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Abstract

Motivation: Accurately clustering cell types from a mass of heterogeneous cells is a crucial first

step for the analysis of single-cell RNA-seq (scRNA-Seq) data. Although several methods have

been recently developed, they utilize different characteristics of data and yield varying results in

terms of both the number of clusters and actual cluster assignments.

Results: Here, we present SAFE-clustering, single-cell aggregated (From Ensemble) clustering, a

flexible, accurate and robust method for clustering scRNA-Seq data. SAFE-clustering takes as in-

put, results from multiple clustering methods, to build one consensus solution. SAFE-clustering

currently embeds four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE þ k-means; and

ensembles solutions from these four methods using three hypergraph-based partitioning algo-

rithms. Extensive assessment across 12 datasets with the number of clusters ranging from 3 to 14,

and the number of single cells ranging from 49 to 32, 695 showcases the advantages of SAFE-

clustering in terms of both cluster number (18.2–58.1% reduction in absolute deviation to the truth)

and cluster assignment (on average 36.0% improvement, and up to 18.5% over the best of the four

methods, measured by adjusted rand index). Moreover, SAFE-clustering is computationally effi-

cient to accommodate large datasets, taking <10 min to process 28 733 cells.

Availability and implementation: SAFEclustering, including source codes and tutorial, is freely

available at https://github.com/yycunc/SAFEclustering.

Contact: yunli@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-seq) has been widely used to study gene

regulatory networks underlying the complex processes of cellular

proliferation, differentiation and reprograming (Darmanis et al.,

2015; Trapnell et al., 2014; Treutlein et al., 2014). However, for

most genes, their expression levels are found to vary dramatically

across cell types and in different individual cells (Buganim et al.,

2012; Shalek et al., 2013; Tang et al., 2010). Therefore, bulk

RNA-seq, measuring the average expression across many cells of

different cell types, may mask the real functional capacities of

each cell type (Trapnell et al., 2014). Comparatively, single-cell

RNA sequencing (scRNA-Seq) enables researchers to investigate

the cellular heterogeneity in gene expression profiles, as well as to

determine cell types and predict cell fates, thus presenting enor-

mous potential for cell biology and clinical applications (Arsenio,

2014; Grün et al., 2015; Jaitin et al., 2014; Jia et al., 2017;
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Kalisky and Quake, 2011; Mahata et al., 2014; Treutlein et al.,

2014).

Single-cell clustering provides intuitive identification and charac-

terization of cell types from a mass of heterogeneous cells, which can

itself be of interest (Rozenblatt-Rosen et al., 2017), and can be used as

covariates in downstream differential expression analysis (Sun et al.,

2018; Zhu et al., 2017). Because of the importance of clustering for

scRNA-Seq data, recently, several algorithms have been developed,

including t-Distributed Stochastic Neighbor Embedding algorithm

(t-SNE) (Van der Maaten and Hinton, 2008) followed by k-means

clustering (Grün et al., 2015; Shin et al., 2015), Seurat (Satija et al.,

2015), DIMM-SC (Sun et al., 2018), SIMLR (Wang et al., 2017), SC3

(Kiselev et al., 2017), DendroSplit (Zhang et al., 2018) and SCANPY

(Wolf et al., 2018). However, none of the clustering algorithms is an

apparent all-time winner across all datasets (Freytag et al., 2017).

Discrepancies across methods occur both in the estimated number of

clusters and in actual single-cell-level cluster assignment. These dis-

crepancies are mainly due to the use of different characteristics of

scRNA-Seq data by different methods, for example, different sets of

genes used for downstream clustering from different choices of gene

level filtering subsetting of gents, transformation and dimension reduc-

tion. Individual clustering methods may fail to reveal the true cluster-

ing behind a heterogeneous mass (of single cells in this case) when

assumptions underlying the methods are violated. Therefore, it is high-

ly challenging, if not impossible, to choose an optimal algorithm for

clustering scRNA-Seq data when no prior knowledge on cell types

and/or cell type specific expression signatures are given.

In the absence of one single optimal clustering method, cluster

ensemble provides an elegant solution by combining results from

multiple individual methods into one consensus result (Ghosh and

Acharya, 2011; Strehl and Ghosh, 2002). Compared to individual

solutions, ensemble methods exhibit two major advantages. First,

ensemble improves clustering quality and robustness, as demon-

strated in other contexts including analysis of cell signalling dynam-

ics and protein folding (Hubner et al., 2005; Kuepfer et al., 2007).

Second, ensemble methods enable model selection. For example, we

and others (Freytag et al., 2017; Kiselev et al., 2017; Lin et al.,

2017) observe, in certain datasets, dramatically different estimates

for the number of clusters across individual solutions. It is hard to

decide on one single solution without any external knowledge or

constraints. Cluster ensemble is able to estimate an optimal number

of clusters by quantifying the shared information between the final

consensus solution and individual solutions (Ghosh and Acharya,

2011). Although the majority may not always be the most accurate

in every case and for every cell, a consensus approach tends to

outperform each individual method when the optimal method is not

known in advance. However, to date, there is no published cluster

ensemble approach across multiple types of clustering methods spe-

cifically designed for scRNA-Seq data.

