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Abstract 
Accurate prediction of protein stability changes upon single-site variations (G) is important for protein design, as well as 

our understanding of the mechanism of genetic diseases. The performance of high-throughput computational methods to this 

end is evaluated mostly based on the Pearson correlation coefficient between predicted and observed data, assuming that the 

upper bound would be 1 (perfect correlation). However, the performance of these predictors can be limited by the distribution 

and noise of the experimental data. Here we estimate, for the first time, a theoretical upper-bound to the G prediction 

performances imposed by the intrinsic structure of currently available G data. 

Given a set of measured G protein variations, the theoretically “best predictor” is estimated based on its similarity to 

another set of experimentally determined G values. We investigate the correlation between pairs of measured G 

variations, where one is used as a predictor for the other. We analytically derive an upper bound to the Pearson correlation as 

a function of the noise and distribution of the G data. We also evaluate the available datasets to highlight the effect of the 

noise in conjunction with G distribution. We conclude that the upper bound is a function of both uncertainty and spread of 

the G values, and that with current data the best performance should be between 0.7–0.8, depending on the dataset used; 

higher Pearson correlations might be indicative of overtraining. It also follows that comparisons of predictors using different 

datasets are inherently misleading. 
 

 

1 Introduction  
 

Prediction of protein stability changes upon mutation is a crucial step in the understanding of protein function in health and 

disease, and may facilitate protein design. Several computational methods have been developed to predict the direction 

(stabilizing vs. destabilizing), and the magnitude of the perturbation of the stability of a protein introduced by a single-point 

mutation in its sequence (Topham et al., 1997; Zhou and Zhou 2002; Capriotti  et al., 2005; Cheng et al., 2006; Capriotti  et 

al., 2008; Parthiban et al., 2006; Yin et al., 2007; Huang et al., 2007; Masso et al., 2008; Teng et al., 2010; Worth et al., 2011; 

Wainreb et al., 2011; Chen et al., 2013; Giollo et al., 2014; Pires et al., 2014a; Pires et al., 2014b; Fariselli et al., 2015; Laimer 

et al., 2016; Folkman et al., 2016; Savojardo et al., 2016: Pucci et al., 2017). Most of these methods are based on machine 

learning, and, at state of the art, their Pearson correlation performances range from 0.5 to 0.8.  

The development of prediction methods has been made possible by compilations of datasets of experimentally measured 

changes in protein stability upon single-point variations (G = G_wildtype - G_mutant, the folding free energy difference 

between the wildtype and mutant protein; Guerois et al., 2002; Kumar et al., 2006; Dehouck et al., 2011; Pires et al., 2014; 

Broom et al., 2017). Among these, ProTherm (Kumar et al., 2006) is the most comprehensive dataset, aiming at collecting 

from primary literature all the experimentally determined thermodynamic values for calorimetry experiments in protein and 

protein mutants and making them available in a unified format. Therefore, data collected in ProTherm come from experiments 

performed with different techniques and in different environmental conditions. Each experimental condition is defined by 

several characteristics, such as pH, temperature, additives in the solution, salt concentration, ion concentration, protein 

concentration, the concentration of the denaturant, addition of peptides to the protein sequence, etc.  



Different environmental conditions, such as pH and temperature, yield different G values. In Keeler et al., 2009, the 

stability change of variation H180A in the human prolactin (2Q98) was measured at the same temperature (25°C) but in two 

different pH conditions: pH=5.8 and pH=7.8. The corresponding G values are 1.39 kcal/mol and -0.04 kcal/mol, 

respectively. Even when the temperature and pH are the same, two measures of G can differ, due to other experimental 

conditions or different techniques. This is the case for the E3R variation in protein 1CSP, for which 6 different G values 

ranging from 1.4 kcal/mol to 2.4 kcal/mol were measured (Gribenko and Makhatadze 2007) at the same temperature (55°C) 

and pH (7.5) but at 6 different salt concentrations ranging from 0 - 1.0M NaCl. In Ferguson and Shaw (2002) the variant L3S 

of the calcium-binding protein S100B (1UWO) measured in two different conditions but at the same temperature (25°C) and 

pH (7.2) yielded two G values of 1.91 kcal/mol and -2.77 kcal/mol. Here not only the value of the G changes, but also 

the sign, i.e., whether the mutation is stabilizing or destabilizing.  

