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Abstract

Motivation: Mapping reads to a reference genome is often the first step in a sequencing data analysis
pipeline. Mistakes made at this computationally challenging stage cannot be recovered easily.
Results: We present Whisper, an accurate and high-performant mapping tool, based on the idea of sorting
reads and then mapping them against suffix arrays for the reference genome and its reverse complement.
Employing task and data parallelism as well as storing temporary data on disk result in superior time
efficiency at reasonable memory requirements. Whisper excels at large NGS read collections, in particu-
lar Illumina reads with typical WGS coverage. The experiments with real data indicate that our solution
works in about 15% of the time needed by the well-known Bowtie2 and BWA-MEM tools at a comparable
accuracy (validated in variant calling pipeline).
Availability: Whisper is available for free from https://github.com/refresh-bio/Whisper or
http://sun.aei.polsl.pl/REFRESH/Whisper/

Contact: sebastian.deorowicz@polsl.pl
Supplementary information: Supplementary data are available at publisher Web site.

1 Introduction
Mapping high-throughtput sequencing (HTS) short reads onto a reference
sequence (also called read alignment) is nowadays both an industrial pro-
cess and traditionally an active research topic, with over 80 published tools
so far (see (Fonseca et al., 2012) and http://wwwdev.ebi.ac.uk/
fg/hts_mappers/ for comprehensive, yet incomplete lists). Clearly,
this is not the end of the road as each year new proposals appear, compe-
ting in mapping quality, functionalities, and—last but not least—aligning
speed and memory requirements. Not all these algorithms target DNA;
there are also several specialized RNA, miRNA, and bisulfite mappers. In
this work we focus on DNA mapping.

The problem is not simple, because exact matching of reads onto the
reference genome is of little value. Due to sequencing errors and geno-
mic variations, most reads can be aligned to the reference sequence only
approximately. For these reasons, the mapping algorithm should be based
on approximate string matching, with tolerance for several mismatches and

indels. It is also noteworthy that not all reads occur uniquely in a refere-
nce genome. Therefore, returning only one match (even with the minimal
possible error) is insufficient in some applications, e.g., CNV calling.

Mapping reads to a given reference genome sequence is often the first
step in sequencing data analysis and mistakes made at this stage cannot be
easily recovered later. On the other hand, producing billions of bases daily
as a routine job of modern sequencers (for example, Illumina HiSeq 4000
can generate as much as 400 Gb a day) makes the alignment task challen-
ging not only from the mentioned quality point, but also performance-wise.
It is well-known that the genomic database growth outpaces the famous
Moore’s law for computing hardware (Kahn, 2011; Deorowicz and Gra-
bowski, 2013), which means that the only hope for overcoming this flood
of data is finding smarter and more efficient algorithms.

On a high level, in each mapping tool two major design decisions have
to be made upfront: what data structure is used for the reference sequence
(e.g., a genome) and what is the essential algorithm of finding the best read
alignment (or multiple sufficiently good alignments). The answer for the
former question is, in most cases, a hash array on k-mers of the reference
genome or a compact full-text index (especially the FM-index (Ferragina
and Manzini, 2000; Lam et al., 2009)).
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2 Deorowicz et al.

Mappers based on a hash table, like MAQ (Li et al., 2008), SOAP (Li
et al., 2008), and SHRiMP2 (David et al., 2011) generally follow the seed-
and-extend approach (Li and Homer, 2010). According to this strategy, the
query sequence is divided into k-mers and the positions (seeds) of each k-
mer in another (reference) sequence are retrieved from a hash table. After
that, the seeds are extended, joined and aligned using, e.g., the classic
Smith–Waterman alignment algorithm. Using an FM-index (especially in
a variant supporting bidirectional search (Luo et al., 2013)), also allows to
locate quickly snippets of the query string. The well-known representatives
of this strategy are BWA (Li and Durbin, 2009), Bowtie2 (Langmead and
Salzberg, 2012), SOAP3 (Liu et al., 2012), and GEM (Marco-Sola et al.,
2012).