To bridge the gap, we have developed SAFE-clustering, Single-

cell Aggregated (From Ensemble) clustering, to provide more stable,

robust and accurate clustering for scRNA-Seq data. In the current

implementation, SAFE-clustering first performs independent cluster-

ing using four state-of-the-art methods, SC3, CIDR, Seurat and

t-SNE þ k-means, and then combines the four individual solutions

into one consolidated solution using one of three hypergraph parti-

tioning algorithms: hypergraph partitioning algorithm (HGPA),

meta-clustering algorithm (MCLA) and cluster-based similarity par-

titioning algorithm (CSPA) (Strehl and Ghosh, 2002).

2 Materials and methods

2.1 Overview of SAFE-clustering
Our SAFE-clustering leverages hypergraph partitioning methods to

ensemble results from multiple individual clustering methods. The

current SAFE-clustering implementation embeds four clustering

methods: SC3, Seurat, t-SNE þ k-means and CIDR. Figure 1 shows

the overview of our SAFE-clustering method.

2.2 Expression matrix normalization
SAFE-clustering takes an expression matrix as input, where each

column represents one single cell and each row corresponds to one

gene or transcript. To make the data well-suited for all four individ-

ual clustering methods, fragments/reads per kilobase per million

mapped reads (FPKM/RPKM) data are converted into transcripts

per million (TPM); and UMI counts are converted into counts per

million mapped reads (CPM). For CIDR, SC3 and t-SNE þ
k-means, the input expression matrix is log-transformed after add-

ing ones (to avoid taking log of zeros).

2.3 Clustering using four state-of-the-art methods
2.3.1 CIDR

To deal with the dropout events in scRNA-seq data, CIDR first iden-

tifies dropout candidates from the expression matrix and performs

implicitly imputation to mitigate the impact of lowly expressed

genes (Lin et al., 2017). Then, dissimilarity matrix (Euclidean dis-

tance) is calculated between single cells using the imputed data. As

CIDR performs principal coordinate analysis (PCoA) to reduce

dimensionality, the number of principal coordinates (PCo’s)
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Fig. 1. Overview of SAFE-clustering. Log-transformed expression matrix of scRNA-Seq data are first clustered using four state-of-the-art methods, SC3, CIDR,

Seurat and t-SNE þ k-means; and then individual solutions are combined using one of the three hypergraph-based partitioning algorithms: hypergraph partition-

ing algorithm (HGPA), meta-cluster algorithm (MCLA) and cluster-based similarity partitioning algorithm (CSPA) to produce consensus clustering
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identified, representing the estimated data dimensionality, heavily

influences the final clustering results. Here, the number of PCo’s is

determined by the internal nPC function, default choice in CIDR.

Alternatively, users can visually decide on an ideal number of PCo’s

by selecting a threshold at a clear elbow from plotting the propor-

tions of variations explained by the PCo’s (also generated by the

nPC function). With the selected PCo’s, single cells are hierarchical-

ly clustered into k̂opt�CIDR clusters, with k̂opt�CIDR estimated using

the Calinski–Harabasz index (Cali�nski and Harabasz, 1974).

2.3.2 SC3

SC3 adopts consensus clustering, and summarizes the probability of

each pair of cells is from the same cluster (Kiselev et al., 2017).

Quality control (QC) metrics are calculated on the input expression

matrix to detect potentially problematic genes and/or single cells.

Although gene-level filtering is recommended by SC3, for 9 out the

12 benchmarking datasets, all genes would be filtered out and clus-

tering cannot be performed. Therefore, we set the gene filtering op-

tion to be “FALSE”. In order to speed up computation, we first use

the Tracy–Widom method (Patterson et al., 2006; Tracy and

Widom, 1994) to estimate the number of clusters, denoted by

k̂opt�SC3½AQ0000�. With the estimated k̂opt�SC3, matrices of

Euclidean, Pearson and Spearman (dis)similarity metrics are calcu-

lated among single cells, followed by k-means clustering. Based on

k-means results across the three different (dis)similarity matrices, a

consensus matrix is computed using CSPA, followed by a hierarchic-

al clustering to assign the single cells into k̂opt�SC3 clusters.

For the two PBMC mixture datasets (both with >5000 single

cells), via SC3 default implementation, support vector machines

(SVM) is employed to further speed up computation. Specifically, a

subset of single cells is randomly selected to form the training data-

set where a SVM model with a linear kernel is constructed, using the

svm function in R-package e1071. The default minimum number of

single cells to run SVM is set to be 5, 000 (SC3 option svm_max, de-

fault ¼ 5, 000). The trained SVM is then used to predict the cluster

labels of the remaining single cells.

2.3.3 Seurat

Seurat embeds an unsupervised clustering algorithm, combining di-

mension reduction with graph-based partitioning methods. First, ex-

pression matrix is filtered to remove genes expressed in <3 single

cells and single cells with <200 expressed genes. Then, the expres-

sion data of each single cell is scaled to a total of 10 000 molecules

and log-transformed following the procedure described in Macosko

et al. (2015). After that, undesired sources of variations are

regressed out. Single cells with <200 expressed genes would be con-

sidered as “NA” in the final Seurat clustering results. Data dimen-

sionality is reduced via principal component analysis (PCA) with the

principal components (PCs) selected by the nPC function in the

CIDR package. Graph-based clustering is carried out using the

smart local moving algorithm (SLM) (Waltman and van Eck, 2013)

with the resolution parameter set to be 0.9. For small datasets,

Seurat has been reported not to work well (Waltman and van Eck,

2013) and has a tendency to assign all single cells into one cluster

when the resolution parameter is set to be 0.9. We therefore increase

the resolution parameter from 0.9 to 1.2 when the number of single

cells is less than 200.

