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Abstract

Summary: There is an increasing interest in joint analysis of multiple phenotypes for genome-wide as-

sociation studies (GWASs) based on the following reasons. First, cohorts usually collect multiple phe-

notypes and complex diseases are usually measured by multiple correlated intermediate phenotypes.

Second, jointly analyzing multiple phenotypes may increase statistical power for detecting genetic var-

iants associated with complex diseases. Third, there is increasing evidence showing that pleiotropy is a

widespread phenomenon in complex diseases. In this paper, we develop a clustering linear combin-

ation (CLC) method to jointly analyze multiple phenotypes for GWASs. In the CLC method, we first clus-

ter individual statistics into positively correlated clusters and then, combine the individual statistics lin-

early within each cluster and combine the between-cluster terms in a quadratic form. CLC is not only

robust to different signs of the means of individual statistics, but also reduce the degrees of freedom of

the test statistic. We also theoretically prove that if we can cluster the individual statistics correctly, CLC

is the most powerful test among all tests with certain quadratic forms. Our simulation results show that

CLC is either the most powerful test or has similar power to the most powerful test among the tests we

compared, and CLC is much more powerful than other tests when effect sizes align with inferred clus-

ters. We also evaluate the performance of CLC through a real case study.

Availability and implementation: R code for implementing our method is available at http://www.

math.mtu.edu/�shuzhang/software.html.

Contact: shuzhang@mtu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although the conventional genome-wide association studies

(GWASs) focus on a single phenotype, there is an increasing interest

in joint analysis of multiple phenotypes because cohorts usually col-

lect multiple phenotypes and jointly analyzing multiple phenotypes

may increase statistical power (Solovieff et al., 2013; Stephens,

2013; Yang and Wang, 2012; Zhou and Stephens, 2014). Recently,

many statistical methods have been developed for joint analysis of

multiple phenotypes. These methods include tests based on combin-

ing the univariate analysis results, regression methods and dimen-

sion reduction methods. In the tests based on combining the

univariate analysis results, one first conducts the univariate tests and

then combines the univariate test statistics or combines the P-values

of the univariate tests (Kim et al., 2015; Liang et al., 2016; O’Brien,

1984; van der Sluis et al., 2013; Yang et al., 2010, 2016).

Regression methods include mixed effect models (Casale et al.,

2015; Korte et al., 2012; Zhou and Stephens, 2014), generalized

estimating equation (GEE) methods (Zeger and Liang, 1986; Zhang

et al., 2014) and reverse regression methods (O’Reilly et al., 2012;

Yan et al., 2013). Dimension reduction methods include canonical

correlation analysis (CCA) (Tang and Ferreira, 2012), principal

components of traits (PCT) (Aschard et al., 2014) and principal

components of heritability (PCH) (Klei et al., 2008; Lange et al.,

2004; Ott and Rabinowitz, 1999; Wang et al., 2016; Zhou et al.,

2015). Although most of aforementioned methods for multiple phe-

notypes are applicable only to individual-level data, a few methods

have been developed for meta-analysis from multiple GWASs

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1373

Bioinformatics, 35(8), 2019, 1373–1379

doi: 10.1093/bioinformatics/bty810

Advance Access Publication Date: 19 September 2018

Original Paper

http://orcid.org/0000-0002-9478-1199
http://www.math.mtu.edu/&hx0026;sim;shuzhang/software.html
http://www.math.mtu.edu/&hx0026;sim;shuzhang/software.html
http://www.math.mtu.edu/&hx0026;sim;shuzhang/software.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty810#supplementary-data
https://academic.oup.com/


(Cichonska et al., 2016; Kim et al., 2015; Kwak and Pan, 2016,

2017; Zhu et al., 2015b).