Finding the best read alignment(s) is, however, related to the assumed
similarity distance. In the majority of the second generation sequencing
platforms (notably, Illumina) the vastly dominating kind of errors are
mismatches (Hamming distance), but to compete with high-quality solu-
tions it is becoming more and more important to handle also indels (edit
distance). Note also that a non-negligible fraction of known variants, e.g.,
in a human genome, are indels, which is another reason to support this
similarity model.

Kart (Lin and Hsu, 2017) is an efficient solution handling short as long
as long reads. The algorithm employs both the FM-index (BWT array)
and a hash table, and adopts a divide-and-conquer strategy to separate a
read into easy and hard regions. The latter ones require gapped alignment
and the final alignment is composed from independently aligned separate
regions.

Most of the widely used mapping tools are best-mappers, which try to
identify one or at most a few best mapping locations for each read (Lan-
gmead and Salzberg, 2012; Li and Durbin, 2009; Marco-Sola et al., 2012;
Li, 2013). In some downstream applications (including ChIP-seq experi-
ments, copy number variation calling and RNA-seq transcript abundance
quantification) it is desirable to identify all relevant locations, which is the
goal of all-mappers (Weese et al., 2012; Kim et al., 2010; Siragusa et al.,
2013; Cheng et al., 2015).

Another way of classifying algorithms is the read processing regime.
Most solutions map one read at a time, yet some of the exceptions are
Masai (Siragusa et al., 2013) and TREQ-CG (Mahmud and Schliep, 2014).
Masai jointly maps read prefixes using a Patricia trie (called a radix tree in
the cited work). As long as a pair of reads has a common (exact) prefix, they
are processed together, with a clear benefit for performance. TREQ-CG
goes further, as it groups reads into clusters which are then represented with
a single read being submitted to a mapping component. In fact, TREQ-CG
is not a real read mapper; it is a clustering algorithm being a preprocessor
for an arbitrary traditional mapper.

Time efficiency can be achieved not only with purely algorithmic
means. Parallel processing can be found in many modern bioinforma-
tic tools and read mappers are no exception. For example, BWT-based
alignment can be implemented on massively parallel architectures like
GPUs. Prominent examples are the tools SOAP3 (Liu et al., 2012) and
SOAP3-dp (Luo et al., 2013), being about an order of magnitude faster
than their CPU-based counterparts. The FPGA platform was also used for
read mapping, with solutions involving a hash table (Olson et al., 2012)
or an FM-index (Chen et al., 2013; Fernandez et al., 2015).

A problem related to the one considered in this work is mapping reads
against multiple reference genomes. It has clear metagenomic applications,
yet Schneeberger et al. (2009) argue that using multiple reference sequ-
ences for the same species should improve the mapping accuracy due to
reducing the bias associated with a single genome. We agree this argument
cannot be easily dismissed, yet the existing mappers to multiple genomes
are rather immature.

For example, BWBBLE (Huang et al., 2013) needs more than 200 GB
of memory to build a multi-genome for a collection of 1092 human geno-
mes. GCSA (Sirén et al., 2014), in which the pan-genome, i.e., the
reference genome and known variants of it, are represented with an exten-
ded BWT index of a graph, cannot be constructed in even 1 TB of RAM
for a few “hard” human chromosomes (on the other hand, the resulting
index is small). Both solutions need at least 10 ms of time to find matches
with up to 3 errors.

MuGI (Danek et al., 2014) is probably the only solution capable of
finding all pattern occurrences in a collection of 1092 human genomes on
a PC with 16 GB of RAM, searching for a pattern with 2 mismatches in
well below 1 ms. We have to stress, however, that MuGI (like the other
tools listed in the previous paragraphs) is an index rather than a full-fledged
read mapper, since it handles mismatches only, does not support paired-end
reads, and does not report alignment results to a SAM file.

A unique approach to read alignment was taken in two not well-known
papers, presenting Slider (Malhis et al., 2009) and Syzygy (Konagurthu
et al., 2010). Their strategy is called sort-and-join, as they lexicographi-
cally sort both the suffixes (or k-mers) from the reference string and the
collection of reads, and then join both sorted sequences. Our work presen-
ted in this paper also follows this strategy. It has to be stressed, however,
that although sort-and-join seems to be a good start, to obtain competitive
mapping speed and quality we had to overcome major hurdles, e.g., related
to significant amounts of repetitive genome areas.