The broad range of experimental conditions in which G are measured increase the actual uncertainty associated with 

them in the databases. In other words, the error of a wet-lab experimental determination of a G in a single experiment can 

be quite small, roughly ranging from 0.1 to 0.5 kcal/mol (as an example it is 0.14 kcal/mol for thermal unfolding in Perl and 

Schmid, 2001 and as small as 0.06 and 0.09 kcal/mol in De Prat Gay et al., 1994). Nonetheless, the experimental conditions 

in which the G measures are carried out can vary substantially, introducing other sources of uncertainty associated with 

the measurements. 

Given that all prediction methods exploit these data, an estimate of the theoretical upper bound for the prediction is crucial 

for the understanding and interpretation of the results. Here we approximate this upper bound by deriving an analytical 

expression, and by analyzing the experimental data. We show that the best performance depends on the dataset used, and 

would typically be significantly lower than expected. 

 

 

2 Theoretical estimation 

2.1 Data uncertainty and representation of the data with a probabilistic model 

Given the broad range of values that the parameters of the experimental conditions can assume, the uncertainty associated 

with each G measurement for a set of single-point variations is greater than the actual experimental error of 0.1-0.5 kcal/mol 

(because it includes effects due to changes in experimental conditions). This uncertainty, indicated here as 𝜎, can differ from 

one case to another. 

A set of experiments performed on N different protein variations produce N observed G values indicated here as {𝑥𝑖}. 

In the limit of the uncertainty 𝜎 approaching 0, the value of 𝑥𝑖 tends to the “real” G value for each variation. Our hypothesis 

here is that repeated observations 𝑥𝑖 for the same variation i are distributed around the real i-th G value and has a standard 

deviation equal to the (unknown) uncertainty 𝜎𝑖. We do not pose restrictions on the nature of the data distribution. We indicate 

with 𝜇𝑖 the real G value of a variation, determined in the wet-lab at arbitrary precision (for which all the conditions are 

enumerated and measured).  

A set of N experimentally observed G values {𝑥𝑖} can be generated by choosing each 𝑥𝑖 with probability given by its 

specific distribution 𝑃𝑖(𝑥𝑖) = 𝑃𝑖(𝑥𝑖|𝜇𝑖, 𝜎𝑖) with mean given by the i-th real G value 𝜇𝑖 and with standard deviation given 

by the unknown uncertainty 𝜎𝑖.  

 

2.2 Theoretical correlation between two observed distributions as a function of the variances 

 

We consider a sufficiently large number of samples to estimate the correlation between two sets of observations and hence 

establish a general analytical expression for the correlation between them. This is particularly useful if we want to use a set 

of observed G values {𝑥𝑖} as predictors for another set of observed G values {𝑦𝑖}. Because we assume that no 

computational method can predict better than another set of experiments conducted in similar conditions, this correlation 

represents an upper bound for the correlation that any predictor that uses {𝑥𝑖} as a training set can achieve. Our goal is to 

estimate the correlation between a pair of sets of experimental observations, {𝑥𝑖}  and {𝑦𝑖}, of the same set of variations with 

real G values equal to {𝜇𝑖}. We assume that both {𝑥𝑖} and {𝑦𝑖} are derived from the same set of distributions (𝑃𝑖(𝑥𝑖) =
𝑃𝑖(𝑥𝑖|𝜇𝑖 , 𝜎𝑖)= 𝑃𝑖(𝑦𝑖) = 𝑃𝑖(𝑦𝑖|𝜇𝑖 , 𝜎𝑖)), where the distributions 𝑃𝑖  can differ for each protein variation i. In the following, we 

only assume that the means and variances are finite, with common definitions  

 



𝜇𝑖 = 〈𝑦𝑖〉 = 〈𝑥𝑖〉 = ∫ 𝑥𝑖𝑃𝑖(𝑥𝑖)𝑑

∞

−∞

𝑥𝑖 

   (1) 

𝜎𝑖
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−∞
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where the angular brackets represent expected values. With this notation, the expectation of the Pearson correlation is defined 

as: 

 

〈𝜌〉 = 〈
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
〉       (2) 

 

Considering a sufficiently large number of samples, we can set 𝜎𝑥 𝜎𝑦, since they are computed in the same way from the 

same distributions. The Pearson denominator simplifies as 𝜎𝑥𝜎𝑦  𝜎𝑥
2 𝜎𝑦

2 (which is the variance of one of the two variables). 