Among the methods described above, O’Brien’s method (O’Brien,

1984; Wei and Johnson, 1985) is one of the earliest methods for mul-

tiple phenotypes, which can be used to integrate the results from uni-

variate association tests. If the means of individual statistics are

homogeneous, O’Brien’s method is the most powerful test among those

that linearly combine these statistics. However, if the means of individ-

ual statistics are heterogeneous, O’Brien’s method will lose power dra-

matically, especially, when the means of individual statistics have

different signs. To overcome this limitation, one can use the omnibus

test with test statistic Tomn ¼ TTR�1T, where T ¼ ðT1; . . . ;TKÞT �
Nð0;RÞ under the null hypothesis; Tk is the test statistic to test the asso-

ciation between the genetic variant of interest and the kth phenotype for

k ¼ 1; . . . ;K; and K is the number of phenotypes. Under the null hy-

pothesis, Tomn follows a chi-square distribution with K degrees of free-

dom (df). Yang et al. (2010) also proposed extensions of O’Brien’s

method. Our power comparisons show that the omnibus test and Yang

et al.’s methods have similar powers over all simulation scenarios (Zhu

et al., 2015a). The omnibus test and Yang et al.’s methods may lose

power due to the large df.

In this paper, we develop a clustering linear combination (CLC)

method. The CLC method is adaptive to the correlation structure of

individual statistics by clustering them into clusters of positively cor-

related individual statistics. Within each cluster, the individual sta-

tistics are combined linearly. The between-cluster items are then

combined in a quadratic form. Given the number of clusters, CLC

follows a chi-square distribution with df equal to the number of

clusters. Comparing with O’Brien’s method, CLC improves the ro-

bustness to different signs of the means of individual statistics.

Comparing with the omnibus test, CLC can reduce df. We also the-

oretically prove that if we can cluster the individual statistics cor-

rectly, CLC is the most powerful test among all tests with certain

quadratic forms. We use extensive simulation studies to compare the

performance of CLC with that of six existing methods. Our simula-

tion results show that CLC is either the most powerful test or has

similar power to the most powerful test among the tests we consid-

ered. Furthermore, CLC is much more powerful than other methods

when effect sizes align with inferred clusters. We also demonstrate

the usefulness of CLC through a real case study.

2 Materials and methods

Let Y ¼ ðY1; . . . ;YKÞT denote the random vector of K correlated

phenotypes and X denote the random variable of the genotype at the

variant of interest. We consider a sample from ðX;YÞ with n unre-

lated individuals. Each individual has genotype at the variant of

interest and K correlated quantitative or qualitative phenotypes (1

for cases and 0 for controls for a qualitative phenotype). Let yik de-

note the kth phenotype value of the ith individual and xi denote the

genotype of the ith individual at the variant of interest, where xi is

the number of minor alleles that the ith individual carries at the vari-

ant. We assume that there are no covariates. If there are covariates,

we adjust genotypes and phenotype values for the covariates

through linear models.

Consider the generalized linear model (Nelder and Wedderburn,

1972)

gðEðyikjxiÞÞ ¼ b0k þ b1kxi (1)

where gðÞ is a monotone ‘link’ function. Two commonly used mod-

els under the generalized linear model framework are (i) the linear

model with an identity link for continuous or quantitative pheno-

types and (ii) the logistic regression model with a logit link for bin-

ary or qualitative phenotypes. Let Tk denote the score test statistic

to test the null hypothesis H0 : b1k ¼ 0 under the generalized linear

model. Under the two commonly used models, Tk is given by (Sha

et al., 2011)

Tk ¼ Uk=
ffiffiffiffiffiffi
Vk

p
; (2)

where Uk ¼
Pn

i¼1 yikðxi � �xÞ and Vk ¼ 1
n

Pn
i¼1 ðyik � �ykÞ

2Pn
i¼1

ðxi � �xÞ2. Since each Tk asymptotically follows a normal distribu-

tion with mean bk ¼ EðTkÞ and variance 1, let’s assume that T ¼
ðT1; . . . ;TKÞT asymptotically follows a multivariate normal distribu-

tion with mean vector b ¼ ðb1; . . . ;bKÞT and variance matrix

R (O’Brien, 1984; Yang et al., 2010; Zhu et al., 2015b).

2.1 Estimating R under the null hypothesis

H0 : b115 � � �5b1K 50

Let r2
k ¼ varðYkÞ, then Vk ¼

Pn
i¼1 ðyik � �ykÞ

2Pn
i¼1 ðxi � �xÞ2=n!

r2
k

Pn
i¼1 ðxi � �xÞ2 almost surely and EðTkÞ !

Pn
i¼1 g�1ðb0kÞðxi � �xÞ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

k

Pn
i¼1 ðxi � �xÞ2

q
¼ 0 almost surely. Therefore,

covðTk;TsÞ !

