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Abstract

Motivation: Decreasing costs are making it feasible to perform time series proteomics and genom-

ics experiments with more replicates and higher resolution than ever before. With more replicates

and time points, proteome and genome-wide patterns of expression are more readily discernible.

These larger experiments require more batches exacerbating batch effects and increasing the num-

ber of bias trends. In the case of proteomics, where methods frequently result in missing data this

increasing scale is also decreasing the number of peptides observed in all samples. The sources of

batch effects and missing data are incompletely understood necessitating novel techniques.

Results: Here we show that by exploiting the structure of time series experiments, it is possible to

accurately and reproducibly model and remove batch effects. We implement Learning and

Imputation for Mass-spec Bias Reduction (LIMBR) software, which builds on previous block-based

models of batch effects and includes features specific to time series and circadian studies. To aid in

the analysis of time series proteomics experiments, which are often plagued with missing data

points, we also integrate an imputation system. By building LIMBR for imputation and time series

tailored bias modeling into one straightforward software package, we expect that the quality and

ease of large-scale proteomics and genomics time series experiments will be significantly

increased.

Availability and implementation: Python code and documentation is available for download at

https://github.com/aleccrowell/LIMBR and LIMBR can be downloaded and installed with dependen-

cies using ‘pip install limbr’.

Contact: alexander.m.crowell@gmail.com or jay.c.dunlap@dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the scope of whole proteome mass spectrometry

(MS) experiments has expanded drastically (Chick et al., 2016;

Weekes et al., 2014). In principle, increased sample size can make

the expression patterns identified by these experiments more robust.

However, increasing sample sizes exacerbate many of the technical

limitations of MS. The issues of missing data and batch effects that

are common to this experimental platform hamper analyses of doz-

ens of samples (Karpievitch et al., 2012), and this can be particularly

problematic when sequential datasets are collected with the goal of

discerning trends, for instance in the field of circadian rhythms.

The first challenge presented by larger scale experiments is the

failure to observe peptides in all samples. The abundance of a pep-

tide can go unmeasured in a sample because of low abundance,
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random sampling or as a function of its sequence (Mallick et al.,

2007; Tabb et al., 2003). Many circadian analysis methods, includ-

ing the best Jonckheere–Terpstra–Kendall based methods, do not

support missing data, forcing researchers to remove peptides with

any unobserved values or use inferior tests of rhythmicity (Hughes

et al., 2010; Hutchison et al., 2015; Mauvoisin et al., 2014; Robles

et al., 2014, 2017; Wang et al., 2017a). Because the missingness of

peptides can depend on factors other than abundance and random

sampling (e.g. sub-cellular localization or degree of structure), the

analysis may in addition be biased. Missingness as a function of

abundance can also bias analyses because only the most abundant

and least dynamically expressed peptides will be present in a

complete-case analysis (Gelman and Hill, 2007). If we imagine a dy-

namically expressed peptide with a modest average expression level,

such a peptide will have lower lows of expression than either a

higher expressing dynamic peptide or a constitutively expressed pep-

tide with the same mean expression. Such peptides are more likely

to be dropped from analyses. The prevalence of missing data also

leads to the counterintuitive situation that as the number of repli-

cates increases, fewer and fewer peptides are measured in all samples

and available for analysis with best-in-class methods. It is therefore

critical to recover at least those peptides missing in only a small frac-

tion of observations before analysis.

Batch effects are the second challenge that larger scale experi-

ments exacerbate. A systematic study of variance in iTRAQ experi-

ments showed that measurements of abundance in most proteins

can be expected to exhibit 10–20% relative errors, going as high as

40% for low weight proteins with few detected peptides (Hultin-

Rosenberg et al., 2013). Most modern experimental designs include

pooled control samples; however, such pooled controls account only

for variability introduced by MS runs and not for bias introduced by

sample handling, which has been shown to contribute similar

amounts of variability (Piehowski et al., 2013). Even for the best

Jonckheere–Terpstra–Kendall based methods, the addition of 10–

20% error meaningfully diminishes the ability to classify circadian

expression patterns (Hutchison et al., 2015). Batch effects are a

greater problem as the number of samples increases, first because

the number of batches must increase accordingly making relative

comparisons in the expression of a given peptide more challenging,

and second, because more peptides will be influenced by at least one

batch effect. It is therefore critical to be able to model and remove

bias trends when analyzing large-scale proteomics data.

