-
forces sparsity in the estimates. By performing a
nodewise regression for all genes (Meinshausen and
Bühlmann (2006)), we estimate the off-diagonal el-

ements of the concentration matrix Θ̂ij = β̂ij for
all i 6= j. Since the estimates of (5) are not sym-
metric, we apply the following transformation to
obtain the symmetric matrix

Θ̃ = (Θ̂ + Θ̂
T

)/2, (6)

Furthermore, we compute the degree vector d̂ =
(d̂1, . . . , d̂p) from the estimated concentration ma-

trix Θ̃, where each element of the vector d̂ is defined
as

d̂i =

p∑
j=1,j 6=i

1{Θ̃ij 6= 0},∀i ∈ V (7)

In the next step, we compute a weight for gene i by

wi = (1 + d̂i)
−1. (8)

When the estimated degree of a gene i is zero, then
the corresponding weight is equal to one. A sim-
ilar formulation has been applied for the adaptive
Lasso using the weight as a function of estimated
coefficients (Zou (2006)). Furthermore, we normal-
ize the weights to represent them as probabilities

w̄i =
wi∑
j wj

, ∀i ∈ V (9)

Finally, we exploit the weight vector iteratively
w̄ = (w̄1, . . . , w̄p) as prior information to recon-
struct the gene-gene interaction graph using the
weighted Lasso.

2.3 Iterative degree estimation and
network reconstruction using a
weighted nodewise regression
method

We propose an iterative method to update the de-
gree vector using the current solution. A similar
iterative approach was proposed earlier by Candes
et al. (2008), where the weight vector is computed

from the current value of regression coefficients. By
employing a weighted Lasso setup, we formulate the
iterative approach as follows:

β̂
(k+1)

i = arg min
β

(k+1)
i

1

n
||Xi−X\iβ

(k+1)
i ||22+Pk(β

(k+1)
i )

(10)
where

Pk(β
(k+1)
i ) = λ1

∑
j 6=i

w̄
(k)
j |β

(k+1)
ij | (11)

where, w̄
(k)
j is the normalized weight for gene j at

k-th iteration. For k = 1, we initialize the weight
vector as a normalized unit vector and the prob-
lem (10) reduces to the standard nodewise regres-
sion method defined in (5). For any gene j, if the

weight w̄
(k)
j is small, the coefficient β

(k+1)
ij is less

penalized and this leads to a recovery of the edge
between genes i and j. Suppose, in the true graph,
there is an edge between a high degree gene i and

a low degree gene j. The coefficient β
(k+1)
ij shrinks

to zero with high probability, due to high weight

w̄
(k)
j . In contrast, the coefficient β

(k+1)
ji is recov-

ered with high probability due to low weight w̄
(k)
i .

This introduces a further asymmetry in the graph
reconstruction. We obtain symmetric estimates us-
ing the transformation (6). The illustration of how
each gene is weighted by the degree of other genes
is depicted in a sample graph with four nodes in
Figure 2. We update the normalized weight vector
according to the following recursion

w̄(k) = αw̄(k−1) + (1− α)Ψ(w̄(k−1)), k ≥ 1,

(12)

where the i-th component of vector Ψ reads

Ψi(w̄
(k−1)) =

(1 + d̂
(k−1)
i )−1∑

j 1/(1 + d̂
(k−1)
j )

, (13)

with α a constant such that 0 < α < 1. We com-
pute the degree vector d̂

∗
via (7) at the (k + 1)-th

iteration using the estimated coefficients from (10)
and using the transformation (6). Using (8) and
(9), we then obtain the normalized weight vector
w̄∗ = (w̄∗1 , . . . , w̄

∗
p), which is used to reconstruct

the final graph employing a weighted Lasso regres-
sion

β̂i = arg min
βi

(
1

n
||Xi −X\iβi||22 + P (βi)

)
, (14)
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Figure 2: Integrating degree information of the

graph into a Lasso setting. Illustration of the network

with degree information di, i = 1, . . . , p (left). We

show how the degree information is integrated into a

weighted Lasso setting for gene 1 (right). The corre-

sponding weighted Lasso for gene 1 is then defined as

β̂1 = arg minβ1

(
n−1||X1 −X\1β1||22 + P (β1)

)
with

P (β1) = |w2β12|+ |w3β13|+ · · ·+ |wpβ1p|).

with

P (βi) = λ2

∑
j 6=i

w̄∗j |βij |, (15)

where λ2 > 0 is the penalty parameter that controls
the sparsity in the estimates. In Section 3.3, for a
carefully chosen λ1, we demonstrate that weight
estimates converge close to weights defined by the
true network. Additionally, we show that the per-
formance of DW-Lasso increases with the number
of iterations and achieves best results in terms of
AUROC at the steady state (Figure 4C).