Pn
i¼1

Pn
j¼1

ðxi � �xÞðxj � �xÞE
��

yik � g�1ðb0kÞ
��

yjs � g�1ðb0sÞ
��

rkrs

Pn
i¼1

ðxi � �xÞ2
:

When i 6¼ j, E
��

yik � g�1ðb0kÞ
��

yjs � g�1ðb0sÞ
��
¼ 0 because the

ith individual and the jth individual are unrelated. Therefore,

covðTk;TsÞ !

Xn

i¼1

E
��

yik � g�1ðb0kÞ
��

yis � g�1ðb0sÞ
��
ðxi � �xÞ2

rkrs

Xn

i¼1

ðxi � �xÞ2

¼
covðYk;YsÞ

Xn

i¼1

ðxi � �xÞ2

rkrs

Xn

i¼1

ðxi � �xÞ2
¼ covðYk;YsÞ

rkrs
¼ qðYk;YsÞ;

where qðYk;YsÞ denotes the correlation coefficient between Yk and

Ys. Therefore, R! PðYÞ almost surely, where PðYÞ denote the cor-

relation matrix of Y ¼ ðY1; . . . ;YKÞT . Thus, R can be estimated by

R̂ ¼ PsðYÞ, where PsðYÞ is the sample correlation matrix of

Y ¼ ðY1; . . . ;YKÞT . Since PsðYÞ is a consistent estimator of PðYÞ,
PsðYÞ is a consistent estimator of R. Note that under the null hy-

pothesis, the distribution of T ¼ ðT1; . . . ;TKÞT does not depend on

the genotypes.

2.2 CLC test statistic
We propose to use the hierarchical clustering method with similarity

matrix R̂ ¼ PsðYÞ and dissimilarity matrix 1� PsðYÞ to cluster

T1; . . . ;TK. Clustering T1; . . . ;TK is equivalent to clustering K phe-

notypes using the hierarchical clustering method with dissimilarity

matrix 1� PsðYÞ. To see if hierarchical clustering method with dis-

similarity matrix 1� PsðYÞ can cluster phenotypes with different ef-

fect sizes, we take the linear model Yk ¼ b0k þ b1kXþ ek as an

example, where we assume that e1; . . . ; eK are independent of X; cor-

relations between every pair of e1; . . . ; eK are all q and varðekÞ ¼ 1

for k ¼ 1; . . . ;K; b11; . . . ; b1K can be divided into two clusters,�
b11; . . . ;b1ðK=2Þ

�T
¼ ð�b; . . . ;�bÞT and

�
b1ðK=2þ1Þ; . . . ; b1K

�T

1374 Q.Sha et al.



¼ ðb; . . . ;bÞT . Within each cluster, the correlation between Yk and

Yl is
�
b2varðXÞ þ q

�
=
�
b2varðXÞ þ 1

�
. Between two clusters, the

correlation between Yk and Yl is
�
� b2varðXÞ þ q

�
=
�
b2varðXÞ þ 1

�
. We can see that hierarchical clustering method

with dissimilarity matrix 1� PsðYÞ can cluster phenotypes with dif-

ferent effect sizes. In the above example, we assume that e1; . . . ; eK

are exchangeable. If the covariance of e1; . . . ; eK has a structure, clus-

tering phenotypic covariance may not successfully cluster genetic co-

variance. For example, if the covariance of e1; . . . ; eK has a structure:

covðek; elÞ ¼ q=2 if 1 � k; l � K=2 and covðek; elÞ ¼ q otherwise.

Then the correlation between Yk and Yl is
�
b2varðXÞ þ q=2

�
=

�
b2varðXÞ þ 1

�
if 1 � k; l � K=2;

�
b2varðXÞ þ q

�
=
�
b2varðXÞ þ 1

�

if K=2þ 1 � k; l � K; and
�
� b2varðXÞ þ q

�
=
�
b2varðXÞ þ 1

�

otherwise. It is possible that �b2 varðXÞ þ q � b2varðXÞ þ q=2, that

is, the phenotypic correlations between genetic clusters may be

greater than the phenotypic correlations within a genetic cluster.