This short overview supports our claim that industry-level multiple-
genome read mappers are yet to come. There are also a number of
theoretical works dedicated to indexing text with wildcard positions (Tha-
chuk, 2013; Hon et al., 2013), where the wildcards represent SNPs, or the
more general problem of indexing repetitive data with support for exact or
approximate matching (Gagie et al., 2011; Jansson et al., 2014; Ferrada
et al., 2014). None of them, however, can be considered a breakthrough,
at least for bioinformatics, since none of them was demonstrated to run
on multi-gigabyte genomic data (and in some of the cited papers no expe-
rimental results are given at all). The subject of indexing and searching
genomic databases is also surveyed by Gagie and Puglisi (2015), with
more focus on theoretical solutions.

2 Methods

The general idea

As mentioned above, indexing the genome sequence is a canonical general
approach to read mapping. One of the possible indexes to be used here is
the well-known suffix array, in which all suffixes of the reference genomes
are kept sorted, what allows to find exact matches with a binary search. This
obvious strategy can be refined with backtracking to support approximate
matching.

In this work, following Malhis et al. (2009) and Konagurthu et
al. (2010), we propose to sort not only the reference sequence suffixes,
but also the reads themselves. This has several benefits. Firstly, bulk pro-
cessing of the reads is more efficient than taking them one by one to align
against multiple distant locations in the reference sequence. The boost in
speed can be explained by locality, and thus cache-friendliness, of bulk
operations, where the successive sorted (and thus similar) reads are likely
to be aligned to suffixes being close in their sorted order. This effect more
than compensates the initial effort of sorting the reads. Secondly, the suf-
fix array does not need to be wholly kept in the main memory, but instead
may be read in successive portions from disk, matching the lexicograph-
ical range of the current portion of the sorted reads. In this way, we can
enjoy the fast and convenient suffix array data structure without suffering
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from its space requirement, which is (at least) 4n bytes for sequences of
length n < 4Gb.

The whole algorithm can be divided into three phases: preprocessing,
main processing, and postprocessing. We assume that two suffix arrays,
SA for the reference genome and SArc for the reverse-complemented
reference genome, are initially built and stored on disk. Still in the pre-
processing, the reads’ DNA sequences are extracted from input FASTQ
file(s) and written with some metadata on disk; the corresponding quality
scores are ignored. In the main processing phase we look for possibly good
alignments for all the reads, ignoring the fact that for paired-end (PE) data
the expected alignments for a pair of reads are spatially correlated. In the
postprocessing, for each pair of reads their “feasible” alternative align-
ments are merged, taking into account their genomic locations. If no such
pair can be found, then the alignment for one of the reads is fixed (here
many such candidate alignments may be tried one by one) and the other is
scanned over the reference genome, in the close neighborhood with higher
error threshold and clipping allowed.

Each of the phases is performed in parallel (with care for thread load
balancing) and temporary data are stored on disk.

Preprocessing

Multiple input FASTQ files are processed independently, yet the paired
reads (for paired-end data) from “_1” and “_2” files are handled by twin
threads, not to lose their association.

A vast majority of Illumina reads in an experiment are of the same
length, yet it may happen that read lengths even from a single dataset
vary. As handling reads of significantly different lengths would complicate
the internals of Whisper, a simple rule of thumb is used: all the reads
shorter than 90% of the length of the longest read (which is found during
the proprocessing) are discarded. Practically, very few Illumina reads are
removed in this way.

The DNA symbols from reads are filtered. All symbols other than
ACGT are replaced with N (yet N symbols in the reference sequence have
their own encoding, as N-to-N between a read and the reference at an
aligned position should be considered as a mismatch). Each read is repre-
sented as a triple: (i) a unique 40-bit internal ID such that reads from a pair
differ only in the least significant bit, (ii) DNA string, with non-standard
symbols replaced by N, (iii) min_error, which is the error (i.e., the num-
ber of mismatches and indels) of the most successful read mapping found
so far. This value is stored on a byte and is initialized to 255 (which is
the maximum handled edit distance in our solution, yet the reads may be
longer).