To work out an analytical solution, instead of computing the expectation of the Pearson directly, we compute the ratio of the 

expectations of the numerator and denominators. In general, this is correct only to the first order, however, when the number 

of samples is sufficiently large, the Pearson correlation  is independent of the variance 𝜎𝑥
2, so that the covariance between 

them is zero (𝐶𝑜𝑣(𝜌, 𝜎𝑥
2) 0). We can see this by generating an infinite set of different variance values by scaling the original 

variables (𝑥′𝑖 = 𝑘 ∙ 𝑥′𝑖 and 𝑦′𝑖 = 𝑘 ∙ 𝑦𝑖), while maintaining the same Pearson value . Since it is possible to write the 

covariance as a function of expectations (Heijmans, 1999) as 

 

𝐶𝑜𝑣(𝜌, 𝜎𝑥
2) = 〈𝜎𝑥𝑦〉 − 〈𝜌〉〈𝜎𝑥

2〉       (3) 

 

from the independence of Person and variance (𝐶𝑜𝑣(𝜌, 𝜎𝑥
2) 0) it follows that the expected value of the Pearson correlation 

can be approximated as 

 

〈𝜌 〉  〈𝜎𝑥𝑦〉/〈𝜎𝑥
2〉        (4) 

 

The numerator in Eq. 4 can be computed by taking the expected values of the variables {𝑥𝑖}  and {𝑦𝑖}, as:  

 

〈𝜎𝑥𝑦〉 = 〈
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)𝑖 (𝑦𝑖 − 𝑦̅)〉 =

1

𝑁
∑ ∫(𝑥𝑖 − 𝑥̅)𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖 ∫(𝑦𝑖 − 𝑦̅)𝑖 𝑃𝑖(𝑦𝑖)𝑑𝑦𝑖    (5) 

  

where 𝑥̅ and 𝑦̅ are the mean values of variables {𝑥𝑖}  and {𝑦𝑖}. The first term in the arguments of the two integrals can be 

expanded by adding and subtracting the same value, in this case we choose to add and subtract the real value for the 

distributions: 𝜇𝑖. Hence, the argument of the first integral (𝑥𝑖 − 𝑥̅) can be expanded as (𝑥𝑖 − 𝜇𝑖) + (𝜇𝑖 − 𝑥̅). Likewise, in the 

second integral, (𝑦𝑖 − 𝑦̅) can be expanded as (𝑦𝑖 − 𝜇𝑖) + (𝜇𝑖 − 𝑦̅).  The resulting formula becomes: 

 

〈𝜎𝑥𝑦〉 =
1

𝑁
∑ [(∫(𝑥𝑖 − 𝜇𝑖)𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖 + ∫(𝜇𝑖 − 𝑥̅)𝑃𝑖(𝑥𝑖) 𝑑𝑥𝑖) ∙ (∫(𝑦𝑖−𝜇𝑖)𝑃𝑖(𝑦𝑖)𝑑𝑦𝑖 + ∫(𝜇𝑖 − 𝑦̅) 𝑃𝑖(𝑦𝑖)𝑑𝑦𝑖)]𝑖    (6) 

 

We notice that the first and third integrals go to zero (as N increases), by definition of the mean (Eq. 1), while the second and 

fourth integrals, after taking out the terms that do not depend on the integration variable, give 1 (for the normalization of the 

distribution 𝑃𝑖). So the numerator becomes:  

 
1

𝑁
∑ (∫(𝜇𝑖 − 𝑥̅)𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖)𝑖 (∫(𝜇𝑖−𝑦̅)𝑃𝑖(𝑦𝑖)𝑑 𝑦𝑖) =

1

𝑁
∑ (𝜇𝑖 − 𝑥̅)(𝜇𝑖 − 𝑦̅)𝑖    (7) 

 

Assuming that the two experimental sets are derived from the same distribution, with an average of 𝜇̅ (which would be the 

case unless there are systematic errors), 𝑥̅ and 𝑦̅ would equal 𝜇̅, and the numerator in Eq. 4 would tend to: 

𝜎𝐷𝐵
2 =

1

𝑁
∑ (𝜇𝑖 − 𝜇̅)2

𝑖        (8) 

This is the variance of the distribution of the real G values, which does not depend on the experimental uncertainty but 

only on the distribution of the G values in our database (hence  𝜎𝐷𝐵). The database distribution can be of any type, the only 

value we consider is its variance  𝜎𝐷𝐵
2. So we can estimate the covariance as: 

 

〈𝜎𝑥𝑦〉 𝜎𝐷𝐵
2                (9) 



 

For the denominator of the Pearson correlation (Eq. 4) we have: 

 