Thus, when the covariance of e1; . . . ; eK has a structure, clustering

phenotypic correlations may not cluster genetic effects.
Suppose that we cluster the phenotypes into L clusters, where

1 � L � K. Let B be a K� L matrix with the (k,l)th element

denoted by bkl, where bkl ¼ 1 if the kth phenotype belongs to the lth

cluster and bkl ¼ 0 otherwise. Our proposed CLC test statistic with

L clusters is given by

TL
CLC ¼ ðWTÞTðWRWTÞ�1ðWTÞ;

where W ¼ BTR�1. Under the null hypothesis that none of pheno-

types is associated with the variant of interest, TL
CLC follows a chi-

square distribution with df L because clustering method only

depends on phenotypes not the genotype at the variant of interest.

Note that when L ¼ 1, TL
CLC is equivalent to O’Brien’s method

(O’Brien, 1984); when L ¼ K, TL
CLC is equivalent to omnibus test

with test statistic TTR�1T; for 1 � L � K, TL
CLC for multiple phe-

notypes and one variant is similar to the multiple linear combination

(MLC) regression tests for one phenotype and multiple variants

(Yoo et al., 2017).

Let pL denote the P-value of TL
CLC for L ¼ 1; . . . ;K. We define

the test statistic of CLC as

TCLC ¼ min1�L�KpL: (3)

We use a simulation procedure to evaluate the P-value of TCLC. In

each simulation, we generate T according to the multivariate normal

distribution Nð0; R̂Þ. Suppose that we perform the simulation D

times. Let T
ðdÞ
CLC denote the value of TCLC based on the dth simulated

data, where d ¼ 0 represents the original data. Then, the P-value of

TCLC is given by

#fd : T
ðdÞ
CLC � T

ð0Þ
CLC for d ¼ 0; . . . ;Dg=ðDþ 1Þ

¼
�

#fd : T
ðdÞ
CLC � T

ð0Þ
CLC for d ¼ 1; . . . ;Dg þ 1

�
=ðDþ 1Þ:

The null distributions of T ¼ ðT1; . . . ;TKÞT and thus of TCLC do

not depend on the genetic variant being tested. Therefore, the simu-

lation procedure described above to generate an empirical null dis-

tribution of TCLC needs to be done only once for a GWAS.

2.3 Theoretical considerations

THEOREM. We assume that T ¼ ðT1; . . . ;TKÞT � Nðb;RÞ, where

b ¼ ðb1; . . . ; bKÞT . Suppose b1; . . . ; bK can be divided into L clusters,

that is, b ¼ ðh11T
K1
; . . . ; hL1T

KL
ÞT , 1s ¼ 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}s

� �T
and K1þ

� � � þ KL ¼ K. If the hierarchical clustering method can correctly cluster

b, TL
CLC is the most powerful test among all tests in the quadratic form

ðCTÞTðCRCTÞ�1CT, where C is an arbitrary L� K matrix.

Proof.

Since CT � NðCb;CRCTÞ, ðCTÞT ðCRCTÞ�1CT follows a chi-square dis-

tribution with noncentrality parameter ðCbÞT ðCRCTÞ�1Cb and df L

denoted by v2
�
ðCbÞTðCRCTÞ�1Cb;L

�
. Then, TL

CLC � v2�
bTR�1BðBTR�1BÞ�1BTR�1b;L

�
. Note that if two noncentral chi-

square distributed tests have the same df, the test with larger noncentral-

ity parameter is more powerful than the other one. We only need to

prove D ¼ bTR�1BðBTR�1BÞ�1BTR�1b� ðCbÞTðCRCTÞ�1Cb � 0 for an

arbitrary L� K matrix C. Note that b ¼ Bh, where h ¼ ðh1; . . . ; hLÞT .

We have D ¼ hT
�

BTR�1B� ðCBÞTðCRCTÞ�1CB
�
h. Let d ¼ R�1=2Bh be

a K� 1 vector and E ¼ CR�1=2 be a L� K matrix. Then, D ¼
dT
�

I � ETðEETÞ�1E
�

d � 0 because I � ETðEETÞ�1E is an idempotent

and symmetric matrix and therefore is a positive semidefinite matrix.