Here we provide a toolset developed in response to these issues,

Learning and Imputation for Mass-spec Bias Reduction (LIMBR).

LIMBR employs a K nearest neighbors (KNN) based imputation

strategy that is both non-parametric and has been shown to be high-

ly effective in the context of proteomics data (Wang et al., 2017b).

LIMBR’s bias trend modeling procedure is based on surrogate vari-

able analysis (SVA), a proven bias modeling algorithm initially

devised for micro-array data (Leek, 2007; Leek et al., 2012; Leek

and Storey, 2007) that has been used extensively and successfully in

many systems (Benjamin et al., 2017; Lopez et al., 2014; Parsana

et al., 2017; Tsang et al., 2014; Wang et al., 2016) and has also

spawned many adaptations (Chakraborty et al., 2013; Karpievitch

et al., 2009; Parker et al., 2014). LIMBR improves SVA with optimi-

zations specific to large-scale MS experimental designs, particularly

in its handling of general and circadian time courses. We report ex-

tensive tests on both simulated and experimental data, documenting

that LIMBR accurately removes bias trends without requiring infor-

mation about sample preparation and handling. LIMBR requires

that sample pre-processing and MS run batches be randomized, so

that bias trends are separable from biological signal.

2 Approach

The need for LIMBR software arose out of technical challenges pre-

sented by a very large circadian proteomics time course conducted

in Neurospora crassa. In brief, cultures of the fungus were synchron-

ized to the same circadian time and released into a circadian free-

run; samples were then collected at regular intervals and iTRAQ

based MS was performed. This dataset has measurements for 48h

with a 2h resolution. Two genotypes are measured and all assays are

performed with three replicates for a total of 144 experimental sam-

ples. With pooled controls, 192 total MS samples were assayed.

Because of the number of replicates and total conditions, only

24% of the total assayed peptides were detected in all samples.

Approximately one-third of peptides were missing in almost all sam-

ples, one-third were present in the majority of samples, and the re-

mainder were roughly uniformly distributed across intermediate

levels of missingness (Fig. 1a). For downstream analysis methods

that perform complete-case analysis, 76% of detected peptides

would have been discarded. An illustration of the decrease in the

number of peptides considered in a complete-case analysis as the

size of the experiment is increased is shown in Figure 1b.

Bias trends that correspond to batch effects were also evident in

this large experiment. We sorted samples by time point (Fig. 1c) and

did not observe evident patterns associated with time, which we

would have expected because of the nature of circadian regulation

in which expression exhibits gradual cyclical changes. For a dataset

without batch effects, we would observe strong agreement between

replicates and a larger checkerboard pattern, as day-phase protein

expression should have been similar and generally opposed to night-

phase expression. Instead, arranging samples by preparation set,

which indicated the batches to which samples were randomized for

purification, digestion and other processing prior to the M/S run,

revealed pronounced patterns (Fig. 1d). In a dataset without batch

effects we would expect to see no discernible structure in this plot.

LIMBR was developed to model and remove bias trends in this

type of data (Fig. 2). After missing data were imputed, batch effects

were modeled using an SVA-based method. By modeling replicate

and time series correlations, we produced a matrix of residuals con-

taining the unknown batch effects. We modeled these batch effects

with singular value decomposition (SVD) to produce linearly inde-

pendent bias trend. By permuting the residual matrix, we estimated

the significance for each bias trends and removed those passing a

user-specified significance threshold. The LIMBR software imple-

ments these methods alongside imputation methods to provide a

toolkit for the analysis of large proteomic experiments.