2.3.4 t-SNE 1 k-means

t-SNE followed by k-means clustering is a popular method for single

cell clustering, where high dimensional data are first reduced into a

lower dimensional subspace by t-SNE algorithm and then the lower-

dimensional data are clustered with k-means. Here, we use the

Rtsne package with default parameters to reduce normalized expres-

sion data into three dimensions by default (Users can specify other-

wise via option dims, detailed in Supplementary Results). However,

when the number of input single cells is small, users may run into

the problem that the default perplexity of 30 is too big, for example,

for small datasets. Since t-SNE has been shown to be reasonably ro-

bust across perplexity values ranging from 5 to 50 (Van der Maaten

and Hinton, 2008), we set the perplexity to be 10 when the input

data contain <200 single cells. More evaluations on the perplexity

parameter are presented in Supplementary Results.

Results from k-means clustering can vary dramatically across

different runs even with the same input data and same parameters

because of random initial cluster centers. To mitigate this potentially

highly stochastic behavior, we use the ADPclust R-package (Wang

and Xu, 2017) to first estimate the centroids. ADPclust can also esti-

mate the number of clusters. Therefore, in our SAFE-clustering im-

plementation, we perform k-means clustering using the centroids

and number of clusters estimated through ADPclust.

2.4 Hypergraph partitioning cluster ensemble

algorithms
After obtaining clustering results from different individual methods,

we perform cluster ensemble to provide a consensus clustering using

one of the three hypergraph-based partitioning algorithms: HGPA,

MCLA and CSPA, as described in Strehl and Ghosh (2002).

Moreover, certain single cell(s) may be excluded from clustering by

some individual clustering method(s) due to quality control filter(s)

of the corresponding method(s). Ensemble approach can provide a

consolidated assignment for these single cells by borrowing informa-

tion from solutions of the other methods.

We start with transforming the output labels of each clustering

method into a hypergraph. Briefly, for the jth clustering method, we

use vik (note subscript j is omitted for presentation brevity) to denote

the ith row of the hypergraph Hj, which is the row vector for the

cluster labels (coded as binary dummies or indicator functions) of

the ith single cell, where

vik ¼
1; the ith cell 2 the kj

th cluster

0; the ith cell 62 the kj
th cluster

(

and kj ¼ 1; 2; . . . ; Kj, with Kj being the total number of clusters

from the jth clustering method. Here, each column is a hyperedge,

representing one particular cluster identified by that method. An

overall hypergraph H is constructed by combining individual hyper-

graphs (from individual methods).

2.4.1 HGPA

HGPA directly partitions hypergraphs by cutting a minimal number

of hyperedges. We adopt the approach described in Karypis et al.

(1999), where the authors developed a fast and efficient multilevel

hypergraph partitioning algorithm through recursive bisection.

Specifically, we perform a k-way hypergraph partitioning using the

shmetis program in the hMETIS package v. 1.5 (Karypis et al.,

1999) for a range of k from 2 to max Kj

� �
; j ¼ 1; 2; 3; and 4 for

the four different individual clustering methods and Kj again for the

total number of clusters from the jth method. The parameter

UBfactor is set at 5, so that in any bisection, each of the two parti-

tions contains 45 - 55% of the total number of vertices.
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2.4.2 MCLA

Unlike HGPA, MCLA starts with computing pairwise Jaccard simi-

larities (SJ) among all the hyperedges. Specifically, for any two

hyperedges hp and hq:

SJ ¼
hphT

q

h2
p þ h2

q � hphT
q

where p and q ¼ 1; . . . ; h, where h is the total number of hyper-

edges, which equals to the sum of estimated cluster numbers from

individual solutions. With the calculated similarity matrix, all the

hyperedges are partitioned into k meta-clusters using the gpmetis

program in the hypergraph partitioning package METIS v. 5.1.0

(Karypis and Kumar, 1998).

An association index AI MCcið Þ is computed to represent the as-

sociation between meta-cluster c and the ith single cell, by averaging

the vertices vch of the corresponding hyperedges:

AI MCcið Þ ¼ 1

Hc

X
Hc

vch

where h2 Hc is the set of hyperedges assigned in meta-cluster c.

Each single cell is assigned to the meta-cluster with the highest asso-

ciation index. However, some of the k clusters may be empty due to

no single cells having the highest association index with the clus-

ter(s) (Strehl and Ghosh, 2002). Under that scenario, we will re-

label the single cells into k
0

clusters, where k
0

is the number of non-

empty clusters.