2.4 Comparison of methods
We compare the performance of the CLC method with those of the

O’Brien (O’Brien, 1984), the omnibus test, the Trait-based

Association Test that uses Extended Simes procedure (TATES) (van

der Sluis et al., 2013), the Tippett’s method (Tippett) (Pesarin and

Salmaso, 2010), the Multivariate Analysis of Variance (MANOVA)

(Cole et al., 1994), Multiple Trait Mixed Model (MTMM) (Zhou

and Stephens, 2014) and the joint model of Multiple Phenotypes

(MultiPhen) (O’Reilly et al., 2012). When MTMM is used, we use

the software GEMMA provided by Zhou and Stephens (2014) to

perform the real data analysis with 7 phenotypes and use GEMMA

under the assumption that individuals are unrelated to do simulation

studies with 20 phenotypes. This assumption does not reduce the

power of MTMM in the simulation studies because we generate

phenotypes and genotypes under this assumption in our simulations.

3 Results

3.1 Simulation setup
To evaluate the type I error rate and power of CLC, we generate

genotypes according to the minor allele frequency (MAF) and as-

sume Hardy Weinberg equilibrium. We generate K quantitative phe-

notypes similar to that in Wang et al. (2016). To generate a

qualitative disease affection status, we use a liability threshold

model based on a quantitative phenotype. A qualitative phenotype is

defined to be affected if the corresponding quantitative phenotype is

at least one standard deviation larger (smaller) than the phenotypic

mean. In the following, we describe how to generate quantitative

phenotypes. In details, we generate K quantitative phenotypes by

the factor model

y ¼ kxþ ccf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

� e; (4)

where y ¼ ðy1; . . . ; yKÞT ; x is the genotype at the variant of interest;

k ¼ ðk1; . . . ; kKÞ is the vector of effect sizes of the genetic variant on

the K phenotypes; f ¼ ðf1; . . . ; fRÞT is a vector of factors with R ele-

ments and f ¼ ðf1; . . . ; fRÞT �MVNð0;RÞ, R ¼ ð1� qÞI þ qA, A is

a matrix with elements of 1, I is the identity matrix and q is the cor-

relation between factors; c is a K by R matrix; c is a constant num-

ber; and e ¼ ðe1; . . . ; eKÞT is a vector of residuals, e1; . . . ; eK are

independent, and ek � Nð0;1Þ for k ¼ 1; . . . ;K.

Based on Equation (4), we consider the following four models in

which the within-factor correlation is c2 and the between-factor cor-

relation is qc2. The phenotypic correlation structures mimic that of

CLC for joint analysis of multiple phenotypes for GWAS 1375



UK10K (The UK10K Consortium et al., 2015), that is, the pheno-

types are divided into several phenotype blocks (factors) and the

within-factor correlation is larger than the between-factor

correlation.

Model 1: There is only one factor and genotypes impact on all

phenotypes. That is, R ¼ 1, k ¼ bð1; 2; . . . ;KÞT and c ¼ 1K.

Model 2: There are two factors and genotypes impact on

one factor. That is, R ¼ 2, k ¼ 0; . . . ;0; b; . . . ;b|fflfflfflffl{zfflfflfflffl}K=2

� �T and

c ¼ BdiagðD1;D2Þ, where Di ¼ 1K=2 for i ¼ 1; 2.

Model 3: There are five factors and genotypes impact on two

factors. That is, R ¼ 5, k ¼ ð b11; . . . ; b1k; b21; . . . ; b2k; b31; . . .

;b3k;b41; . . . ;b4k;b51; . . . ;b5kÞT and c ¼ Bdiagð D1;D2;D3; D4;

D5Þ, where Di ¼ 1K=5 for i ¼ 1; . . . ;5; k ¼ K=5; b11 ¼ � � � ¼ b1k ¼
b21 ¼ � � � ¼ b2k ¼ b31 ¼ � � � ¼ b3k ¼ 0; b41 ¼ � � � ¼ b4k ¼ �b; and

ðb51; . . . ;b5kÞ ¼ 2b
kþ1 ð1; . . . ;kÞ.