3 Materials and methods

3.1 Imputation of missing values
In the proof-of-concept dataset only 32 561 peptides were measured

in all samples; however, 137 340 peptides were measured in at least

one sample. We sought to increase the coverage of samples to avoid

the situation where increased numbers of replicates led to fewer ana-

lyzable peptides. For this, we implemented KNN imputation, which

has been found to be fast and reliable at the imputation levels and

dataset sizes relevant to such proteomics experiments (Batista and

Monard, 2001; Mandel et al., 2015; Troyanskaya et al., 2001;

Wasito and Mirkin, 2005). The KNN algorithm imputes missing

data by finding the K nearest data points with complete data for a

given data point and imputes the missing value as the average of the

nearby points’ values. Where n is the number of observed peptides,

m is the number of MS experiments, Dn�m is our dataset and d is a
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datum (all observations on a peptide), for d 2 D we found the KNN

of d by Euclidean distance. We then constructed the matrix N K�m

with rows being nearest neighbors of d. Finally we imputed the miss-

ing values in d as the mean of the corresponding columns of N (se-

cond panel Fig. 2). We report results using 10 nearest neighbors,

which have been shown to be appropriate for datasets of roughly

this size (Wang et al., 2017b). In light of the triplicate experimental

design employed for this data and the fact that KNN has been

shown to function effectively on biological datasets without repli-

cates up to 35% missingness, we imputed peptides missing in fewer

than 30% of samples (Mandel et al., 2015). Both parameters may be

set at runtime in LIMBR by the user. An exploration of the impact

of parameter selection on the analysis of simulated data is provided

in Supplementary Figure S1. Values for k in the range of 5–15, along

with missingness thresholds in the 30–40% range are recommended.

Even with this conservative imputation threshold, applying

KNN increased the size of the proof-of-concept dataset by �70%

(32 561–56 353 peptides), substantially improving both the number

of proteins detected and eliminating the decrease in analyzable pep-

tides with increasing numbers of replicates.

Fig. 1. Illustration of dataset issues addressed by LIMBR. (a) Distribution of missing data is shown in blue with the number of missing values on the x axis and the

kernel density estimate of peptides with that number of missing values on the left axis. The number of peptides observed with fewer than the given number of

missing values on the x axis is shown in red with corresponding values on the right axis. (b) Number of peptides with no missing values (complete cases) as the

number of MS runs is increased. For a complete-case analysis, the number of peptides considered decreases exponentially as the size of the experiment is

increased (exponential fit shown in red). (c) Correlation matrix of WT experimental data. The matrix is sorted by the time the sample was taken and the triplicate

structure is indicated by the 3�3 black boxes. Numbers indicate the circadian time of the observation. Minimal correlation is observed between replicates and

between samples with matched circadian times. (d) The same correlation data as in (c) is here shown sorted by the sample preparation set. Strong correlations

are seen within sets, indicating that sample preparation was a major contributor to the observed signal

Algorithm 1 KNN Imputation

procedure KNN(D, K)

Dn�m  Our dataset

n number of observed peptides

m number of MS experiments ðtimepoints� replicates)

d a datum ðall observations on a peptideÞ
for d 2 D

find KNN of d by Euclidean distance

construct the matrix N K�m
with rows being nearest

neighbors of d

impute missing values in d as mean of corresponding

columns of N

end

return complete D

end procedure
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3.2 Modeling of bias trends
MS experiments are subject to complex batch effects which can con-

tribute a sizeable fraction of the total variability recorded in an experi-

ment. Because circadian time courses require many time points and

replicates and the biological trends are relatively subtle, these bias

trends are often stronger than the biological signal in such datasets.

We first recognize that some peptides will be more closely corre-

lated with the process of interest to investigators and that our mod-

eling of bias trends can be improved by excluding such peptides

(Leek, 2007). In the case of circadian experiments we use the ratio

of autocorrelations at 12 and 24 h as a measure of correlation (c) to

our variable of interest (circadian expression). The correlation

threshold at which peptides are not analyzed for batch effects (ct),

can be specified by the user and should be set relatively low (we use

25%) to screen out only those peptides where the signal of interest

greatly outweighs any batch effects. In this way, we formed the

reduced data matrix, Dr of peptides for which c < ct.