2.4.3 CSPA

CSPA also starts with computing pairwise similarities. In contrast to

MCLA, CSPA defines the similarity between two single cells to be 1

if they are always assigned to the same cluster, and 0 if they are

never assigned to the same cluster. The n� n (where n is the number

of single cells) similarity matrix S can be simply constructed by

S ¼ 1

J
HHT

where H is the overall hypergraph, and J is the total number of indi-

vidual clustering methods, here J¼4. For CSPA, similar to MCLA,

we also use the gpmetis program in the METIS v. 5.1.0 package.

2.5 Performance evaluation using average normalized

mutual information (ANMI)
Since individual methods cluster the single cells into their own opti-

mal number of clusters, we need to estimate an overall optimal clus-

ter number k̂opt using each of the three ensemble algorithms. For

this purpose, we have implemented consensus clustering for a set of

ke ¼ 2; 3; . . . ; Keð Þ, where Ke ¼ max Kj

� �
and j ¼ 1; 2; 3 and 4

again for the four individual clustering methods, using each of the

three algorithms. We evaluate the performance at each ke by meas-

uring the shared information between the inferred and true original

cluster labels (i.e., mutual information) using the Normalized

Mutual Information (NMI) metric, defined in Ghosh and Acharya

(2011):

NMI Le; Lj

� �
¼

PKe

x¼1

PKj

y¼1
nxy

n log
nxy

n

� �
�
PKe

x¼1
nx

n log nx

n

� �
�
PKj

y¼1
ny

n log
ny

n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPKe

x¼1
nx

n log nx

n

� �
�
PKj

y¼1
ny

n log
ny

n

� �r

where Le and Lj are the labels from ensemble and from the jth

method with Ke and Kj clusters, respectively. Here n is the total

number of single cells; ny denotes the number of single cells assigned

to a specific cluster y (y ¼ 1; 2; :; Kj) by method j; similarly nx

denomtes the number of single cells assigned to cluster x

(x ¼ 1; 2; :; Ke) via ensemble; and nxy represents the number of

single cells shared between cluster y (from the solution of the jth indi-

vidual method) and cluster x (from the ensemble solution).

We calculate ANMI (Strehl and Ghosh, 2002) between each con-

sensus/ensemble solution and each solution from the individual

methods. For a particular ensemble solution, the ANMI across indi-

vidual methods quantifies its similarity to the solutions from individ-

ual methods. The ensemble solution with the highest ANMI value

(again, average across four individual methods) is selected as the

final cluster ensemble L̂e�opt with the estimated cluster number

k̂e�opt:

L̂e�opt; k̂e�opt

� �
¼ arg max

Le ; Ke

P4
j¼1 nj�NMI Le; Lj

� �
P4

j¼1 nj

where nj is the total number of single cells clustered by individual

method j; and Ke is the number of clusters from an ensemble solu-

tion. Note this “average” is more precisely a weighted average ra-

ther than a plain average across individual methods unless all

methods clustered the same number of single cells (e.g., without

removing or failing to cluster any single cell(s), nj ¼ n for all j’s).

When users simultaneously employ multiple partitioning algorithms

(note our default is one single algorithm), the optimal cluster ensem-

ble is given by:

L̂e�opt; k̂e�opt

� �
¼ argmax

Le ; Ke ; m2fHGPA; MCLA and=or CSPAg
ANMIm

2.6 Summary of SAFE-clustering
Run four individual clustering methods and get a Y4�n matrix of

cluster labels. n is the total number of single cells.

Construct hypergraph H ¼ fH1;H2;H3;H4g
For k¼2 to Kmax//Kmax is either specified by user or is the

maximum across the 4 individual methods

If MCLA ¼= TRUE//Default partitioning method

Do MCLA

Compute Jaccard similarity matrix SJAC

k-way partitioning using gpmetis

Compute association index MCcið Þ, c ¼ 1; . . . ; k;

i ¼ 1; . . . ; n, and assign each single cell to the meta-cluster

c with the largest AI metric

If there are empty clusters

Re-label into k
0

non-empty meta-clusters

End

End

If HGPA ¼= TRUE.//If switched to TRUE by the user

Do HGPA

k-way partitioning using shmetis

End

If CSPA ¼= TRUE//If switched to TRUE by the user

Do CSPA

Compute and normalized similarity matrix S

k-way partitioning using gpmetis

End

Calculate ANMI across ensemble algorithm(s) used

Return Consensus cluster labels L̂e and ANMI

End

Return Optimal consensus result L̂e�opt of k̂e�opt clusters

with the highest ANMI (across attempted k’s)
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2.7 Benchmarking datasets
For performance evaluation, we carried out clustering analysis on

12 benchmark scRNA-Seq datasets (Table 1; Baron et al., 2016;

Biase et al., 2014; Darmanis et al., 2015; Ting et al., 2014; Yan

et al., 2013; Zeisel et al., 2015; Zheng et al., 2017), using our SAFE-

clustering and the four individual clustering methods. All these data-

sets have pre-defined gold/silver-standard (we call “true”) cell type

information. We used default parameters for 10 out of the 12 data-

sets, with the two exceptions being the 2 PBMC mixture datasets

(each with >28 000 single cells). For SC3, gene-level filtering option

was turned on only in 3 out of the 12 datasets (Yan, Biase and

Ting), because the remaining 7 datasets would each have zero genes

surviving its quality filtering. For SC3 and t-SNE þ k-means, all

reported results are from random seed 123.