2.4 Justification of degree separa-
tion for nodewise regression

Lets assume that there are r hub and p − r non-
hub genes in the network. Lets denote the degree
of hub and non-hub genes by d̄i, i = 1, . . . , r and
d̃j , j = r + 1, . . . , p, respectively. Assume that

d̄i > n, i = 1, . . . , r and d̃j < n, j = r + 1, . . . , p
such that for hub genes the Lasso estimation in-
volves more coefficients than samples to estimate,
while for non-hub genes it involves less coefficients
than the samples. In case of hub genes, it leads to
an underestimation problem, meaning that some
coefficients cannot be uniquely estimated. In con-
trast, for non-hubs, the coefficients can be uniquely
estimated using large penalty parameters. If we
assume that each hub node is connected to most
non-hub nodes, some edges connected to hubs can

be recovered by the edges estimated from non-hub
nodes. Therefore, the nodewise regression is able
to partially infer the edges connected to hub nodes
where the number of false positive edges is con-
trolled for large penalty parameters. Simulations
with nodewise regression demonstrate that the de-
gree of hub and non-hubs can be separated for the
intermediate values of the penalty parameter (Fig-
ure 4A).

2.5 Extending the methodology to
transcription factor-gene inter-
action networks

The proposed methodology can be extended to re-
construct transcription factor-gene interaction net-
works. In this case, we are only interested in
the inference of edges between transcription fac-
tors and genes. We consider a set of transcrip-
tion factors Q = {1, . . . ,m}, Q ⊂ V and a set
of genes G = {m + 1, . . . , p}, G ⊂ V . Let XQ be
a n×m-matrix that represents the expression level
of m transcription factors. Similarly, let XG be a
n × (p −m)-matrix that represents the expression
level of p−m genes. To reconstruct the network of
transcription factors and genes, we linearly regress
gene i against all transcription factors

XG
i = XQβQi + εGi (16)

where βQi is a coefficient vector of length m and

εGi ∼ N (0, σ2I). We estimate βQi using the Lasso

β̂
Q

i = arg min
βQ

i

1

n
||XG

i −XQβQi ||
2
2 + ||βQi ||1 (17)

By regressing all genes against transcription fac-

tors, we estimate the Θ̂
QG

- (p − m) × m matrix
that includes all pairwise estimates between genes
and transcription factors. We can further compute
the degree of transcription factor j using (7)

d̂Qj =

p−m∑
i=1

1{Θ̂QG
ij 6= 0},∀j (18)

By using (8), the degree d̂Qj can be integrated into
a weighted Lasso setting

β̂
Q

i = arg min
βQ

i

1

n
||XG

i −XQβQi ||
2
2 + P (βQi ) (19)
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with

P (βQi ) = λ1

m∑
j=1

w̄Qj |β
Q
ij | (20)

where, w̄Qj is the normalized weight for transcrip-
tion factor j. These steps can be solved iteratively
as described in Section 2.3.

2.6 Choosing penalty parameters

In this section, we discuss how to select the
penalty parameter λ1 for the degree estimation
step. Therefore, we propose to employ a stability
selection (Meinshausen and Bühlmann (2010)) to
choose the penalty parameters from the data . Ac-
cording to Meinshausen and Bühlmann (2010), we
denote a set of estimated graphs as Ĝλ = {(i, j) ∈
E; Θ̂ij 6= 0} obtained for every value λ ∈ R+. De-
note a set of samples as In = {1, . . . , n}. Let I be
a random subsample of In of size n/2 drawn with-
out replacement. If a random subsample I is drawn
J times, for every set D ⊆ E, one can define the
probability of being in the selected set Ĝλ

Π̂λ
D = J−1

J∑
j=1

1{D ⊆ Ĝλ(Ij)} (21)

For a set of regularization parameters Λ and a
cutoff πthr, the set of stable edges is defined as