Next, we proceeded to separating batch effects from our dataset.

For a time series experiment, we expect some simple correlations to

describe the data. Namely, we expect that replicates will agree with

one another and that adjacent timepoints will be more similar than

distant ones. Given a series of timepoints for each observation S, this

structure is captured mathematically by a LOWESS model which we

fitted to our data:

Dr ¼ b̂ST þ Ê

We then analyzed the residuals, Ê from this model calculated as:

Ê ¼ Dr � b̂ST

These residuals represent variability in the dataset which did not

agree with the experimental design and should therefore contain any

batch effects. Since completely eliminating all of the model residuals

would have drastically underestimated our uncertainty, we chose to

model batch effects within the residual matrix (Jaffe et al., 2015;

Leek, 2007). We did this by breaking the residual matrix Ê, down

into a set of linearly independent bias trends with SVD Ê ¼ UDVT .

SVD has been used to model bias trends in micro-array, RNAseq

and M/S data (Karpievitch et al., 2009; Parsana et al., 2017; Tsang

et al., 2014). Once we had broken down the residual matrix into

bias trends, we needed to determine which were likely to have been

contributed by batch effects and should therefore be removed from

the dataset. We did this by estimating which of these trends contrib-

utes more variability than we would expect at random. By repeated-

ly permuting the residual matrix and performing SVD, we estimated

the null distribution of variance explained by each singular vector

and thereby assessed the ’significance’ of individual bias trends,

removing only those which explain more variance than we would

expect by chance at a user-specified threshold P. We designated bias

trends with P<0.05 as significant. With dl as the lth singular value,

for right singular value k¼1, . . ., n we calculated the observed test

statistic Tk as:

Tk ¼
d2

k

Pn

l¼1

d2
l

:

We then permuted each row of the matrix Ê independently to

form a matrix Ê
�
. We calculated the singular values and the null

statistic T0
k in similar fashion (Ê

� ¼ U0D0VT
0 and T0

k ¼
d2

0kPn

l¼1
d2

0l

).

These calculations were repeated B times and the P-value for right

singular vector k was calculated as:

pk ¼
#fT0b

k > Tk; b ¼ 1; . . . ;Bg
B

Having calculated the significance of each bias trend, we could

have simply removed those passing a given threshold. Instead we

chose to further remove our modeling choices from the bias trends

Algorithm 2 SVD Bias Modeling

procedure SVD_BIAS(D; a)

Dn�m  Our dataset

n number of observed peptides

m number of MS experiments ðtimepoints�replicates)

a bias trend significance threshold

S Sample timepoints

ct  correlation threshold

calculate the correlation to the primary variable of

interest for each peptide c

form a reduced data matrix Dr of peptides for which c < ct

fit the Lowess model Dr ¼ bST þ E

Calculate the residual matrix as Ê ¼ Dr � bST

Calculate the SVD of the residual matrix Ê ¼ UDVT

With dl as the lth singular value, for right singular value

k ¼ 1, . . ., n calculate the observed test statistic as:

Tk ¼
d2

kPn

l¼1

d2
l

Permute each row of the matrix Ê independently to form a

matrix Ê
�

Calculate the SVD of the matrix Ê
� ¼ U0D0VT

0

For right singular value k calculate the null statistic:

T0
k ¼

d2
0kPn

l¼1

d2
0l

Repeat calculation of the null statistic B times

Calculate the P-value for right singular vector k as:

pk ¼
#fT0b

k
>Tk ;b¼1;...;Bg

B

Estimate number of significant trends sb as:

sb ¼
Pn

k¼1

Iðpk � aÞ While pk � a

For each significant trend vk, regress vk on each row

of Dr calculating a P-value for their association

Estimate the number of truly associated features as

m̂1 ¼ ½ð1� p̂0Þ �m� and form a subset of features with

the m̂1 smallest P-values

Calculate the right singular vectors of the reduced

subsetted matrix as vr
j for j ¼ 1; . . . ; n

Estimate the surrogate variable j� as the eigengene

of the reduced subset matrix most correlated with the

corresponding residual eigengene

j� ¼ argmax1< j<ncorðvk; v
r
j Þ

Set Ĝk ¼ vr
j�

Find least squares solution for M where D ¼M� Ĝ

return D�M� Ĝ

end procedure
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we calculated (Leek, 2007). We did this by moving through the