Performance is measured by the similarity between the estimated

cluster labels (LE) and the true cluster labels (LT ) using the Adjusted

Rand Index (ARI) (Hubert and Arabie, 1985):

ARI LE; LTð Þ ¼

P
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where n is the total number of single cells; ne and nt are the number

of single cells in estimated cluster e and in true cluster t, respectively;

and net is the number of single cells shared by estimated cluster e

and true cluster t. ARI ranges from 0 to 1, where 1 means the esti-

mated cluster is exactly same to the true cluster, while 0 means the

two are completely different.

Computing time reported in this work is all from running on an

iMac with 3.4 GHz Intel Core 1.5, 32 GB 1600 MHz DDR3 of

RAM and OS X 10.9.5 operating system.

3 Results

3.1 Individual methods capture different characteristics

of scRNA-Seq data
We observe relatively moderate similarity among solutions from in-

dividual ensemble methods (Fig. 2), consistent with findings from

Freytag et al. (2017). These may reflect different methods capturing

different aspects of information from the rather complex and high-

dimensional scRNA-Seq data, leading to different solutions, but no

clear winner.

3.2 Improving and running individual ensemble

methods
3.2.1 Seurat

Seurat provides a “resolution” parameter to alter the granularity of

the clustering results. However, the default “resolution” (¼ 0.8)

tends to result in no clustering for small datasets, as shown in the

SC3 paper (Kiselev et al., 2017). To further evaluate the perform-

ance of Seurat on small datasets, we generated 100 subsets of sam-

ples from the Darmanis dataset, using stratified random sampling

without replacement where each cell type was one stratum and sin-

gle cells from each cell type were randomly selected according to the

corresponding cell type proportion. Our sampling strategy resulted

Table 1. Major characteristics of the 12 benchmarking datasets

#Estimated clusters

Organism #Single

cells

#True

clusters

SC3 CIDR Seurat t-SNE þ
k-means

SAFE-clustering Ref

Baron_human1 Human 1937 14 23 3 12 11 11 Baron et al., 2016

Baron_human2 Human 1724 14 23 9 10 6 5 Baron et al., 2016

Baron_human3 Human 3605 14 37 5 12 7 14 Baron et al., 2016

Baron_human4 Human 1303 14 19 3 9 4 8 Baron et al., 2016

Baron_mouse1 Mouse 822 13 18 13 9 9 9 Baron et al., 2016

Biase Mouse 49 3 3 5 3 3 4 Biase et al., 2014

Darmanis Human 420 8 11 7 5 5 5 Darmanis et al., 2015

Ting Mouse 187 7 13 10 5 6 9 Ting et al., 2014

Yan Human 90 7 5 5 3 3 3 Yan et al., 2013

Zeisel Mouse 3005 9 32 5 13 6 13 Zeisel et al., 2015

simple case PBMC mixture Human 28 733 3 3 3 16 4 3 Zheng et al., 2017

challenging case PBMC mixture Human 32 695 3 2 10 14 3 3 Zheng et al., 2017

Note. The characteristics include organism origin, number of single cells, the numbers of true and estimated clusters by SAFE-clustering and four individual

methods, as well as references.
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Fig. 2. Similarity of solutions from individual clustering methods. (a) Zeisel

dataset; (b) Baron_human3 dataset; (c) simple case PBMC mixture dataset;

(d) challenging case PBMC mixture dataset
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in 61–239 single cells from the eight cell types, across the 100 gener-

ated datasets. The resolution was set to 0.6, 0.9 and 1.2, respective-

ly, following the instruction of Seurat. Due to non-determination

from random sampling, the sampling process and the downstream

clustering were repeated 100 times for each resolution. The perform-

ance of different resolution is quantified by ARI according to pub-

lished clustering. When sample size ranges from 61 to 150, Seurat

clustering with resolution ¼ 1.2 performs significantly better than

0.6 and 0.9 (P<0.05, Supplementary Fig. S1a), except for the case

between resolution 0.9 and 1.2 in the subset of 120 cells (P ¼
0.124). Comparatively, only one cluster is identified in the subset of

61 cells when resolution ¼ 0.6. When sample size increases to 210,

resolution makes no difference.

When applying Seurat to the three small datasets, Biase (n ¼ 49

single cells), Yan (n ¼ 90) and Ting (n ¼ 187), we used all three res-

olutions. Overall, Seurat performed better with resolution ¼ 1.2

(Supplementary Fig. S1b), with the exception of Yan dataset, where

clusterings with all the three resolutions are the same. For Biase

dataset, Seurat cannot distinguish different cell types with resolution

¼ 0.6, but ARI reaching to 1 when resolution increases to 1.2.

3.2.2 tSNE 1 k-means

Results from t-SNE þ k-means are stochastic rather than determinis-

tic. To mitigate the fluctuations across runs, we used the ADPclust

R-package (Wang and Xu, 2017) to first obtain clustering centroids.

We compared the performance with and without this ADPclust cen-

troid estimation step before k-means, on four datasets, Yan, Ting,

Darmanis and Baron_human2. Expression matrix was log-

transformed and dimensionality reduced using t-SNE. For each clus-

tering strategy, t-SNE was carried out 100 times. The number of

clusters ranged from 2 to (kM þ 2), where kM is the maximum num-

ber of clusters, in term of the true and estimated numbers of clusters.