𝜎𝑥
2 =

1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2

𝑖        (10) 

 

We can estimate the variance as before, thus for  𝜎𝑥
2 we obtain: 

 

 

〈𝜎𝑥
2〉 = 〈

1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑖

〉 =
1

𝑁
∑ ∫(𝑥𝑖 − 𝑥̅)2𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖 = 

𝑖

 

=
1

𝑁
∑ ∫[(𝑥𝑖 − 𝜇𝑖) + (𝜇𝑖 − 𝑥̅)]2𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖 = 

𝑖

 

=
1

𝑁
∑ ∫[(𝑥𝑖 − 𝜇𝑖)

2 + (𝜇𝑖 − 𝑥̅)2 + 2(𝑥𝑖 − 𝜇𝑖)(𝜇𝑖 − 𝑥̅)]𝑃𝑖(𝑥𝑖)𝑑𝑥𝑖𝑖      (11) 

 

When integrated, the last term of the integral goes to zero as N increases (based on the definition of mean, Eq. 1), while the 

first and the second approach the uncertainty 𝜎𝑖
2 associated with each G point, and 𝜎𝐷𝐵

2 of the real data set, respectively. 

Thus, the variance can be estimated as: 

 

〈𝜎𝑥
2〉    𝜎2̅̅ ̅ + 𝜎𝐷𝐵

2       (12) 

 

Where we indicate with 𝜎2̅̅ ̅ the average variance of the data 

 

 𝜎2̅̅ ̅ =
1

𝑁
∑  𝜎𝑖

2 𝑖          (13) 

 

and with  𝜎 its square toot (𝜎 = √ 𝜎2̅̅ ̅). With this, the Pearson correlation (Eq. 4) can be estimated as: 

 

〈𝜌〉
〈𝜎𝑥𝑦〉

〈𝜎𝑥
2〉


𝜎𝐷𝐵
2

𝜎2̅̅ ̅̅ +𝜎𝐷𝐵
2 =

1

1+(
𝜎2̅̅ ̅̅

𝜎𝐷𝐵
2 )

      (14) 

 

Given that the two variances are greater than zero, the experimental observations will always yield Pearson correlation smaller 

than 1. The magnitude of the reduction of the correlation is imposed by the squared ratio of the average uncertainty of each 

data point (G value) and the spread of the set of data used for the prediction. Equation 14 indicates that the smaller the 

dispersion of the dataset 𝜎𝐷𝐵
2, the more sensitive the Person correlation is to the data noise (or uncertainty, 𝜎 ). In other 

words, two datasets that share the same average uncertainty but differ in their data distribution have different upper bound 

Pearson correlations. 

Figure 1 shows a graphical plot of the correlation 𝜌 as a function of the average uncertainty 𝜎 and the standard deviation 

𝜎𝐷𝐵. Each curve represents the upper bound that a Pearson correlation can achieve. For example, with 𝜎𝐷𝐵 of 2 kcal/mol and 

average uncertainty 𝜎 of 1 kcal/mol, the maximum Pearson correlation that any predictor can achieve is only about 0.8.  



 

Fig. 1.  Expected Pearson correlation <ρ> vs. data average uncertainty (𝜎̅) for different values of dataset standard deviation 𝝈𝑫𝑩.  

The results were calculated using the approximate analytical expression of Eq. 14, with each curve corresponding to a specific 𝜎𝐷𝐵. The 

ratio between 𝜎̅  and 𝜎𝐷𝐵 determines the approximate upper bound of ρ, which, for finite values of these uncertainties, will always be 

smaller than 1. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Experimental datasets  

 
To be more realistic, we supplement the approximate theoretical derivation of section 2 with estimates based on real 

mutation data taken from the available databases. 

3.1 Distribution of the available data 

 

We considered three datasets used to train most of the available computational methods. The first is the latest version of 

ProTherm (Kumar et al., 2006, last update in 2013) comprising 3464 single-point mutations from 135 proteins of known 

structure (with PDB IDs). The second is S2648 (Dehouck et al., 2011) which comprises 2648 single-site variations in 131 

proteins taken and cleaned from a previous release of ProTherm. The third is VariBench, a manually curated dataset, for 

which the G measurements have been checked in the primary literature. VariBench (Yang et al., 2018) is derived from the 

ProTherm release of February 22, 2013 and contains 1564 single-site variations from 99 proteins.  