trends in order adding one for each trend where pk < a and stop-

ping when this condition is no longer met, thereby estimating the

number of significant trends sb as:

sb ¼
Xn

k¼1

Iðpk � aÞWhile pk � a

We then regressed each significant trend vk against the rows of Dr

calculating a P-value for their association. Given an estimate of the

background uniform distribution of P-values p̂0, the number of truly

associated peptides for each trend, m̂1, was estimated as:

m̂1 ¼ ½ð1� p̂0Þ �m�

A subset of the peptides with the m̂1 smallest P-values for that

trend was then formed. The batch effect j� was then modeled as the

right singular vector of the reduced subset matrix most correlated

with the bias trend being modeled:

j� ¼ argmax1< j<ncorðvk; v
r
j Þ

where the right singular vectors of the reduced subsetted matrix are:

vr
j j ¼ 1; for . . . ;n

The matrix of batch effects Ĝk was then taken to be Ĝk ¼ vr
j� and

these batch effects were removed by returning D�M� Ĝ where M

is found by a least squares solution of D ¼M� Ĝ. By first reducing

the data considered to only those peptides not correlated with our

variable of interest, we avoid learning circadian expression patterns

as a bias trend. We then quantify the variability contributed by the

linearly independent bias trends produced by SVD of the residual

matrix. By repeatedly randomizing the residual matrix and re-

performing those calculations we estimate the likelihood of each

bias trend contributing the variability observed by chance and can

label some bias trends as significant based on this estimate. We then

reduced the impact of the already limited modeling assumptions we

had employed by regressing the significant trends against the origin-

al data and calculating our bias trends from a subset of that data

most correlated with the original trends. In this way, we were able

to infer and remove batch effects without knowledge of the sample

handling steps that produced them.

3.3 Simulation studies
To verify the effectiveness of the batch effect modeling and removal

procedure, we conducted simulation studies. First, we generated

synthetic data with 50% circadian peptides taken from sine waves

equally distributed between opposite phases and added Gaussian

random noise. The other 50% of peptides were non-circadian and

generated solely from Gaussian random noise. We added randomly

generated batch effects to these data and processed the resulting

datasets with LIMBR. We analyzed the datasets before noise

(Fig. 3a panel 1), after the addition of noise (Fig. 3a panel 2) and

after processing with LIMBR (Fig. 3a panel 3) with eJTK-cycle. We

compared the resulting circadian classification accuracies using

ROC curves.

In order to provide a more stringent evaluation, we conducted

an additional set of simulations in which three randomly generated

batch effects were applied to the simulated data. Since the batch

effects were applied at random, this resulted in many fewer unaffect-

ed peptides (�12:5% versus �50%) and many more combinations

of bias trends (7 versus 1) making this data much more challenging

to analyze. Both the single batch effect and triple batch effect simu-

lations were repeated a total of 20 times and the results for the more

challenging simulations are visualized in Figure 3b and c. As an add-

itional point of comparison, we processed the triple batch effect sim-

ulations with eigenMS the current state of the art SVA-based

software for removing batch effects in MS data (Karpievitch et al.,

2009). The addition of three bias trends completely obliterated cir-

cadian classification accuracy. Processing with eigenMS, which

Fig. 2. Algorithm outline. The outline of processes performed by the LIMBR algorithm is diagrammed, beginning with raw data heavily influenced by bias trends,

proceeding to imputation of missing data, modeling of bias trends and the final removal of those bias trends producing a denoized dataset
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cannot exploit the time series structure of the dataset was largely in-

effective. Processing with LIMBR; however, almost completely

recovered classification accuracy. These simulations indicated that

LIMBR was modeling and removing unknown bias trends accurate-

ly and reproducibly.