Ĝstable = {D : max
λ∈Λ

Π̂λ
D ≥ πthr}, πthr ∈ (0, 1)

(22)
where the edges with high selection probabilities
are selected, while the edges with low selection
probabilities are excluded. As justified in Mein-
shausen and Bühlmann (2010), for πthr ∈ (0.5, 1],
it is possible to control the number of falsely se-
lected edges W given the expected number of se-
lected edges qΛ, the total number of edges q̄ and
the threshold parameter πthr

E(W ) ≤ q2
Λ

q̄(2πthr − 1)
(23)

under the assumption that the DW-Lasso performs
better than the random guess (exchangeability con-
dition, for more information see Meinshausen and
Bühlmann (2010)). For a user defined πthr and
given number of maximum false positives E(W ),

we compute the expected number of edges qΛ in
the graph. Using the computed value of qΛ, we
select the penalty parameter λ1.

2.7 Graph generation procedure

To generate a hub graph, we generate a sparse sym-
metric adjacency matrix A ∈ Rp×p with the edge
probability p1. We next randomly select a set of
hub nodes of size h which is a predefined parame-
ter. Finally, we generate a set of neighboring nodes
around hubs with probability p2. The parameters
p1 and p2 allow us to generate various hub graphs
with different sparsity levels. In our case, we set
p1 = 0.01 and p2 = 0.95.

We also evaluate the performance of our method
on scale-free graphs (Barabasi and Albert (1999),
Durrett (2007)). We use a linear preferential at-
tachment approach to generate an adjacency ma-
trix A ∈ Rp×p for a scale-free graph with degree
exponent γ. The approach starts with a connected
graph that contains m0 nodes. The new nodes with
m ≤ m0 edges are added to m0 existing nodes in
the graph. A new node is added to the existing
node i depending on the degree ki with the proba-
bility P (ki) = ki/

∑
j kj . In our case, we set m = 3.

Given the adjacency matrix A ∈ Rp×p, we uni-
formly generate a new weighted adjacency matrix

Bij
i.i.d∼

{
Unif([−0.75,−0.25] ∪ [0.25, 0.75]), if Aij 6= 0

0, if Aij = 0

Finally, we convert B into a symmetric matrix
B̄ = (B +BT )/2. We transform the matrix B̄ to
the concentration matrix using the expression

Θ = B̄ + (0.1 + |λmin(B̄)|)I, (24)

where λmin(.) is the smallest eigenvalue of the ma-
trix.

Given the concentration matrix Θ, we gener-
ate samples that follow a multivariate Gaussian
distribution with mean 0 and covariance matrix
Σ = Θ−1. In the final step, the data is standard-
ized to mean 0 and standard deviation σ = 1.

2.8 Quantifying the functional con-
tent of a graph

To quantify the association between publically
available gene sets and the inferred networks, we

6



compute two metrics: Knet score implemented in
SANTA package (Cornish and Markowetz (2014))
that takes into account the global topology of the
network, and compactness score that quantifies the
average distance between the genes in the network
(Glaab et al. (2010)). Knet function is a modified
form of Ripley’s K-function (Gaetan et al. (2010))
and is defined as

Knet(s) =
2

(k̄n)2

∑
i

ki
∑
j

(kj − k̄)I(d(i, j) ≤ s)

(25)
where, ki is the phenotype observed at gene i, k̄ =
1

n

∑n
i=1 ki, d(i, j) is the shortest distance between

two hits in the network, and I(d(i, j) ≤ s) is the
indicator function which equals 1, if the distance
d(i, j) between hits i and j is smaller or equal to
s, and 0 otherwise. For a given gene set M , the
compactness score is defined as

CS(M) =
2
∑
i,j∈M ;i<j d(Mi,Mj)

|M |(|M | − 1)
(26)

where d(Mi,Mj) is the shortest distance between
any two pairs of genes in gene set M , and |M | is
the cardinality of gene set M .

3 Results on synthetic data

3.1 Performance assessment

We consider the following metrics to evaluate the
performance of our method in comparison to state-
of-the- art methods.

• Receiver operation characteristics (ROC):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

• Precision and Recall (PR):

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

• Area under the ROC curve (AUROC)

• Area under the Precision and Recall curve
(AUPR)

ROC and PR curves are computed for a fixed value
of λ1 which has been selected by stability selection
(Meinshausen and Bühlmann (2010)) (Section 2.6)

and by varying the penalty parameter λ2 and AU-
ROC and AUPR have been computed from corre-
sponding ROC and AUPR curves.