Model 4: There are five factors and genotypes impact on four

factors. That is, R ¼ 5, k ¼ ðb 11; . . . ; b1k;b21; . . . ; b2k ;b31; . . . ;

b3k; b41; . . . ; b4k; b51; . . . ; b5kÞT and c ¼ BdiagðD1;D2;D3;D4;D5Þ,
where Di ¼ 1K=5 for i ¼ 1; . . . ;5; k ¼ K=5; b11 ¼ � � � ¼ b1k ¼ 0;

b21 ¼ � � � ¼ b2k ¼ b; b31 ¼ � � � ¼ b3k ¼ �b; ðb41; . . . ;b4kÞ ¼ � 2b
kþ1

ð1; . . . ; kÞ; and ðb51; . . . ; b5kÞ ¼ 2b
kþ1 ð1; . . . ; kÞ.

To evaluate type I error rate of our proposed CLC method, we

let b ¼ 0. To evaluate power, we let b > 0. In the simulation studies

for evaluation of type I error rate and power, we set MAF ¼ 0.3, the

between-factor correlation is 0.15, and the within-factor correlation

is 0.25.

3.2 Simulation results
To evaluate type I error of CLC, we consider different types of phe-

notypes, different number of phenotypes, different sample sizes, dif-

ferent models and different significance levels. In each simulation

scenario, the P-values of CLC are estimated by 10 000 simulations

and type I error rates are evaluated using 10 000 replicated samples.

For 10 000 replicated samples, the 95% confidence intervals (CIs)

for type I error rates divided by nominal significance levels 0.01 and

0.001 are (0.80, 1.20) and (0.40, 1.60), respectively. The estimated

type I error rates of CLC are summarized in Tables 1 and 2. From

these tables, we can see that all of the estimated type I error rates are

within the 95% CIs, which indicates that CLC is a valid test. We

also evaluate the type I error rates of O’Brien, Omnibus, TATES,

MANOVA and MultiPhen by using their analytic P-values

(Supplementary Table S1). From Supplementary Table S1, we can

see that O’Brien, Omnibus, TATES and MANOVA have correct

type I error rates, but MultiPhen has inflated type I error rates when

K ¼ 100.

For power comparisons, we consider different types of pheno-

types: (i) all phenotypes are quantitative and (ii) phenotypes are half

quantitative and half qualitative. In each of the two cases, we con-

sider different numbers of phenotypes and different models. In each

of the simulation scenarios, the P-values of CLC are evaluated using

1000 simulations; the P-values of Tippett are evaluated using 1000

permutations; and the P-values of O’Brien, Omnibus test, TATES,

MANOVA, MultiPhen and MTMM are evaluated using asymptotic

distributions. The power is evaluated using 1000 replicated samples

at a significance level of 0.05.

Power comparisons of the seven or eight methods (O’Brien,

Omnibus, CLC, TATES, MANOVA, MultiPhen, Tippet and

MTMM; we include MTMM only when K¼20 and n¼1000 due

to time consuming of MTMM) under four models for different val-

ues of the effect size are given in Figures 1 and 2 for 20 and 40 quan-

titative phenotypes, respectively. These two figures show that (i)

when effect sizes of the variant of interest on phenotypes show no

Table 1. The estimated type I error rates divided by the nominal

significance level of CLC for 20, 40 and 100 quantitative pheno-

types under four models

K Sample Alpha Model 1 Model 2 Model 3 Model 4

20 1000 0.01 1.02 0.84 0.85 0.96

0.001 0.80 0.80 0.70 1.10

2000 0.01 1.03 0.93 0.96 0.94

0.001 0.90 0.80 1.20 1.10

40 1000 0.01 1.08 0.82 1.00 1.02

0.001 1.20 0.70 1.40 1.30

2000 0.01 0.91 0.91 1.03 0.94

0.001 1.10 1.50 1.50 0.50

100 1000 0.01 0.95 1.03 0.82 0.89

0.001 0.65 1.05 0.65 0.95

Note: The P-values of CLC are evaluated by 10 000 simulations and type I

error rates are evaluated by 10 000 replicated samples.

