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Abstract

Summary: The rapid advances of omics technologies have generated abundant genomic data in

public repositories and effective analytical approaches are critical to fully decipher biological know-

ledge inside these data. Meta-analysis combines multiple studies of a related hypothesis to im-

prove statistical power, accuracy and reproducibility beyond individual study analysis. To date,

many transcriptomic meta-analysis methods have been developed, yet few thoughtful guidelines

exist. Here, we introduce a comprehensive analytical pipeline and browser-based software suite,

called MetaOmics, to meta-analyze multiple transcriptomic studies for various biological purposes,

including quality control, differential expression analysis, pathway enrichment analysis, differential

co-expression network analysis, prediction, clustering and dimension reduction. The pipeline

includes many public as well as >10 in-house transcriptomic meta-analytic methods with data-

driven and biological-aim-driven strategies, hands-on protocols, an intuitive user interface and

step-by-step instructions.

Availability and implementation: MetaOmics is freely available at https://github.com/metaOmics/

metaOmics.

Contact: ctseng@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

With the rapid advances of high-throughput ‘-omics’ technologies in

the past decades, production of various kinds of omics data has be-

come affordable and prevalent. Large amounts of transcriptomic

data have been generated using microarray or RNA sequencing plat-

forms for different biological aims and have been stored in data

repositories such as GEO, ArrayExpress and SRA. However, indi-

vidual studies are often of small or moderate sample size, which

yield limited statistical power and low reproducibility. The combin-

ation of multiple transcriptomic studies of a related hypothesis using

meta-analysis has become an emerging and effective practice to im-

prove statistical power, accuracy and generalizability in biological

investigations. In existing transcriptomic meta-analysis publications,

the project rationale, objectives and data inclusion/exclusion criteria

are often vaguely reported, since the analyses are intended to be ex-

ploratory and assist further hypothesis generation. The data pre-

processing procedures, such as gene matching, gene filtering and

outlier detection/exclusion, are often ambiguous and ir-reproducible

as well. For further information, see Tseng et al. (2012) for a

detailed review. Supplementary Figure S1A shows the number of

publications in PubMed related to ‘transcriptomic meta-analysis’

each year, demonstrating its rapid development and wide applica-

tion. Despite this popularity, a thoughtful analysis pipeline with

step-by-step instructions and an intuitive interface for biologists to

conveniently conduct data-driven investigations is lacking. In add-

ition, existing omics meta-analyses often only focus on the detection

of differentially expressed (DE) genes, pathways and network ana-

lysis, leaving many powerful statistical learning tools unexplored.

For example, Integrative Array Analyzer (iArray) (Pan et al., 2006)

and NetworkAnalyst (Xia et al., 2015) provided tools for conven-

tional DE gene and pathway detection and network visualization. In

this paper, we introduce a comprehensive analytical pipeline and

browser-based software suite, called MetaOmics, to meta-analyze

multiple transcriptomic studies for various biological purposes,

including seven modules for quality control (MetaQC), differential

expression analysis (MetaDE), pathway enrichment analysis

(MetaPath), differential co-expression network analysis

(MetaNetwork), classification analysis (MetaPredict), clustering

analysis (MetaClust) and dimension reduction (MetaPCA;

Supplementary Fig. S1B and S1C). The pipeline includes a large

number of public and >10 in-house transcriptomic meta-analysis

methods with biology-driven strategies and hands-on protocols. The

modularized software structure of MetaOmics will allow for its fu-

ture extension as new methodologies become available.

2 Overview and workflow of MetaOmics

Figure 1 demonstrates a general workflow of implementing the eight

modules (shaded in grey) in MetaOmics. After data input, genes are

annotated, matched and properly filtered in the MetaPreprocess

module. Inclusion of poor quality studies in the meta-analyses can

weaken statistical power and distort the final conclusion. The next

module ‘MetaQC’ incorporates biological pathway databases and

gene co-expression information to provide objective and quantita-

tive measures for quality control (QC) and help determine inclusion/

exclusion of studies for meta-analysis. After QC, users can select

any of the six analytical modules depending on their desired bio-

logical exploration. For users not familiar with the different types of

omics data analyses, Supplementary Box S2 outlines the basics and

rationale of these statistical learning approaches. The most common

first choice is to identify DE candidate markers. The ‘MetaDE’

module allows the implementation of 12 meta-analysis methods.

The pipeline and defaults follow our previously published statistical

characterization and application guidelines to advise selection of the

method and related parameters. Beyond DE gene identification,

users may be interested in detecting differential expression profiles

at the pathway level or co-expression network level under a meta-

analytic framework. The ‘MetaPath’ module includes two advanced

tools, Meta-analysis for Pathway Enrichment (MAPE) and compara-

tive pathway integrator (CPI), for meta-analytic pathway analysis.