As expected, ARI’s from the 100 datasets without ADPclust centroid

estimation varied dramatically at most k’s attempted where k is the

number of clusters fed to k-means (Supplementary Fig. S2). In con-

trast, with ADPclust centroid the estimation had much improved

stability.

3.2.3 SC3

For the two PBMC mixture datasets, SC3 estimated 588 and 586

clusters for the simple and challenging case, respectively, dramatical-

ly deviating from the truth (k ¼ 3 for both two datasets). The k esti-

mation method in SC3 has not been benchmarked and validated for

large, shallowly sequenced datasets, and it is likely that the distribu-

tion of eigenvalues of the covariance matrix does not adhere to the

assumed Tracy-Widom distribution (Tracy and Widom, 1994).

However, clustering results of SC3 are not affected by this since k es-

timation in SC3 is completely independent of the clustering algo-

rithm (SC3 source codes on Dec 11, 2017; https://github.com/

hemberg-lab/SC3/blob/8478ff2c8f523f004d129aec56ae57ce6853bd

12/R/CoreFunctions.R). We therefore performed PCA plot visual-

ization (using plotPCA function of scater R-package) to narrow

down a reasonable range of k. PCA plot suggested three distinct

clusters for the simple case and two clusters for the challenging case

(Supplementary Fig. S3). We therefore decided, for SC3, on k ¼ 3

for the simple case and k ¼ 2 for the challenging case. SC3 ARI for

the simple case at our selected k ¼ 3 is 0.995 and for the challenging

case at k ¼ 2 is 0.595.

Because of the issue revealed from the PBMC mixture datasets

and because estimation of number of clusters can be separated from

clustering per se, we ran SC3 for both datasets within a more

reasonable range of k: from 2 to 7. Using the SC3 results from this

range, we assessed the robustness of our SAFE-clustering method,

holding all the other three individual methods constant.

Supplementary Figure S4 shows that ARI from SC3 fluctuates con-

siderably (0.599—0.995 and 0.596—0.768 for the simple and chal-

lenging case, respectively) when k increases from 2 to 7.

Comparatively, results from our SAFE-clustering are much more sta-

ble (ARI ranges from 0.852 to 0.995 for the simple case and from

0.582 to 0.694 for the challenging case, respectively). These results

suggest that even with a non-optimal k selected by one individual

method, our SAFE-clustering ensemble method is able to generate

robustly accurate results, because our ensemble method borrows in-

formation from the other contributing methods. Furthermore,

SAFE-clustering correctly estimates the number of clusters (i.e., 3)

for both the simple and the challenging case with SC3’s k ranging

from 2 to 7.

3.3 Benchmarking of SAFE-clustering across 12

datasets
We benchmarked SAFE-clustering together with its four embedded

individual clustering methods on 12 published scRNA-Seq datasets,

reflecting a wide spectrum of experimental technology, sequencing

depth, tissue origin, number and heterogeneity of single cells exam-

ined (details are summarized in Table 1 and Supplementary Table

S1). Among the 12 datasets, we examine two large peripheral blood

mononuclear cells (PBMC) mixture datasets with >28 000 single

cells were constructed by mixing single-cell datasets of purified cell

types generated by the 10� Genomics (Zheng et al., 2017) as

described in Sun et al. (2018). Specifically, we created one dataset

representing a “simple case” with 28, 733 single cells from three dis-

tinct cell types: CD56þ natural killer cells, CD19þ B cells and

CD4þ/CD25þ regulatory T cells; and the other dataset representing

a “challenging case” with 32 695 single cells from three highly

similar cell types: CD8þ/CD45RAþ naive cytotoxic T cells,

CD4þ/CD45RAþ/CD25- naive T cells and CD4þ/CD25þ regula-

tory T cells.

For the 12 datasets attempted, SAFE-clustering outperforms all

the individual solutions in five datasets: Baron_human1,

Baron_human3, Baron_mouse1, and the two PBMC mixture data-

sets (Fig. 3). Furthermore, SAFE-clustering performs better than at

least two individual methods in six additional datasets (Biase, Yan,

Darmanis, Zeisel, and Baron_human2 and 4) (Fig. 3). These results

show that SAFE-clustering performs robustly well across various

datasets. We also compared the estimated number of clusters and

found that among individual methods, CIDR performs the best

(Fig. 4b); SC3 tends to overestimate the number of clusters (Fig. 4a),

while t-SNE þ k-means tends to underestimate (Fig. 4d). Our SAFE-

clustering outperforms all individual solutions (Fig. 4e and f), quan-

tified by the average absolution deviation from the true/gold-

standard cluster numbers (D
�
¼ 1

m

P
mjk̂ � kt j, where m is the num-

ber of datasets (¼ 12 in our work); k̂ is the estimated number of

clusters; and kt is the true (or predefined gold/silver standard) num-

ber of cell types.