Table 2. The estimated type I error rates divided by the nominal

significance level of CLC for 20, 40 and 100 phenotypes with half

quantitative phenotypes and half qualitative phenotypes under

four models

K Sample Alpha Model 1 Model 2 Model 3 Model 4

20 1000 0.01 1.01 0.83 1.08 1.10

0.001 1.00 1.20 1.00 1.30

2000 0.01 1.12 1.01 1.00 1.18

0.001 0.80 1.50 1.10 1.00

40 1000 0.01 0.88 1.04 0.94 0.97

0.001 0.80 0.80 1.10 1.20

2000 0.01 0.87 0.85 1.08 0.98

0.001 0.80 0.90 0.70 0.80

100 1000 0.01 0.86 1.02 0.93 0.70

0.001 1.30 0.90 0.70 0.80

Note: The P-values of CLC are evaluated by 10 000 simulations and type I

error rates are evaluated by 10 000 replicated samples.

Fig. 1. Power comparisons of the eight tests. The powers of O’Brien,

Omnibus, CLC, TATES, MANOVA, MultiPhen, Tippet and MTMM as a func-

tion of effect size b for 20 quantitative phenotypes. The sample size is 1000.

The between-factor correlation is 0.15 and the within-factor correlation is 0.25
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groups (Model 1), all seven methods have similar power; (ii) when

effect sizes show some groups (Models 2–4), CLC is much more

powerful than other methods; (iii) when effect sizes show some

groups and have different directions (Models 3-4), MANOVA,

MultiPhen, MTMM and Omnibus test are more powerful than

TATES and Tippett, and O’Brien has almost no power because the

genetic effects have different directions; and (iv) when the effect sizes

are in groups and have the same direction in all groups (Model 2),

TATES and Tippett are more powerful than MANOVA, MultiPhen

and MTMM. We also perform power comparisons for the case of

half quantitative and half qualitative phenotypes (Supplementary

Figs S1 and S2), for the case of 100 phenotypes (Supplementary Figs

S3 and S4), for the case of larger sample size 5000 (Supplementary

Figs S5 and S6) and for the case of smaller significance level 10�4

(Supplementary Fig. S7). The patterns of power comparisons under

these scenarios are similar to those of Figures 1 and 2.

From Figures 1 and 2 and Supplementary Figures S1–S7, we can

see that the power of CLC in model 2 is a lot better than that in

models 3 and 4 because in models 3 and 4, at least one factor shows

no clusters of effect sizes; we can also see that with increasing the

number of phenotypes K, the power of CLC (compared with the

powers of other methods) in models 2–4 increases because the num-

ber of factors is fixed, that is, the df of CLC does not change much

comparing to other methods. In summary, CLC is either the most

powerful test or has similar power to the most powerful test among

the seven or eight tests.

3.3 Application to the COPDGene
The COPDGene Study is a multi-center genetic and epidemiologic

investigation to study Chronic Obstructive Pulmonary Disease

(COPD) (Regan et al., 2010). This COPDGene dataset has been

described in our pervious paper (Liang et al., 2016). Same as Liang

et al. (2016), we select seven quantitative COPD-related phenotypes

(FEV1, Emphysema, Emphysema Distribution, Gas Trapping,

Airway Wall Area, Exacerbation frequency and Six-minute walk

distance) and four covariates (BMI, Age, Pack-Years and Sex). In

this analysis, a set of 5430 non-Hispanic Whites across 630 860

SNPs is used. The correlation structure of the seven COPD-related

phenotypes is given in Supplementary Figure S8. Before analyzing

this dataset, we perform the sign alignment of the seven phenotypes

(change the signs of six-minute walk distance and FEV1) such that

the correlations between the seven phenotypes are all positive.

MANOVA, MultiPhen, Tippet, MTMM, TATES and Omnibus are

not affected by the sign alignment in phenotypes. CLC is not

affected much by the sign alignment. However, O’Brien is affected

very much by the sign alignment because O’Brien’s test statistic is a

linear combination of the univariate test statistics.