The three datasets have a very sharp distribution around the average value (around -1.06 kcal/mol for each set) is observed, 

with low standard deviations (𝜎𝐷𝐵) of 2.06 kcal/mol in ProTherm,  1.91 kcal/mol in VariBench, and 1.47 kcal/mol in S2648 

(Figure 1S, supplementary materials). The theoretical model above (Eq. 14) shows that with such low deviations, the Pearson 

correlation should be sensitive to noise.  

It is also noteworthy that because of the difference in their standard deviations, the maximum possible Pearson correlation 

of the three datasets, for the same average experimental uncertainty  𝜎 ̅, is not the same. In particular, if both the VariBench 

and S2648 datasets are affected by the same average experimental uncertainty 𝜎 ̅, the maximum possible Pearson correlation 

of VariBench would be larger. 

3.2 What can we expect from the current experimental datasets? 

 

We made a raw evaluation of what we can expect from the current experimental dataset. In particular, we considered two 

datasets:  

1) S1: a subset of 574 ProTherm single-site variations for which two or more experimental G values are reported for the 

same protein variation, measured at the same temperature and pH;  

2) S2: a subset of 551 variations shared by VariBench and S2648, for which the manual curators ended up with different 

G values.  

Thus, for each variation i (in either S1 and S2), we can associate a mean value (𝜇𝑖 = ∆∆𝐺̅̅ ̅̅ ̅̅
𝑖) and a standard deviation (𝜎𝑖), 

since we have at least two G values. Computing 𝜎 ̅ (as the square root of the mean of {𝜎𝑖
2}) and the 𝜎𝐷𝐵 (using the { ∆∆𝐺̅̅ ̅̅ ̅̅ ̅

𝑖}) 

for S1 and S2, we obtained 𝜎 ̅=1.04 and 𝜎𝐷𝐵=1.72, and 𝜎 ̅=0.72 and 𝜎𝐷𝐵=1.57, respectively. Substituting these values in Eq 

14, we obtain estimations of maximum Pearson correlations of 0.73 for S1 and 0.83 for S2. However, the same data can be 

used to explicitly take into account the different {𝜎𝑖
2} values. For each variation it is possible to derive a set of pairs of 

“experiments” by randomly drawing two values at a time from the normal distribution 𝑁(∆∆𝐺̅̅ ̅̅ ̅̅
𝑖 , 𝜎𝑖). Figure 2 shows the results 

of a typical run. By drawing 100 pairs of such “experiments”, and repeating the runs 10 times, we obtained an estimation of 

the Pearson correlation (with variable {𝜎𝑖}) of 0.74 ± 0.02 and 0.84 ± 0.02, for S1 and S2 respectively.  
 



Fig. 2. Scatterplot of two randomly generated observations for a given variation. Red points are 100 randomly generated observations 

according to a normal distribution, with ∆∆𝐺̅̅ ̅̅ ̅̅
𝑖 and 𝜎𝑖 taken from the manually curated S2: different value for the same mutation reported in 

S2648 and VeriBench). Blue points are 100 randomly generated observations according to a normal distribution with ∆∆𝐺̅̅ ̅̅ ̅̅
𝑖 and 𝜎𝑖 taken 

from S1: ProTherm variations with more than one G value reported for the same variation at the same pH and Temperature. 

 

4 Conclusion 
 

Using a general model we approximated the correlation between a pair of observed G measurements, where one is used to 

predict the other. An approximate analytical expression, as well as simulations using real data, show that the correlation is 

limited by the ratio between these two uncertainties, placing a natural upper bound on the maximum possible Pearson 

correlation between predicted and empirical values. With current accuracy, the theoretical value critically depends on both 

the average uncertainty of the data (𝜎 ̅) and the spread of the dataset used (𝜎𝐷𝐵).  While the first can be reduced to some extent 

by manually cleaning the data, 𝜎𝐷𝐵 is an intrinsic property of the dataset that provides an upper bound to the maximum 

expected Person correlation.   

A similar approach can be used to derive a lower bound for the root mean square error (Rmse), another commonly used 

measure of performance. In  Supplementary Material we show that he expected value of the root mean square error is a linear 

function of the average data uncertainty (〈𝑅𝑚𝑠𝑒〉 √2𝜎 ̅). The current datasets (S2648, VariBench) have a 𝜎𝐷𝐵< 2, dictating 

an upper bound of about 0.8 to the Pearson correlation and lower bound of about 1 kcal/mol for the root mean square error 

(see Supplementary Materials); better values would be indicative of overtraining.  

