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Abstract

Motivation: Several gene expression-based risk scores and subtype classifiers for breast cancer

were developed to distinguish high- and low-risk patients. Evaluating the performance of these

classifiers helps to decide which classifiers should be used in clinical practice for personal thera-

peutic recommendations. So far, studies that compared multiple classifiers in large independent

patient cohorts mostly used microarray measurements. qPCR-based classifiers were not included

in the comparison or had to be adapted to the different experimental platforms.

Results: We used a prospective study of 726 early breast cancer patients from seven certified

German breast cancer centers. Patients were treated according to national guidelines and the

expressions of 94 selected genes were measured by the mid-throughput qPCR platform Fluidigm.

Clinical and pathological data including outcome over five years is available. Using these data, we

could compare the performance of six classifiers (scmgene and research versions of PAM50, ROR-

S, recurrence score, EndoPredict and GGI). Similar to other studies, we found a similar or even

higher concordance between most of the classifiers and most were also able to differentiate high-

and low-risk patients. The classifiers that were originally developed for microarray data still per-

formed similarly using the Fluidigm data. Therefore, Fluidigm can be used to measure the gene

expressions needed by several classifiers for a large cohort with little effort. In addition, we provide

an interactive report of the results, which enables a transparent, in-depth comparison of classifiers

and their prediction of individual patients.

Availability and implementation: https://services.bio.ifi.lmu.de/pia/.

Contact: berchtold@bio.ifi.lmu.de or zimmer@bio.ifi.lmu.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Breast cancer is a diverse disease for which several treatment options

are available, depending on the specific type of the tumor (Dai et al.,

2015). Traditionally, histological factors such as hormone receptor (es-

trogen receptor (ER) and progesterone receptor (PgR)), human epider-

mal growth factor receptor 2 (HER2) status or histological tumor grade

and clinical features are used to decide on the most suitable treatment.

Over the last decades several gene expression-based risk scores

and subtype classifiers have been developed. These tools measure

the gene expression of a small subset of genes and use these data to

predict either the tumor subtype or a risk score that indicates the

probability of recurrence. Several of these classifiers have been

developed to commercial assays and are partially used in clinical

practice. In the last years, there were two large prospective random-

ized clinical trials that analyzed the survival of patients who received

treatment according to the classification of Mammaprint (70 genes;

Cardoso et al., 2016) and the Oncotype recurrence score (RS) (21

genes; Sparano et al., 2015, 2018).

In 2011, Venet et al. (2011) reported that gene sets that are com-

pletely unrelated to breast cancer or even random gene sets can yield

significant P-values for the prediction of risk of recurrence for breast

cancer patients. Given this observation it seems hazardous to simply

report a significant P-value on some cohort when presenting a new

classifier, as is routinely done. Instead, the new classifier should be

compared with existing classifiers to show that it has some advan-

tage, e.g. improved performance, robustness or applicability.

Furthermore, the already published classifiers need to be evaluated

systematically on independent test sets that were not used in the de-

velopment of any classifiers. In the last years, such studies have been

published (Buus et al., 2016; Fan et al., 2006; Haibe-Kains et al.,

2008; Kelly et al., 2012; Lundberg et al., 2017; Martin et al., 2016;

Pelaez-Garcia et al., 2017; Prat et al., 2012a, b; Sestak et al., 2018;

Varga et al., 2013), but most of these studies analyze quite small

cohorts, only compare two classifiers or are based on microarray

measurements, even though many of the available classifiers have

been developed for qPCR measurements of the gene expression.

Supplementary Table S1 shows a brief overview of these studies.

The Fluidigm Dynamic Array IFC qPCR platform (Spurgeon

et al., 2008) can help to decrease the cost of measuring the gene ex-

pression of many genes, as needed for breast cancer classifiers. For

most classifiers, the gene expression of several genes is measured by

qPCR. Traditional qPCR platforms require that each combination

of patient sample and primers of the genes are pipetted together in-

dividually to be measured. This results in patients*genes*2 pipetting

steps. The Fluidigm IFC platform has a system of fluid lines and

valves that automatically distribute the RNA samples and primers to

the individual reaction chambers without mixing them. So only

patients þ genes pipetting steps are needed to measure hundreds of

genes for hundreds of patients.

We have used the Fluidigm IFC platform to measure the expression

of 94 genes for a large cohort of 726 patients. We selected the 94 genes

such that they cover six different breast cancer classifiers: scmgene

(Haibe-Kains et al., 2012), the research versions of PAM50 and the

corresponding risk of recurrence score (ROR-S; Bernard et al., 2009),

EndoPredict (and its variant EPclin that incorporates clinical variables;

Filipits et al., 2011), Genomic Grade Index (GGI; Toussaint et al.,

2009) and RS (Paik et al., 2004). Thus, we can compare the prognostic

power of these classifiers on an independent routine cohort on which

none of the classifiers was trained and show that the Fluidigm IFC

platform can be used to measure the gene expression of the many

genes needed for such a comparison study.

2 Materials and Methods

2.1 PiA cohort
Within the multicenter prospective PiA study (NCT 01592825)

tumor tissue samples of consecutively diagnosed breast cancer

patients from 7 German certified breast centers (Hospital Fürth, St.