3.2 Performance on synthetic data

We first evaluate the performance of our method
in comparison to state-of-the-art methods such
as nodewise regression (MB-Lasso) (Meinshausen
and Bühlmann (2006)), graphical Lasso (Glasso);
(Friedman et al. (2008)) and sparse partial corre-
lation estimation (SPACE) (Peng et al. (2009)),
based on in silico study. The performance of se-
lected methods is assessed on hub and scale-free
graphs (Figure 1B). We generate a set of hub net-
works using the procedure described by Tan et al.
(2014). We generate scale-free networks using the
procedure given in (Barabasi and Albert (1999);
Durrett (2007)). Detailed information can be found
in Section 2.7.

We randomly create hub networks with node
sizes p = 100 and 500 that contain three and
ten hub nodes, respectively. Here, we consider
an extreme setting where the hub nodes are con-
nected to 95 % of non-hub nodes. Moreover, scale-
free networks are also generated with node sizes of
p = 100 and 500. We generate scale-free networks
with degree exponent γ = 2.5, which also contain
hub nodes. Furthermore, we generate 20 different
datasets of sample sizes n = 50 for p = 100 and
n = 100 for p = 500 both for hub and scale-free
networks. This allows us to evaluate the perfor-
mance of the methods in presence of sample noise.
The DW-Lasso achieves a good performance in the
large p and small n setting (Figure 3), when the
true degree information is supplied as a weight vec-
tor, which highlights the importance of degree in-
formation on the predictive power.

Therefore, the predictions using the true degree
information give the upper bound for the predic-
tion accuracy of the proposed method. Simula-
tion results demonstrate that our DW-Lasso per-
forms better than the state-of-the-art methods. In
the case of hub networks, all three methods per-
form poorly, whereas DW-Lasso detects most of
the true positives successfully, even when the num-
ber of samples is less than the number of genes
(Figure 3A and Figure 3B). In the setting p = 500
and n = 100, the performances of the state-of-the-
art methods are almost comparable to a random
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Figure 3: Performance of various methods on (A)-(B) hub and (C)-(D) scale-free networks in the simulation

study ((A)-(C) p = 100, n = 50 and (B)-(D) p = 500, n = 100). The considered methods are DW-Lasso with

true degree information and the proposed iterative procedure, sparse partial correlation estimation (SPACE)

(Peng et al. (2009)), graphical Lasso (Glasso) (Friedman et al. (2008)) and nodewise regression (MB-Lasso)

(Meinshausen and Bühlmann (2006)). ROC and PR curves for DW-Lasso are computed for fixed values of λ1

and varying λ2. For hub networks, the penalty is chosen as λ1 = 0.65 and for scale-free networks as λ1 = 0.45

(selected by stability selection). Degree estimates at k = 30 iterations are used for the network inference. ROC

and PR curves for Glasso and nodewise regression are computed by varying the penalty parameters. Error bars

represent two standard deviation of the mean.

guess, while DW-Lasso performs far better than
the random guess with AUROC greater than 0.7
(Figure 3B). In the case of scale-free networks, the
DW-Lasso also performs better than the competing
methods (Figure 3C and Figure 3D). Further sim-
ulation results show that DW-Lasso does not per-
form well for traditional scale-free networks with
degree exponent γ = 3, which results in networks
that are extremely sparse. In these networks, the
number of edges is roughly equal to the number of
genes and the graph can be efficiently reconstructed
using the traditional methods.

3.3 Convergence of degree estimates
of DW-Lasso

One main feature of DW-Lasso is the convergence
of degree (weight) estimates. For a carefully chosen
λ1 as described in Section 2.6, most of the time, the
DW-Lasso weight estimates converge close to the
weights determined by the true graph (Figure 4B
and Figure 5). The performance of DW-Lasso im-
proves with the number of iterations and achieves

the best estimates in terms of AUROC at steady
state (Figure 4C). For prediction accuracy, the con-
vergence of the estimates is highly dependent on the
choice of the penalty parameter λ1. In particular, if
λ1 is chosen outside of the high performance region
(see Section 3.5), the weight estimates of DW-Lasso
converge to different steady states with low predic-
tion accuracy.