3.4 Application to biological data
Since the two genotypes were randomized and run on the M/S to-

gether, the batch effects observed in each dataset should be the

same. Additionally, while we do expect some differences in expres-

sion between the two, globally expression should be similar. When

analyzing the data however, we applied LIMBR to the time courses

from each of the two genotypes independently. Since information

was not shared with the algorithm between these runs, comparing

the results of these analyses allows us to examine the reproducibility

of our techniques.

First, we compared the bias trends identified by LIMBR with the

sample handling steps performed prior to M/S. We found that for

both genotype time courses, the bias trends correlated well with

sample preparation steps (Fig. 4a and b). The primary sources of

bias in sample preparation were strongly correlated with sample

preparation and Tandem Mass Tag (TMT) sets indicating that these

steps made major contributions to the observed bias. This fits well

with previous reports that peptide digestion and charge state are

major sources of bias in M/S quantification (Piehowski et al., 2013;

Rudnick et al., 2014). We then compared the bias trends found in

each genotype, finding that LIMBR had independently reproduced

analogous bias trends for each dataset (Fig. 4c).

After these final evaluations of the software, we analyzed the

results of circadian classification for our LIMBR processed data and

found 324 circadian proteins out of 4754 analyzed proteins (7%)

with a predominantly bimodal distribution of phases (Fig. 5a).

Analysis of the sample correlation matrix for the wild type (WT)

dataset revealed a much stronger agreement between replicates

along with the diurnal checkerboard pattern (Fig. 5b). When we

focused the analysis on only circadian proteins, these patterns were

even more pronounced (Fig. 5c).

We compared the predicted phases of proteins identified as circa-

dian in both genotypes and found a tight correspondence between

the two (Fig. 5d). A detailed discussion of the biological implications

of these analyses is underway (Hurley et al., in preparation).

4 Discussion

The combination of KNN based imputation and SVD based error

modeling improve the results of time-course proteomics analysis

markedly. These techniques, which we implement into the LIMBR

software package, allow for the recovery of circadian signals in

Fig. 3. Simulation results. (a) Example results showing initial circadian signal, data with the addition of three random bias trends and data after the application of

LIMBR. (b) Representative sensitivity and specificity data showing the effectiveness of circadian classification for 20 rounds of simulation using a P<0.05 thresh-

old in eJTK for each of the three stages of data processing shown in (a) with the alternative eigenMS method shown for comparison. (c) Area under the receiver

operating characteristic curves for the same 20 simulations shown in (b)
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simulated and biological datasets for which no such signal is initially

observable.

Simulation studies reveal that LIMBR has high sensitivity and

specificity along with effective recovery of phase. LIMBR also pro-

duces superior results to other SVA-based methods for the removal

of batch effects when applied to time series data. This increase in

performance can be attributed to the reduction and subsetting steps,

but especially to the LOWESS based calculation of residuals. The re-

duction step serves to prevent learning signal of interest as a batch

effect, while the subsetting step helps to draw batch effects more dir-

ectly from the data with less influence from our modeling decisions.

The LOWESS-based calculation of residuals allows for an improved

estimate of batch effects by incorporating experimental structure

which is lost when processing with eigenMS. While the performance

improvements of LIMBR over eigenMS for the simulated data in

this study are drastic, this difference can be attributed to the much

greater amount of information LIMBR has access to for time series

data. LIMBR should therefore be expected to offer larger improve-

ments over other methods for time series data than for block experi-

mental designs where LIMBR’s improvements in residual

calculations do not come into play. Even in the case of a smaller

block design experiment with relatively fewer and smaller batch

effects however, LIMBR still offers the added benefit of integrated

imputation of missing values.

In the case of biological data, we also show that LIMBR produ-

ces effective and consistent results. When comparing between pro-

teomics datasets for two genotypes, we see that the inferred batch

effects match well with experimental parameters. This indicates that

the batch effects being removed are well grounded in reality.