The reads are sent into multiple bins on disk. Bins are identified by
their variable-length prefixes fulfilling the prefix property (no element in
this set is a prefix of another). Those prefixes are established in a way
that the distribution of the number of their occurrences in the reference is
approximately uniform. As the maximum bin prefix length is set to 10,
there are as many as 410 different prefixes not containing symbol N, and
their set is (essentially) iteratively reduced by merging the items down to
384 (by default).

Main processing

We assume that all read alignments with up to k edit (Levenshtein) errors
are to be found. Once the bins on disk are ready, we start the main proces-
sing phase, which can be divided into k + 2 major stages. We start with
presenting the first k+1 major stages (the last stage is different). The ith
(0 ≤ i ≤ k) major stage is divided into i + 1 minor stages. In the ith
major stage all matches with exactly i errors are found; the matches with
less errors have already been found in the previous major stages. Reads,
once matched, are no longer processed in the further major stages. To this
end, the current read is divided into i + 1 (approximately) equal disjoint

segments of length m/(i + 1), where m is the length of the shortest
accepted read. If the current read is longer than m, its last segment is not
longer than previous ones, but simply the remaining symbols are not a part
of any segment (yet they are not ignored for the approximate matching
performed later); for technical reasons it is convenient if the segments at
a single substage are of equal length.

At the start of each jth (0 ≤ j ≤ i) minor stage of ith major stage,
which will be denoted as stage (i, j), the reads are sorted according to
their substring of length aboutm/(i+1) being precisely the jth segment.
Note that, by the Dirichlet principle frequently used in approximate string
matching, if a string matches a reference with at most k Levenshtein errors,
then at least one of its k + 1 disjoint pieces must occur in the considered
alignment in an exact form (Rivest, 1976). The idea of having several
multiple stages (instead of one, looking for matches with up to k errors)
is to speed up computations. Matches found in earlier stages (in which the
matching segments are longer) help reduce the number of read-suffix pairs
to verify in later stages.

Let us consider an arbitrary stage (i, j). The bins are read from disk
one by one. Assume one particular bin to be processed. The reads from the
bin are first lexicographically sorted. The corresponding segments of the
suffix arrays SA and SArc are also read from disk. We scan successive
reads. If the current read is identical to the previous one (it happens quite
often in large real collections), we simply copy the mapping results from
its predecessor. Otherwise, we check if its jth segment only is equal to the
jth segment of the previous read. If they are different, a range of suffixes in
SA (resp. SArc) matching this segment needs to be found. For efficiency
reasons, including reducing the number of cache misses, we do not scan
SA (resp. SArc) linearly, but jump by the number of suffixes roughly
equal to the ratio of the total number of suffixes in the segment of SA
(resp. SArc) corresponding to the current bin to the number of reads in
the current bin. (More precisely, this jump size is actually greater by a
factor of about 1.4, which was established experimentally.) If after this
interpolation step we are still before the first desired suffix, we skip the
same number of reads, etc. Once we go too far, a binary search over the last
considered range of suffixes is performed. If, however, the jth segment of
the read is equal to the jth segment of the previous read, there is no need
to look for the relevant range of suffixes as this is simply copied from the
previous read.

As each suffix in the relevant range must be tested against the cur-
rent read, we do not (explicitly) look for the last suffix in a range; rather,
we iterate linearly over the suffixes until the matching range ends. For
each tested suffix, we compute the Levenshtein distance between it and
the current read. If the distance is not greater than i, the mapping is
recorded (in memory, so far). The approximate matching with up to i dif-
ferences (i.e., i Levenshtein errors) is performed with Myers’ bit-parallel
algorithm (Myers, 1998), unless i is small (i ≤ 7), when a dynamic
programming procedure restricted to the 2i+ 1 central diagonals is used.

The found mappings are written to an output file as a quadruple: (i)
read’s internal ID (40 bits), (ii) match position in SA (resp. SArc), (iii) a
flag if the match was against SA or SArc, (iv) the distance (i.e., number of
errors). We set a limitation of up to 1024 stored mappings per read. In each
stage (i, j), j < i, the already processed reads are distributed into new
bins for the next minor stage, i.e., stage (i, j+1). In the last minor stages
(the case of i = j), however, new bins are created for stages (i+ 1, 0).