3.4 Effect of the number of hub
genes in the network

We next investigate how the number of hub genes in
the network affects the performance of DW-Lasso.
Therefore, we consider the network with p = 100
genes and create 20 hub networks with different
numbers of hubs (95% connectivity) that constitute
2% to 20% of the total genes. We randomly gen-
erate datasets of size n = 50 and evaluate the per-
formance of the aforementioned methods using AU-
ROC and AUPR scores (Figure 6A). Simulation re-
sults demonstrate that the DW-Lasso outperforms
other methods both in AUROC and AUPR scores
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Figure 4: (A) Heatmap of weights computed for different values of penalty parameter using nodewise regression.

Initially for small penalty values, all genes have similar weights. For intermediate penalty values, there is a

separation of weights between hub and non-hub genes (indicates separation of degrees between hubs and non-

hubs). For large penalty values, the network is very sparse and hence all genes have the similar weights. (B), (C)

The convergence of the weight w(k) for DW-Lasso method demonstrated for p = 50, n = 40, λ1 = 0.5. (B) The

trajectories of weights (red lines) over different iterations that converge to the steady state. Blue lines indicate

the true weights computed from the true network. Initially, all weights are same and equal to one. (C) The

prediction accuracy of the DW-Lasso increases with the number of iterations.

throughout the considered hub densities. SPACE
performs better than Glasso and nodewise regres-
sion in AUROC, but exhibits a similar performance
in AUPR. As the number of hub genes increases,
the performance of DW-Lasso decreases based on
AUROC scores, which is also the case for SPACE.
Glasso and nodewise regression perform as poorly
as the random guess for large number of hub genes.
The increase in AUPR score of the state-of-the-art
methods, as the number of hub genes increases is
trivial, since the sparsity of the graph decreases,
which leads to less false positives in the estimates.
While the AUPR scores of these methods increase,
they perform as poorly as the random guess.

3.5 Influence of penalty parameters

Given the two penalty parameters in our method,
we conduct simulations with hub graphs under the
setting p = 60 and n = 30, where for each fixed
value of λ1, we vary λ2 and compute AUROC and
AUPR scores. Simulation results demonstrate that
the optimal AUROC and AUPR scores compared
to those of the nodewise regression (dashed line) are
obtained for intermediate values of λ1 (Figure 6B).
We call this region the high performance region.
The penalty parameter λ1 chosen via stability se-
lection falls in this region. In this high performance
region, the number of false positive edges in the
inferred graph is controlled such that the degree

information estimation includes less false positive
edges. When λ1 is large enough, such that the re-
sulting graph is very sparse, the predictions of DW-
Lasso is similar to those of the nodewise regression
method. Another distinct feature of our method
is that it is able to infer graphs with different hub
degree controlled by λ1. When one increases λ1,
most of the edges tend to accumulate to a few hub
genes, which are also known as super hubs (Hao
et al. (2012)). In contrast, decreasing λ1 leads to
graphs containing more hubs of lesser degree.

4 Results on real data

4.1 Kidney Cancer gene expression
data

We apply our method to gene expression datasets
from TCGA datasets for Kidney Clear Cell Car-
cinoma (KIRC) measurements (McLendon et al.
(2008)). We downloaded the normalized RNA se-
quencing dataset from UCSC Xena, a data server-
based platform that stores functional genomics
data (Goldman et al. (2016)). The downloaded
samples were measured experimentally using the
Illumina HiSeq 2000 RNA Sequencing platform by
the University of North Carolina TCGA genome
characterization center. First, the genes with miss-
ing values were excluded from the data. Genes with
low expression levels and those with low interquar-
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Figure 5: The convergence of the degree weighted

Lasso (DW-Lasso). Blue circles indicate the true

weights; red circles indicate the predicted weights. The

plots indicate that weights converge closely to true

weigths at later iterations.

tile variability between the samples were discarded.
Eventually, the final dataset has been reduced to
p = 5747 genes and n = 606 samples. The gene
sets were obtained from Gene Ontology Database
(Ashburner et al. (2000)). To ensure that the GO
terms were not too thinly or thickly spread, we ex-
tract only those gene sets that contain between 10
and 200 genes. This way the total list reduced to
3295 gene sets, which are used in the analysis.