The ‘MetaNetwork’ module integrates multiple transcriptomic stud-

ies to detect differential co-expression networks and to infer regula-

tory changes under different disease conditions. MetaOmics also

contains three statistical learning tools that were developed in-house

for transcriptomic meta-analysis. Prediction analysis (a.k.a. classifi-

cation analysis or supervised machine learning) is a popular analysis

to translate omics findings into clinical decisions. The ‘MetaPredict’

module implements the MetaKTSP algorithm, which combines mul-

tiple transcriptomic studies using a non-parametric top scoring pair

approach for robust and accurate prediction across different experi-

mental platforms. When class labels of patients are unknown, clus-

ter analysis can identify novel disease subtypes, an important

component of personalized medicine. The ‘MetaClust’ module con-

tains an effective MetaSparseKmeans algorithm which performs

simultaneous sample clustering and common intrinsic gene selection

from multiple transcriptomic studies for this purpose. Finally, di-

mension reduction via methods such as principal component ana-

lysis (PCA) is a powerful exploratory tool to analyze high-

dimensional omics data. The ‘MetaPCA’ module implements a

meta-analytic approach of the PCA algorithm for simultaneous di-

mension reduction and feature selection in multiple transcriptomic

studies. Each of these in-house methodologies have been thoroughly

developed, rigorously evaluated in many applications and published

in high-profile journals. Supplementary Table S1 outlines the advan-

tages and additional features compared to existing tools.

Each of the seven analytical modules generates its own outputs,

such as DE gene lists, pathway annotation, classification model or

cluster assignment. MetaOmics also creates extensive visualization

and diagnostic plots to assist users with selecting tuning parameters

and/or interpreting the results. Post hoc analyses, such as external

validation and functional annotation, are also included in the

tool.The modules in MetaOmics can be creatively used in selected

Fig. 1. General workflow of data pre-processing and implementation of the

seven analytical modules in MetaOmics. All modules are shaded in grey
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order to evaluate and understand the biological findings and gener-

ate further hypothesis. For example, MetaClust can first be used to

cluster samples in multiple transcriptomic studies and identify dis-

ease subtypes. Based on the cluster assignment, disease subtypes of

interest can be selected and MetaDE, MetaPath and MetaNetwork

can then be used to investigate their DE genes, functional annota-

tions and differential co-expression networks.

3 Case study and demonstration

In Supplementary Material, we present comprehensive applications

of the seven modules to three real applications using breast cancer,

prostate cancer and leukemia datasets. Due to space limit, here we

only discuss three selected modules using the breast cancer example.

This case study contained four breast cancer datasets, including one

RNA-seq study from TCGA and three microarray studies from

GEO (GSE7390, GSE2034 and GSE4922), for comparing estrogen

receptor positive (ERþ) and negative patients. The four datasets

included 406 (319/87), 198 (134/64), 286 (209/77) and 245 (211/

34) ERþ/ER- samples and 10 330 genes.

MetaDE: The MetaDE module can conveniently integrate

count data from RNA-seq and continuous measurements from

microarray studies. We used ‘LIMMA’ for microarray and ‘edgeR’

for RNA-seq count data for individual study analysis, and chose

the ‘AW-Fisher’ method to perform meta-analysis. Supplementary

Figure S2A shows a heatmap of 731 significant DE genes at an

FDR cutoff of 10�15 with samples ordered in columns by study

and ER groups and genes displayed in rows by adaptive weight

groups. The results showed that the majority of DE genes were com-

mon up-regulated or down-regulated genes (weight¼1, 1, 1, 1), indi-

cating a generally homogeneous signal across the four studies. A

follow-up pathway analysis in the module showed the most top

enriched pathways to be cancer related, such as cell cycle and DNA

replication.

MetaClust: For implementing MetaClust module, we ignored the

ER status label and jointly clustered the samples of all four studies.

Supplementary Figure S2B shows heatmaps corresponding to clus-

tering of the four studies. In the gene list output, we found a large

overlap with PAM50 gene list, a set of 50 intrinsic genes widely used

for classifying breast cancer subtypes.

MetaNetwork: Supplementary Figure S2C shows one selected

basic module with differentially co-expression network (DCN) that

was highly connected in ‘ERþ’ but lost connections in ‘ER-’ (left) as

well as an example of reverse pattern (right). Enriched pathways of

the top detected DCNs include smooth muscle contraction and

extracellular matrix activity.

Detailed results of the three (leukemia, breast and prostate can-

cers) applications can be found in Supplementary Material.
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