There are two practically important optimizations in the described
procedure. One is a filter allowing not to compute the (relatively costly)
Levenshtein distance between a read and a suffix, if a quick check tells
that the distance exceeds the limit (which is i in the ith major stage). To
this end, a simple yet useful counting filter idea (Grossi and Luccio, 1989;
Jokinen et al., 1996) is applied. For a given read and all suffixes in a range,
a histogram of pairs of DNA symbols is computed; there are 42 = 16 such
pairs useful for our purpose. If the difference between the two histograms,
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4 Deorowicz et al.

for the read and for the suffix, exceeds 4i, it implies that the true distance
is greater than i.

The other optimization greatly reduces the number of read vs. suffix
comparisons in the areas we recognized as difficult. Sometimes we come
across a situation that for the current read there are hundreds or thousands
of suffixes with an exact match for a considered segment (it happens espe-
cially for repetitive segments, e.g., AAA...A). It is likely that such a read
will be followed, in the sorted bin order, with many reads with the same
substring in the considered segment which will imply a lot of read vs. suf-
fix distance calculations. To prevent such bad case, after passing the first
read over a difficult area we calculate simple signatures for all the suffixes
in the area, in order to compare each of the reads to follow with only a
(usually small) subset of suffixes, namely those for which there is still a
chance to have the Levenshtein distance within the assumed limit.

We do not present a formal description of this routine. Rather, let us
explain it on an example. Let the read length be 100, Hamming distance
used, i = 3 (i.e., we accept up to 3 mismatches in the current stage
and thus partition reads into 4 segments), and let the current segment
comprise the range of read symbols [0 . . . 24]. We consider a dictionary
data structure, whose keys will be short DNA strings of a fixed (small)
length and associated values the IDs of suffixes which have the key at a
specified position. Assume that the key length is 6. We build i + 1 = 4

such dictionaries, and the key positions in suffixes should be far from the
current segment. If, for example, the considered suffix points to location `
in the reference genome G, the dictionary keys are: G[`+ 76 . . . `+ 81],
G[`+ 82 . . . `+ 87], G[`+ 88 . . . `+ 93], and G[`+ 94 . . . `+ 99].

Now, for the current read r we examine the list of suffixes under the
key of r[76 . . . 81]. Those suffixes are potential matches (with up to 3
mismatches) and have to be fully compared versus the read. Then, for the
same read, we access the list of suffixes under the key of r[82 . . . 87] and
again perform full comparisons. The procedure is continued for the two
remaining keys. Note that if some suffix has at least one mismatch versus
read r in its r[76 . . . 81] area, and similarly at least one mismatch against
r[88 . . . 87], r[88 . . . 93], and r[94 . . . 99], then in total it has at least 4
mismatches against r and thus can safely be rejected.

We noticed that extending this idea to i+5 (rather than i+1) substrings,
and thus i + 5 corresponding dictionaries, with the criterion that at least
five (rather than one) matches on those substrings trigger a full read vs.
suffix comparison, is even more selective in practice and we use this variant
in the implementation.

It is interesting and perhaps surprising to note that in difficult areas
using those dictionaries allows to reduce the number of suffixes checked
against a read by 2–3 orders of magnitude. A similar phenomenon can
occur for the Levenshtein distance, but in that case the number of required
dictionaries grows (due to “shifts” resulting from indel errors). Despite the
fact that the improvement in efficiency for Levenshtein errors is lower than
in the Hamming case, it is still significant and makes this idea worthwhile.

Finally, we describe the last, (k + 1)th, major stage referred to as
sensitive. Here we have reads for which there are no matches with up to k
errors. We basically follow the previous, kth, stage here, but the allowed
number of errors is set (by default) to as many as ck, where c is a parameter
with default value of 3.0. Yet, the number of segments into which we split
those hard reads is still k + 1, therefore there is no guarantee to find all
matches with up to ck errors. In this stage we also discard the reads falling
into difficult (in the sense described above) suffix areas, as the slow-down
wouldn’t be worth the tiny improvement in accuracy for prospective variant
calling.