Additionally, batch effects inferred from independent processing of

the two genotypes match well with one another, indicating the con-

sistency of LIMBR. Finally, the phases of circadian proteins found

in these independently processed datasets closely agree. The consist-

ency of batch effects with experimental parameters and between

LIMBR runs along with the agreement of phases of circadian genes

between LIMBR runs indicates the consistency of our methods,

while the recovery of circadian signal from a dataset otherwise

dominated by batch effects speaks to the efficacy of these

techniques.

While it is possible for the removal of bias trends such as batch

effects to inflate false positive rates in studies of differential expres-

sion, these effects should only be a concern when there is a highly

uneven distribution of samples to batches (Nygaard et al., 2016).

Additionally, the application of bias modeling techniques has been

Fig. 4. Analysis of batch effects identified in biological data. Interclass correlation coefficients between batch effects identified as significant and the prep set and

TMT set of each sample in WT (a) and Dcsp-1 (b) are shown with * indicating significance at the P<0.001 level for a one way F-test. Almost all bias trends are sig-

nificantly associated with sample preparation or TMT labeling sets. In some cases, due to incomplete randomization, bias trends are associated with both. (c)

Correlation matrix of the top 5 bias trends as measured by explained variance in the WT and delta csp-1 experiments. The top 3 bias trends independently identi-

fied in each experiment are quite similar, and trends 4 and 5 seem to be flipped in their rankings but still correspond closely
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shown to increase the sensitivity and specificity of differential ex-

pression studies by removing bias trends and to be a net positive

when applied to RNAseq data (Li et al., 2014). One limitation of

any strategy for imputation of MS data is the generation of novel

batch effects. It is possible for batch effects to bleed through from

peptides with complete observations to imputed peptides. Because

only a subset of sample abundances will be imputed for these pepti-

des, it is possible for only a subset of the original batch effect to be

transferred, thereby generating a novel batch effect. While this is an

unavoidable limitation of imputation of MS data, any batch effects

generated in this manner would be removed by LIMBR with the

same efficiency as endogenous batch effects. The algorithm

employed here is based on earlier work but is notable both for being

a modern implementation in python and for implementing a more

advanced reduced subset method originally proposed by Leek in

tandem with LOWESS-based calculation of residuals (Leek et al.,

2012; Leek and Storey, 2007b).

5 Conclusion

The application of LIMBR to this dataset demonstrates the potential

these techniques hold for the analysis of large-scale circadian proteo-

mics time courses. In three separate prior studies of circadian

proteomics (Mauvoisin et al., 2014; Robles et al., 2014, 2017), the

issues of lost data resulted in circadian data for <200 proteins, even

after accepting time courses in which many observations were miss-

ing and where rhythmicity was called with an FDR of 0.25–0.3.

With LIMBR, we can apply a much lower FDR of 0.05, reject data-

sets in which more than 30% of the points are missing, and still

Fig. 5. Results of application of LIMBR to biological data. (a) Expression profiles of genes identified as circadian in the WT dataset after processing. (b) Correlation

matrix of WT dataset after processing, showing increased similarity between replicates and checker boarding pattern of similarity between repeated circadian

times (compare to Fig. 1b). (c) Correlation matrix of WT dataset generated only from proteins identified as circadian showing pronounced checker boarding simi-

larity between repeated circadian times. (d) For proteins identified as circadian in both genotypes the distribution of differences in predicted phases between the

genotypes is shown. A strong peak at 0 indicates that the predicted phases of these genes match well between the independent processing runs
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identify many more circadianly regulated proteins. While this high-

lights the strengths of the technique, it is also worth noting the limi-

tations, specifically that a high number of time points and replicates

are critical to effectively model batch effects. Additionally, random-

ization of samples to MS runs and processing steps must be per-

formed independently to ensure the separability of biological signal

and batch effects. Finally, we recommend that normalization with

pooled controls, which is optionally incorporated into the LIMBR

pipeline, be used for the MS runs where possible. While such large

experiments require the investment of additional resources, their im-

portance to this type of study cannot be overemphasized. Although

there is still room for improvement in the design of circadian proteo-

mics experiments both in vitro and in silico, this work makes clear

the need for analysis techniques and software for such datasets.
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