For the simple case PBMC mixture dataset, both CIDR and SC3

yielded 3 clusters with Adjusted Rand Index (ARI) of 0.827 and

0.995, respectively (Fig. 3). Seurat assigned the single cells into 16

clusters with an ARI of 0.239. Also, Seurat failed to generate cluster-

ing results for three (out of 28 733) single cells because of <200

expressed genes in these cells. For t-SNE þ k-means, we applied

t-SNE on the top 1, 000 most variable genes to save computing time

and memory usage (Supplementary Fig. S5), identifying three
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clusters with an ARI of 0.976. Combining the four individual solu-

tions, SAFE-clustering generated the most accurate result with an

ARI of 0.995 (Fig. 3 and Supplementary Fig. 6a). Moreover, all the

three single cells not clustered by Seurat were correctly assigned into

their corresponding clusters by SAFE-clustering’s borrowing infor-

mation from the remaining three individual solutions.

For the challenging case PBMC mixture dataset, none of the four

individual methods performed well, because CD4þ/CD45RAþ/

CD25- naive T cells are quite similar to CD4þ/CD25þ regulatory T

cells. SC3 generated the most accurate individual solution, identify-

ing two clusters with an ARI of 0.595 (Fig. 3), followed by t-SNE þ
k-means (3 clusters and ARI ¼ 0.405). Similar to the simple case,

Seurat failed to generate clustering results for 28 single cells with

<200 expressed genes, and resulted in 13 clusters with an ARI of

0.264. SAFE-clustering again outperformed all the four individual

methods (Fig. 3 and Supplementary Fig. 6b), correctly identifying

three clusters with an ARI ¼ 0.612, and correctly clustering 23 out

of the 28 single cells which were not clustered by Seurat. These

results strongly suggest that SAFE-clustering can provide robust and

high-quality clustering even under challenging scenarios.

Besides the four individual methods used in our package, we also

compared our results with two additional widely-used clustering

methods SIMLR (Wang et al., 2017) and RaceID (Grün et al.,

2015), and the results showed that SAFE-clustering excels SIMLR in

8 out of 12 datasets, and outperforms than RaceID in 11 out of 12

datasets (Supplementary Fig. S7). To assess the extensibility of

SAFE-clustering to other scRNA-seq clustering methods, we incor-

porated one more individual method, SIMLR, into our SAFE-

clustering and found that the ensemble solutions are similar to those

from the original SAFE-clustering without the fifth SIMLR method

(Supplementary Fig. S7). Our results suggest SAFE-clustering is ro-

bust also to the increasing number of employed individual methods.

Additionally, we evaluated the potential impacts of several fac-

tors: inclusion/exclusion of ribosomal protein genes, filtering on per-

centage of mitochondrial reads, dropout imputation and denoising

of expression profiles, perplexity parameter for t-SNE, and number

of t-SNE dimensions carried forward for k-means clustering. Details

of the evaluation results are given in the Supplementary Results.

Overall, across the 12 datasets, SAFE-clustering on average

improved ARI by 36.0% over the average of the individual methods,

and up to 18.5% over the best individual method for each

dataset. All codes for two example datasets are made available

via an R markdown freely available at both https://github.com/

yycunc/SAFEclustering and https://yunliweb.its.unc.edu/safe/

SAFEclustering_tutorial.html.

3.4 Benchmarking of three hypergraph partitioning

algorithms in SAFE-clustering
SAFE-clustering has three hypergraph partitioning algorithms imple-

mented. Among them, CSPA is computationally expensive for data-

sets with large number of single cells because computational

complexity increases quadratically with the number of single cells

(Punera and Ghosh, 2008). To assess the feasibility of the three algo-

rithms on big datasets, we recorded the running time for the simple

case of 28 733 cells. As the running time is insensitive to the number

of clusters k, a 3-way partitioning (that is, k was set at 3, the true
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Fig. 3. Benchmarking of SAFE-clustering in 12 published datasets. Adjusted Rand Index (ARI) is employed to measure the similarity between inferred and true

cluster labels. Detailed information of the 12 datasets can be found in Table 1 and Supplementary Table S1
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�
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where the number of datasets m equals to 12
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cluster number) was performed, running each of the algorithms 100

times. As expected, HGPA is ultrafast taking an average of 0.51 6

0.02 second per clustering (s/c), followed by MCLA, 8.26 6 1.54 s/

c. CSPA is the slowest with �576.64 þ/– 0.74 s/c (Fig. 5a). Finally

and importantly, we would like to note that computational costs of

these ensemble algorithms are negligible (HGPA and MCLA) or low

(CSPA), compared to the computing costs of individual clustering

methods (2.5–22 h per clustering).

Among the three ensemble algorithms, MCLA and CSPA results

are deterministic conditional on any specified random number gen-

erator (RNG) seed. HGPA, however, generates stochastic results

even with a specified RNG seed. To evaluate the stability of HGPA’s

clustering results, we performed HGPA partitioning 100 times on

the simple case dataset and calculated both ANMI and ARI for each

run. Figure 5b shows that HGPA results, although relatively stable,

vary slightly across different runs. Another consequence of HGPA’s

stochasticity is that different numbers of cluster may be estimated.

Therefore, SAFE-clustering by default runs HGPA 10 times, selects

the run with the median ANMI value among the 10 runs, and out-

puts the corresponding consensus result.

To evaluate the performance of the three hypergraph partition-

ing algorithms, we performed ensemble clustering of the 12 datasets

using each of them (namely HGPA, MCLA and CSPA) separately.