Postpreprocesing

The postprocessing stage consists in aggregating mappings of individual
reads in order to obtain paired-end mappings. For each bin, related data are

loaded from disk and sorted according to the ID, which results in paired
reads being adjacent (they differ only in the least significant bit of ID). Let
(r1, r2) be the analyzed read pair.G andH indicate the sets of individual
mappings of r1 and r2, respectively. The aim is to identify mapping pair
(gi, hj), gi ∈ G ∧ hj ∈ H , most appropriate from the point of view
of DNA evolution and technical aspects of sequencing. The evaluation of
mapping pair is done similarly as in BWA-MEM (Li, 2013): Q(g, h) =

S(g) + S(h) − P (g, h), with S being an alignment score (linear or
affine, depending on the postprocessing step) and P indicating a penalty
for a deviation from the expected template length. The template length
(TLEN), the distance between the leftmost and rightmost mapped base in
the pair, is modeled by a normal distribution N(µ, σ). The model is built
for each bin separately and its parameters are updated during processing.
Function P is saturated at arguments µ± 5σ not to penalize excessively
structural variants which may lead to template lengths much larger than
expected. Note that the evaluation function Q should not be confused
with the mapping quality score (MAPQ) calculated on the basis of the
probability of pair alignment being improper (Li et al., 2008). As the
calculation of MAPQ requires also suboptimal mappings, all pairs found
during the procedure are stored in a priority queue Z ordered by Q value.

At the very beginning of the postprocessing, all individual mappings
fromG andH sets are assigned with alignment scores S according to the
linear gap model. Then, the Z queue is filled in the following steps:

1. Pairing high-quality close mappings—executed whenG andH are
non-empty and at least one of them contains mappings from non-
sensitive stage. For each element of G and H assigned with highest
S scores we try to find a close mapping (TLEN ∈ [µ− 4σ, µ+4σ])

with opposite orientation in the other set. This is done with the binary
search as mappings in G and H are sorted according to the genomic
position.

2. Rescuing close pairs (Levenshtein)—if Z is empty, for each ele-
ment of G and H we try to align mate read with Myers’ bit-parallel
algorithm for Levenshtein distance. The scan is performed with less
restrictive error thresholds in a wider TLEN interval ([0, µ + 5σ])
than previously. All identified pairs are inserted to queue Z, while
individual mappings are added to sets H and G. All scores S are
updated using affine gap penalty model.

3. Rescuing close pairs (clipping and long indels)—if Z is empty, for
each element of G and H we try to align mate read with clipping.
This is done by hashing all 20-mers of a query read in a table and
matching reference genome in [0, µ+5σ] TLEN interval against this
table. The procedure additionally detects long indels with flanking
regions of length 20 or more perfectly matched to the reference. The
collections Z, G, and H are updated during the scan as in (2).

4. Pairing distant mappings—we take mappings from G and H with
highest S scores, combine them into pairs, and add to queue Z.

Note that in the vast majority of cases there exist high-quality mappings
for both reads. In these situations, computationally intensive steps (2),
and (3) are omitted, resulting in superior execution times.

After filling Z queue, the MAPQ scores are assigned to the
individual read mappings according to the formula MAPQ =

−10 log10 (probability of mapping being invalid) saturated at value 60.
When the read has only single mapping, it is assigned with the highest
MAPQ value. If the single best alignment is accompanied with suboptimal
alignments, the MAPQ score is decreased similarly as in BWA-MEM—
the misalignment probability is estimated on the basis of the difference
between the highest and the second highest score S, as well as the number
of mappings with the latter. When there are multiple mappings with the
highest S value, MAPQ decreases vastly. For instance, when there are two
equally good alignments, the probability of a mapping being wrong is 1/2
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Table 1. Results for the real dataset NA12878 (Ref HG38)

Mapper Time Memory Unmapped Unmapped SNP Indels
[h:mm] [GB] reads [%] bases [%] Recall Precision F1 score Recall Precision F1 score