4.2 E.coli gene expression data

We apply the DW-Lasso to a well-known public
E.coli microarray dataset available in Many Mi-
crobe Microarrays database (M3D) (Faith et al.
(2007)). The M3D includes microarray datasets
measured using Affymetrix GeneChip genome ar-
rays. We select the dataset that contains the ex-
pression level of 4297 genes from 466 samples. As
a gold standard for performance evaluation, we
choose experimentally validated interactions from
a curated database, RegulonDB (Salgado et al.
(2012)) that comprises a high-confidence level set of
interactions supported by genome-wide transcrip-
tion factor data (Harbison et al. (2004)). This
database contains the interaction information be-
tween transcription factors and genes. To make
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Figure 6: Effect of the different number of hubs and

penalty parameters on the performance of DW-Lasso

and competing methods. (A) Effect of different hubs

on the performance of selected methods. The simu-

lations are performed for hub networks with different

number of hubs in the setting p = 100, n = 50. Black

dashed lines indicate random guess. (B) The influence

of the penalty parameter λ1 on the inferred networks.

Selection of the penalty parameter λ1 is based on the

AUROC and AUPR computed by varying λ2 (com-

puted for k = 30 iterations). The optimal AUROC

and AUPR is attained for the intermediate values of

the penalty parameter. Dashed green and blue lines

indicate the AUROC and AUPR scores obtained with

the nodewise regression.

the list of genes in both microarray and interac-
tion data comparable, we extract 1346 genes that
are unique for both datasets. As a result, our gold
standard data contains the list of 2069 interactions
between 147 transcription factors and 1199 genes.
The final microarray dataset used in the study con-
tains 1346 genes and 466 samples.

4.3 Quantifying the functional asso-
ciation between GO terms and
inferred networks

Most of publicly available human interaction net-
works from databases are of low coverage and can-
not be used for validation of inferred networks from
experimental data. We therefore use an indirect
approach and quantify the functional association
between publicly available gene sets from Gene On-
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Figure 7: Strength of association between gene sets from GO ontology and networks inferred with DW-Lasso,

nodewise regression (MB-Lasso) and Glasso from Kidney Clear Cell Carcinoma ((A) compactness score and (B)

Knet score). The comparison of strength of association of gene sets for (left) DW-Lasso and Glasso networks

and (middle) DW-Lasso and MB-Lasso networks. (right) Quantification of genesets that significantly cluster

on inferred networks. (C) (left) and (middle) Strength of association between gene sets from GO ontology and

networks inferred with DW-Lasso with different penalty parameters from Kidney Clear Carcinoma (compactness

score). (right) Quantification of genesets that significantly cluster on inferred networks.

tology Database and inferred networks. To quan-
tify this association, we compute two metrics: The
compactness score that quantifies the average dis-
tance between the genes in the network (Glaab
et al. (2010)) and the Knet score implemented
in the SANTA package (Cornish and Markowetz
(2014)) that takes into account the global topol-
ogy of the network. More information about these
metrics can be found in Section 2.8. We select λ1

by stability selection and tune λ2 to infer networks
with different sparsities. We then tune the penalty