Comparatively, MCLA is a clear winner: manifesting the highest

ANMI in 11 out of the 12 benchmarking datasets (Fig. 5c); and

exhibiting the highest ARI in 11 out of the 12 datasets (Fig. 5d). For

the single dataset (Baron_human3) where MCLA is not the best

according to ANMI, its ANMI (0.658) is a close match of the best

(0.662 from CSPA). In addition, in this Baron_human3 dataset, if

gauged using ARI, MCLA again outperforms all other methods with

ARI ¼ 0.507 and the second best ARI ¼ 0.215 from CSPA. For the

Ting dataset where MCLA is not the best according to the ARI met-

ric, it is the close match second best with ARI ¼ 0.429, compared

with the best (from CSPA) with ARI ¼ 0.556 and 0.465 respectively.

These results suggest that MCLA provides more accurate consensus

clustering than the other two algorithms. Therefore, SAFE-

clustering uses MCLA as the default partitioning algorithm. These

three partitioning algorithms vary in performance due to their inher-

ently differences: although they all employ hyperedges and hyper-

graphs, they differ quite drastically in how (Karypis et al., 1999;

Karypis and Kumar, 1998). Specifically, HGPA partitions the hyper-

graph by cutting a minimal number of hyperedges that creates k

clusters of approximately equal size, which would not be optimal

when cluster sizes vary substantially. CSPA starts with a similarity

matrix computed from the hypergraph to perform partitioning, and

MCLA first computes a pairwise Jaccard similarity matrix and col-

lapses related hyperedges(clusters).

4 Discussion

We present SAFE-clustering, an unsupervised ensemble method to

provide fast, accurate and flexible clustering for scRNA-Seq data.

Although there are a number of clustering methods developed for

scRNA-Seq data in the recent literature, individual clustering meth-

ods differ in many aspects including data pre-processing, choice of

distance metrics, clustering method, and model selection to deter-

mine number of clusters, thus their performances tend to vary,

sometimes rather dramatically, across datasets. There is no clear

winner among the existing clustering methods. Our SAFE-clustering

employs hypergraph portioning algorithms to build an ensemble so-

lution based on multiple solutions from individual clustering meth-

ods, the first-time ensemble has been leveraged across different types

of methods for scRNA-Seq data. The leveraged information from all

these individual methods enables our SAFE-clustering method to

reach robustly satisfactory performance across datasets. We have

benchmarked SAFE-clustering along with four individual clustering

methods (SC3, CIDR, Seurat and t-SNE þ k-means) on 12 published

scRNA-Seq datasets, which is the most comprehensive to date.

Among the 12 datasets, SAFE-clustering outperforms all four indi-

vidual solutions in five benchmarking datasets, and performs better

than at least two individual methods in six datasets (Fig. 3). For the

two PBMC mixture datasets with 28 733 and 32 695 single cells re-

spectively, SAFE-clustering accurately identifies the three cell types

of ARI ¼ 0.995 and 0.612 respectively (Fig. 3 and Supplementary

Fig. S6). Gauged by ARI, SAFE-clustering outperforms the most ac-

curate existing method for each dataset by up to 18.5%, and on

average by 36.0% over the average performance of the four state-of-

the-art methods, across the 12 datasets. Moreover, although care

needs to be taken for interpreting these cluster number estimates

(Supplementary Results and Supplementary Fig. S8), SAFE-

clustering provides the most accurate estimation on the number of

cell types compared to the individual methods: SAFE-clustering’s

average absolute deviation from true cluster numbers (3.58) is sub-

stantially smaller than that any of the four individual methods (aver-

age absolute deviation ranging from 4.42 to 7.17) (Fig. 4f). These

results suggest that SAFE-clustering produces more stable and accur-

ate clustering across various datasets. We note that many pre-

processing steps can also influence results noticeably and should be

carried out with caution. We have made efforts to evaluate a num-

ber of them (Supplementary Results) and add corresponding options

to our SAFE-clustering package with default values. A complete

evaluation of all possible preprocessing choices is beyond the scope

of this work, if not impossible. Finally, SAFE-clustering is computa-

tionally efficient, with the additional hypergraph partitioning of
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Fig. 5. Benchmark of the three hypergraph partitioning algorithms: HGPA,

MCLA and CSPA. (a) Running time for 3-way partitioning of simple case

PBMC mixture dataset with 28 733 single cells using each of the three parti-

tioning algorithms. Each algorithm was applied 100 times. (b) Stability of

HGPA from 100 runs using simple case PBMC mixture dataset with 28 733

single cells. (c) Similarity between consensus clustering and individual solu-

tions in 12 benchmarking datasets, measured by average normalized mutual

information (ANMI). (d) Performance of the three partitioning algorithms,

measured by ARI, across the 12 benchmarking datasets
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individual methods’ cluster assignments taking less than 10 seconds

to cluster 28 733 cells, using the default MCLA algorithm (Fig. 5a).

SAFE-clustering is scalable to even larger datasets; taking 5–22 min

for datasets with 150 000–300 000 single cell for instance

(Supplementary Fig. S9). We anticipate that SAFE-clustering will

prove valuable for increasingly larger number of investigators work-

ing with scRNA-Seq data.
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