BWA-MEM 12:55 8 0.54 1.44 0.9977 0.9901 0.9939 0.9359 0.9737 0.9544
Bowtie2 13:03 4 2.02 2.02 0.9863 0.9950 0.9906 0.9273 0.9765 0.9513
Kart 2:27 12 1.51 1.84 0.9947 0.9525 0.9732 0.9248 0.9597 0.9419
Gem3 2:36 17 1.26 1.77 0.9873 0.9943 0.9907 0.9249 0.9767 0.9501
Whisper 1:57 18 1.51 2.24 0.9976 0.9881 0.9928 0.9361 0.9736 0.9545

Mapping time, RAM usage, percentage of unmapped reads (resp. bases) and variant calling recall, precision, and F1 scores for real data
with 42x coverage. Both SNPs and indels are considered. All tools were run using 12 threads. The best results are in bold.
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Fig. 1. Variant calling in a function of growing coverage, for SNPs (left figures) and indels (right figures). Recall and precision are presented in top and bottom figures, respectively. Detailed
results are given in Supplementary Material.

which results in MAPQ = 3. All suboptimal mappings are assigned with
MAPQ = 0. After giving MAPQ values to the individual read mappings,
the same procedure is applied for pairs, with S measure being replaced
byQ. Finally, reads are assigned with the larger from individual and paired
MAPQ scores.

In the output SAM file, a pair mapping with the highest Q value is
reported. When there are multiple such pairs, one is selected at random. If
only one read from pair is mapped successfully, the single-end mapping
is reported, while the other read is marked as unmapped. Pairs of reads
with no mappings identified during the main processing do not enter pre-
processing at all–they are immediately stored as unmapped. To reduce the
I/O overhead related to saving large SAM files, Whisper has the ability to
compress the output on the fly to gzip format.

3 Results
The goal of this section is to experimentally evaluate the accuracy as well as
time and memory efficiency of our mapper, Whisper, compared to several
leading solutions. Fig. 1 shows the results of variant calling with reference
to the human genome NA12878 (Ref HG38) sequenced as part of the

Illumina Platinum Genomes (Eberle et al., 2017). The reason for this
choice is that the National Institute for Standards and Technology (NIST)
has released a high-confidence set of variants for that individual as part of
the Genome In a Bottle (GIAB) (Zook et al, 2014) initiative. This allows
us to consider this set as the “ground truth”. For calling the variants we
followed GATK (McKenna et al., 2010) Best Practice pipeline (Auwera
et al., 2013).

The left figures present VC results for SNPs and the right ones for
indels. The top and the bottom row shows the recall and the precision
scores, respectively, in function of varying read coverage, up to 69x. The
competitors include BWA-MEM (Li, 2013), Bowtie2 (Langmead and Salz-
berg, 2012), Kart (Lin and Hsu, 2017), and GEM3 (Marco-Sola et al.,
2012), at their default settings. As expected, for all algorithms, for a given
coverage, indels are harder to call than SNPs (all measures are lower for
indels). For SNPs, BWA-MEM and Whisper dominate over the others in
recall, yet Bowtie2 and GEM3 boast with higher precision. We can say that
Bowtie2 and GEM3 try to stay on the safe side and prefer precision over
recall. In precision, also BWA-MEM is superior to Whisper. Kart yields
relatively high recall but also low precision. Strangely, the precision with
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Fig. 2. Mapping results for simulated reads of different length. 1M read pairs was taken for each run. Detailed results are given in Supplementary Material.

SNPs degrades a little (and even noticeably for Kart) for most mappers, a
phenomenon which we are unable to explain.

For indels, the trends are basically similar. BWA-MEM and Whisper
have practically the same recall and precision curves, and again Bowtie2
and GEM3 are better in precision but worse in recall. Kart is clearly worst in
precision, but comparable to GEM or Bowtie2 in recall for high coverages;
when the coverage is below 30x it comes last also in recall.

Table 1 focuses on the “typical” coverage of 42x. In mapping speed we
have two distinct groups: Whisper, Kart, and GEM3 belong to the faster
ones, while BWA-MEM and Bowtie2 are over 6.5 times slower than Whi-
sper. In memory usage, there is an opposite tendency, with BWA-MEM
and Bowtie2 being more frugal. Whisper needs the largest amount of RAM
memory, yet it easily fits a 32 GB (or even 24 GB) RAM machine. More
detailed timings for Whisper, for varying coverage and for its particular
stages, are given in Supplementary Material.