We adopt the commonly used genome-wide significance level

5� 10�8 to identify SNPs significantly associated with the 7 COPD-

related phenotypes. There are total 14 SNPs identified by at least

one method (Table 3). All of the 14 SNPs had been reported to be

associated with COPD by previous studies (Brehm et al., 2011; Cho

et al., 2010; Cui et al., 2014; Du et al., 2016; Hancock et al., 2010;

Li et al., 2011; Lutz et al., 2015; Pillai et al., 2009; Wilk et al.,

2009, 2012; Young et al., 2010; Zhang et al., 2011; Zhu et al.,

2014). As shown in Table 3, MultiPhen identified 14 SNPs;

Omnibus test, MTMM, CLC and MANOVA identified 13 SNPs;

TATES and Tippett identified 9 SNPs; and O’Brien method identi-

fied 5 SNPs. We also investigated the 14 significant SNPs and the

corresponding adjusted P-values for testing each of the 7 phenotypes

individually (Supplementary Table S2). From Supplementary Table

S2, we can explain why Tippet and TATES cannot detect some sub-

sets of SNPs because Tippet and TATES mainly depend on the

smallest P-value of the seven univariate tests; we can also explain

why O’Brien only identified five SNPs because the seven phenotypes

have heterogeneous effects. In summary, the number of SNPs identi-

fied by CLC is comparable to the largest number of SNPs identified

by other tests, which is consistent with our simulation results.

Furthermore, since CLC only depends on summary statistics, it can

be used in meta-analysis. Among the five methods based on sum-

mary statistics (CLC, O’Brien, Omnibus, TATES and Tippett), CLC

identified the most gnome-wide significant SNPs.

4 Discussion

Based on hierarchical clustering method, we propose the CLC

method to test the association between multiple phenotypes and the

genetic variant of interest. Extensive simulation studies as well as

the real data application show that CLC has correct type I error

rates and is either the most powerful test or has similar power to the

most powerful test among the seven methods we considered under a

variety of simulation scenarios. Furthermore, the real data applica-

tion demonstrates that the proposed method has great potential in

multiple-phenotype GWASs such as COPDGene dataset. CLC has

several important advantages. First, it only depends on summary

statistics. Second, different types of phenotypes can be easily ana-

lyzed together. Third, CLC can test the association between multiple

phenotypes and multiple genetic variants as described below. For a

set of rare and common variants in a gene or a genomic region, we

can combine genotypes of rare and common variants by giving dif-

ferent weights using burden tests (Li and Leal, 2008; Madsen and

Browning, 2009; Morgenthaler and Thilly, 2007; Price et al., 2010).

Then, we can use CLC to test the association between the combined

genotypes and multiple phenotypes. One disadvantage of CLC is

that the minimum P-value of CLC with permutation D times is

1=ðDþ 1Þ, therefore, the permutation procedure of CLC could be a

potential issue for follow up of highly powered studies.

CLC can be applied to meta-analysis for multiple-phenotype

GWASs. Intuitively, it needs individual-level phenotype data or cor-

relation matrix of phenotypes to do clustering for CLC to be applied

to meta-analysis. In fact, the correlation matrix can be estimated

Fig. 2. Power comparisons of the seven tests. The powers of O’Brien,

Omnibus, CLC, TATES, MANOVA, MultiPhen and Tippet as a function of ef-

fect size b for 40 quantitative phenotypes. The sample size is 1000. The be-

tween-factor correlation is 0.15 and the within-factor correlation is 0.25
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from the values of summary statistics from independent SNPs in a

GWAS (Zhu et al., 2015b). We assume that there are M independent

studies and each study has K phenotypes. Denote T1m; . . . ;TKm as

the summary statistics of the mth study and assume that Tm ¼
ðT1m; . . . ;TKmÞT � Nð0;RmÞ under the null hypothesis, where Rm

can be estimated from summary statistics Tm from independent

SNPs in the mth GWAS study (Zhu et al., 2015a,b). We perform

hierarchical clustering method with dissimilarity matrix 1� Rm to

cluster T1m; . . . ;TKm. Then, we obtain T
ðmÞ
CLC as defined in equation

(3) for the mth study. We define the CLC test statistic for meta-

analysis as TMeta
CLC ¼ �2

PM
m¼1 log T

ðmÞ
CLC. CLC can also be applied to

phenotype-wide association studies (PheWAS). In PheWAS, the

number of phenotypes can be thousands and we can divide pheno-

types into many categories. We can apply CLC to each category and

combine these CLC statistics by using Fisher’s combination test

(Yang et al., 2016) or adaptive Fisher’s combination test (Liang

et al., 2016). However, the performance of using CLC to meta-

analysis for multiple-phenotype GWASs and PheWAS needs further

investigations.
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