parameters of nodewise regression and Glasso such
that we get the network with the same sparsity
as the network inferred by DW-Lasso. Since the
selected metrics are highly sensitive against the
missed edges among the nodes in the graph, we
tune λ2 so that the resulting graphs have as few
isolated nodes as possible. Thus, to allow for a fair
comparison, we infer networks that contain 105 in-
teractions for 5747 genes. The results show that the
3295 gene sets cluster more strongly on DW-Lasso
networks than on networks inferred by nodewise re-
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gression (MB-Lasso) and Glasso (Figure 7A (com-
pactness score) and Figure 7B (Knet score)). This
indicates that the DW-Lasso networks are function-
ally more informative than the networks inferred
by nodewise regression (MB-Lasso) and Glasso. In
addition, we observe that the clustering of gene
sets gets better as λ1 is chosen such that the num-
ber of false positive edges is controlled (Figure 7C
(compactness score)). This indicates that the un-
derlying network may contain modular structures
that include highly connected genes. The top GO
terms strongly enriched with DW-Lasso networks
are related to chromatin remodeling (histone ly-
sine methylation (p-value < 1 × 10−24), histone
H3-K4 methylation (p-value < 1 × 10−17)), and
NF-KB signaling (p-value < 1×10−10). These pro-
cesses were reported to participate in the develop-
ment and progression of the kidney cancer (Can-
cer Genome Atlas Research Network et al. (2013);
Ho et al. (2016)). We also observe significant
clustering of mitochondrial processes on DW-Lasso
networks (mitochondrial respiratory chain (p-value
< 1×10−48), mitochondrial respiratory chain com-
plex I (p-value < 1×10−11) and mitochondrial elec-
tron transport (p-value < 1 × 10−19)). It was re-
ported that mitochondrial dysfunction is common
in cancer and the mitochondrial electron transport
is often affected in carcinogenesis (Ellinger et al.
(2016)). We next check the list of highly ranked
genes by degree in the inferred graph. Our analysis
reveals several interesting genes that were reported
to have a transcription factor activity. For exam-
ple, TCF4 was demonstrated to play an important
role in the progression of kidney cancer via an inhi-
bition of apoptosis (Shiina et al. (2003)). Another
highly ranked inhibitor of apoptosis is HSP70 (Gab-
bert et al. (2007)). RUNX1 was reported to be
upregulated in various kidney cancers and be po-
tentially used as targets for new therapies (Xiong
et al. (2014)). One study showed the overexpres-
sion of ACAT1 in kidney cancer tissues compared
to normal tissues (Osunkoya et al. (2009)). The
protein encoded by gene ALDH6A1 was found to
be highly expressed in kidney cancer tissues and
involved in metabolic processes that are associated
with apoptosis and tumorigenesis and thus may
play a critical role in renal carcinoma oncogene-
sis (Perroud et al. (2009)). Another interesting
gene is UQCRC1 which was identified as a potential
biomarker. Dysregulation of this gene is involved
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Figure 8: Performance of DW-Lasso and Lasso on

E.coli data. Illustrated is the number of correctly pre-

dicted edges vs total predicted edges. The simulation

for DW-Lasso is performed with λ1 = 0.001 and varying

λ2, whereas for Lasso the penalty parameter is varied.

in impaired mitochondrial electron transport chain
function (Ellinger et al. (2016)).

4.4 Performance of DW-Lasso on
E.coli data

We apply DW-Lasso designed for the inference
of transcription factor-gene networks (Section 2.5)
on E.coli data and compare it with the standard
Lasso. Since we are interested in reconstructing the
network of TF-genes, Glasso and nodewise regres-
sion are not relevant in this case. We evaluate the
performance of methods based on estimated edges
and detected true positive edges. For this purpose,
the overall sparsity inducing penalty parameters for
DW-Lasso and Lasso are varied until both methods
detect 1000 edges. Results show that both meth-
ods are able to detect more edges compared to a
random guess (Figure 8). In addition, DW-Lasso
is able to predict relatively more true interactions
compared than Lasso. This indicates that the ac-
counting for hub information is advantageous in im-
proving the accuracy of network inference.

5 Conclusion

We proposed ’DW-Lasso’, a new method for the
inference of hub graphical models from high-
dimensional data. The proposed method consists
of two steps and includes two penalty parameters.
Tuning these parameters controls the number of
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hubs, degree of hubs and overall sparsity of the
network. We consider stability selection criteria
(Meinshausen and Bühlmann (2010)) to select the
penalty parameters. With simulation studies con-
sidering hub and scale-free graphs, we demonstrate
the increased performance of our method in com-
parison to traditional methods under the small n
large p scenario. Additionally, for kidney cancer
data, we show good performance of our method by
quantifying the functional content of inferred gene
networks with GO terms. Clustering results sug-
gest that gene networks might contain modules con-
sisting of genes centered around hub genes. The ad-
vantage of our method over the existing methods is
that it can naturally infer hub graphs with various
hub sparsities, controlled only by a single penalty
parameter. DW-Lasso performs well on both hub
network and not-too-sparse scale-free networks. It
relies on less constraining assumptions about the
network topology compared to that of concurrent
methods, although extreme sparsity cannot be ac-
counted for. Although our method is designed for
the analysis of gene expression data, it can also be
applied to proteomics, metabolomics and in general
to any high dimensional data where a underlying
hub structure is expected.

Software

The R package is available under the GNU
General Public Licence at https://cran.r-
project.org/package=DWLasso.
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