In variant calling, the results for each mapper are representative to their
overall performance, as commented with regard to Fig. 1. Here we also
present F1 scores. F1 is a joint measure of recall and precision and can thus
summarize the quality of particular algorithms. For SNPs, BWA-MEM is
the winner according to F1, with Whisper coming a close second. For
indels, Whisper and BWA-MEM are practically equal. For both kinds of
variants, Kart is never on a par with the remaining tested tools.

Fig. 2 presents mapping results for simulated reads of length 75, 100,
125, and 150 bp, respectively; the reads were generated with wgsim. 1M
read pairs (i.e., 2M reads) were taken for each run. The four bars, in order,
stand for unmapped reads, incorrectly mapped reads, and unmapped (resp.
incorrectly mapped) reads among those with MAPQ value ≥ 20, i.e.,
those which may be considered of good quality. The threshold 20 was
used in the variant calling experiments on real data. We note that MAPQ
values are software-dependent and thus comparing them between different
mappers is risky, yet the value of 20 is “understood” similarly by multiple
tools. Moreover, this MAPQ threshold is used in the GATK Best Practice
pipeline. As expected, the results get consistently better (i.e., bars gets
shorter) with longer reads. Among the test set of tools, Kart has somewhat
atypical characteristics. Its percentage of incorrectly mapped high-MAPQ
reads is often low, but the percentage of unmapped high-MAPQ reads
is always the highest; the difference is especially striking for the longest

reads. The other four contenders have similar trends, with BWA-MEM
and Whisper being noticeably better than GEM3 and Bowtie2.

We believe that comparing accuracies of variant detection is a more
appropriate way of benchmarking mappers on real data than using the
percentage of mapped reads or even their MAPQ scores estimated by
tested tools. This is because not all returned read alignments are relevant
and there is no established mapping quality measure in use across all
leading mappers. It is variant calling which actually shows if the mappings
are relevant. On the other hand, the (still) more widely used statistics of
mapped/unmapped reads and their quality (MAPQ) are reasonable for
simulated reads.

4 Conclusions
We present Whisper, a fast and accurate mapper for NGS reads, handling
mismatch and indel errors. It contains a number of novel ideas beneficial
both for mapping speed and accuracy. Its general approach of sorting
reads and then mapping them in order against a suffix array built for the
reference genome (and its reversed complement) is rarely pursued, yet
it allows not only high speed, but reasonable memory use, as the suffix
arrays may be read in blocks from disk. The processing is performed in
many stages, to detect up to k errors, based on the pidgeonhole principle.
Special care is taken for difficult genome areas, to reduce the number of
needed matchings by 2–3 orders of magnitude compared to a more naive
approach. Other algorithmic ideas, beneficial for performance, are to use
Myers’ bit-parallel edit distance computing routine, the counting filter, and
(re)packing DNA symbols in pairs or triples, to reduce the I/O and speed
up approximate string matching. We also efficiently utilized the hardware
resources: our implementation is highly parallel, using CPU threads and
AVX2 or other available SIMD extensions. Temporary data are stored on
disk, with care taken to minimize I/O operations.

As a result, Whisper is more than 6.5 times faster than the well-known
Bowtie2 and BWA-MEM. It is also by about 30% faster than recently
presented GEM3 and Kart, probably the fastest mapping tools nowadays.

Although Whisper essentially handles up to k errors, some matches
with more (up to 3k by default) Levenshtein errors are also detected. More
important, however, for high accuracy is careful handling of paired-end
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reads, which is performed in the postprocessing stage. Mapping pairs are
evaluated with a linear or affine alignment score. The distance between the
leftmost and rightmost mapped base in the pair is assumed to be modeled
by a normal distribution whose parameters are learned. Accuracy evalu-
ation was performed on both real and synthetic reads of varying lengths
and coverages. Experiments with real reads via variant detection showed
Whisper to be generally at least on a par with Bowtie2 and GEM3 in accu-
racy and slightly inferior to BWA-MEM (only with SNPs, as the results
in indel variant callings are practically identical); we however believe that
the almost 7-fold difference in speed poses an attractive tradeoff.
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