Generally speaking, the conclusions should be valid whenever large empirical datasets compiled of various measurements 

are used for training a predictor, and equation 14 gives an approximate upper bound for the prediction accuracy.  
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Supplementary material for the paper “A natural upper bound to 

the accuracy of predicting protein stability changes upon 

mutations” 
 

1. Distribution of G in different datasets  

Fig. 1S. Distribution of G in different datasets. ProTherm in black, S2648 in blue and Varibench 

in red. The black solid line marks the mean, about -1kcal/mol for each of the three datasets. The vertical 

dashed lines indicate the limits of the mean  standard deviations of the three distributions, that are: 2.06 

kcal/mol in ProTherm (which is shown in the graph),  1.91 kcal/mol in VariBench,  and 1.47 kcal/mol in 

S2648. 
 

 



 

2. Estimation of a lower bound for the root mean square error 

 

A second measure of accuracy usually adopted to score predictors is the root means square 

error (Rmse), which is the square root of the mean square error (mse). Using a similar 

approach applied for the Pearson correlation, we can estimate the expected value of mse 

using a set of experiments {𝑥𝑖}  as a predictor of another set of experiments {𝑦𝑖}. In this 

case the expectation is 

 

〈𝑚𝑠𝑒〉 = 〈
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)2

𝑖 〉 =
1

𝑁
∑ 〈(𝑥𝑖 − 𝜇𝑖 + 𝜇 − 𝑦𝑖)2〉𝑖    (1S) 

 

by taking the squares in the round brackets, and computing the expectation using the data 

distributions 𝑃𝑖(𝑥𝑖|𝜇𝑖 , 𝜎𝑖)= 𝑃𝑖(𝑦𝑖|𝜇𝑖 , 𝜎𝑖), and considering the independence of the 

variables x and y, Eq. 15 reads as 

 

〈𝑚𝑠𝑒〉 =  
1

𝑁
∑ (〈(𝑥𝑖 − 𝜇𝑖)2〉 + 〈(𝑦𝑖 − 𝜇𝑖)2〉 − 2〈𝑥𝑖 − 𝜇𝑖〉〈𝑦𝑖 − 𝜇𝑖〉)𝑖        (2S) 

 

The first two terms are the distribution variances, and it follows from the definition of the 

mean and variance (Eq. 1) that the last term goes to zero as N increases. Thus we have  

 

〈𝑚𝑠𝑒〉 =  
1

𝑁
∑ (2𝜎𝑖

2) = 2 𝜎2̅̅̅̅
𝑖          (3S) 

 

Where 𝜎2̅̅̅̅  is the average variance of the data 

 

 𝜎2̅̅̅̅ =
1

𝑁
∑  𝜎𝑖

2 𝑖         (4S) 

 

Eq.3S indicates that the mean square error is a function of the average data uncertainty 

and does not depend on the data distribution, so we may assume the Rmse is a linear 

function of the average data uncertainty, such as 

 

   〈𝑅𝑚𝑠𝑒〉 √2𝜎 ̅           (5S) 

 

where  𝜎̅ is the square root of the average variance (𝜎̅ = √ 𝜎2̅̅̅̅ ).   



This means that the lower bound to the Rmse is provided by the average of the data 

uncertainty and, unlike the Pearson correlation (main text Eq. 14), does not depend on the 

database distribution. 

 

3. Experimental estimation of the root mean square error 

 

Considering the two sets introduced in the main text, such as: 

1) S1: a subset of 574 ProTherm single-site variations for which two or more 

experimental G values are reported for the same protein variation, measured at 

the same temperature and pH. S1 data uncertainty is  𝜎 ̅=1.04.  

2) S2: a subset of 551 variations shared by VariBench and S2648, for which the 

manual curators ended up with different G values. S1 data uncertainty is  𝜎 ̅=0.72 

We can estimate the 〈𝑅𝑚𝑠𝑒〉 using E. 5S for the two dataset obtain 〈𝑅𝑚𝑠𝑒〉 =1.46 

kcal/mol and 〈𝑅𝑚𝑠𝑒〉 =1.0 kcal/mol for S1 and S2 respectively. These values agree with 

those obtained by extensive simulations using the procedure described in the main text 

(section 3.2), where for the computed values we obtain  〈𝑅𝑚𝑠𝑒〉 =1.4 ± 0.5 kcal/mol and 

〈𝑅𝑚𝑠𝑒〉 =1.0 ± 0.2 kcal/mol, for S1 and S2 respectively.  

These results are perfectly in line with those obtained by our equation bound.   

 