Elisabeth and St. Barbara Hospital Halle, St. Bernward Hospital

Hildesheim, Helios Hospital Hildesheim, Medical Office Uleer

Hildesheim, Hospital Martha-Maria Dölau Halle and Asklepius

Harzkliniken Goslar, see Supplementary Material for more informa-

tion) were collected at Martin-Luther-University, Halle-Wittenberg

between 2009 and 2011. Female patients with operable, non-

metastasized breast cancer independent of lymph node status were

included. The study was approved by the ethics committee of the

Martin-Luther-University Halle-Wittenberg and each patient gave

informed consent. A total of 726 fresh frozen samples of primary

tumor tissue were investigated using Fluidigm IFC platform

(Spurgeon et al., 2008). Tumor specimens were fresh frozen after

surgery and stored at �80�C until further use. A total of 264

patients were not included as only formalin-fixed paraffin embedded

material was obtained since tumors were, for example, too small to

separate frozen tissue and 210 patients were assigned for neoadju-

vant chemotherapy. Tumor content was verified histologically.

Clinical and pathological parameters were obtained for each patient

and documented using SPSS 24 (SPSS Inc., Chicago, IL, USA). TNM

staging system was used (Sobin et al., 2011). Information on therapy

applied was not available. Patient information was anonymized

prior to analysis. Receptor defined breast cancer subtypes were

determined according to the St. Gallen classification (Goldhirsch

et al., 2013), cutoff [ER¼1%, PgR¼20% or IRS�3]. Due to miss-

ing Ki-67 values, we used histopathological grading to assess cell

proliferation (Von Minckwitz et al., 2012).

The following system was applied to define histopathological

subtypes:

• Luminal A-like: ER-positive, PgR-positive, HER2-negative,

grade 1 or 2.
• Luminal B-like (HER2-negative): ER-positive, PgR-negative,

HER2-negative or grade 3.
• Luminal B-like (HER2-positive): ER-positive, HER2-positive,

any grades.
• HER2-positive (non-luminal-like): ER-negative, PgR-negative,

HER2-positive, any grade.
• Triple-negative breast cancer (TNBC, Basal-like): ER-negative,

PgR-negative, HER2-negative, any grade.

An overview of the clinical and histopathological characteristics

of the patients and tumors is shown in Table 1. Most of the tumors

(610 of 726) are ER-positive and only a small subset (104) is HER2-

positive. The majority of the tumors had histological grade 2, and

lymph nodes were not affected.

The standardized definitions for efficacy endpoints (STEEP) cri-

teria were used as endpoint definitions (Hudis et al., 2007). The pri-

mary endpoint of this study was overall survival (OS). Person time

equaled the time from the date of diagnosis to the date of event or to

the date of last contact. Women without event were right-censored

at the last visit to the clinic.

2.2 Gene expression measurement
Expressions of 94 genes were measured using the Fluidigm qPCR

platform. This amounts to 726�94¼68.244 qPCR reactions.

To ensure that the measurements of the Fluidigm platform are of
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good quality and comparable across chips, for all samples five genes

were also measured on the CFX384 qPCR platform, so that the

results could be compared. This platform uses 384-well plates, so

that qPCR measurements for one gene can be done in parallel for

384 samples. Due to technical problems, SNPs or too low mRNA

abundance some gene expression values are missing. Some of the

classifiers are not able to make a prediction for a patient with miss-

ing values. We circumvent this by substituting the missing value if

the missing gene(s) do not influence the prediction. Nevertheless, a

number of cases have to be excluded from the analysis of the classi-

fier. For more information on the Fluidigm gene expression meas-

urement and missing values, see Supplementary Material.

On one Fluidigm IFC chip 96 genes can be measured by qPCR

for 96 samples. Thus, the 726 patients have been measured on sev-

eral chips that need to be normalized to make them comparable.

There are three sources of bias when several Fluidigm chips are

measured: the amount of cDNA can differ between samples (within

a chip and between chips), there can be variation between the chips,

e.g. due to different efficiency of the PCR reactions and there can be

differences in the pre-amplification of the cDNA that is necessary

for the Fluidigm platform. To correct for variation between chips,

so-called inter plate calibrator samples are measured on each chip.

The difference between cDNA amounts of individual samples can be

diminished, by using the expression of genes that are expected to be

constant between samples, e.g. housekeeping genes. Most classifiers

already include housekeeping genes for normalization purposes so

that no additional genes have to be measured. The cDNA has to be

pre-amplified before it is loaded on the Fluidigm IFC chip.

Amplification for all 96 primers at once can generate problems, so

that we splitted the set of primers in 2 subsets that are amplified in-

dividually. For this we tried several different batches and used the

division that yielded most successful amplifications. However, there

can be differences between the efficiencies of the pre-amplification

reactions. This can be corrected as one can assume that the median

of all measurements of each chip and pre-amplification mix is the

same. For more information on the individual normalization steps,

see Supplementary Material.

2.3 Classification
The genefu R package (Gendoo et al., 2016; R Core Team, 2016)

was used to calculate the research versions of PAM50, scmgene,

ROR-S and RS. The PAM50 classifier can be applied in two ways:

the published centroids can be used directly for the prediction, or

the centroids are first trained on the given dataset and then used to

predict the subtypes (both using default parameters). As a high C(t)

value indicates low gene expression whereas a high microarray in-

tensity indicates high gene expression, the C(t) values were not used

directly for these microarray-based methods, instead the difference

to the maximal PCR cycle C(t)max was used. For GGI, EndoPredict

and EPclin the formulas from the corresponding papers were re-

implemented and the published cutoffs were used for EndoPredict

and EPclin. For GGI no published cutoff is available, so that we

used the median to divide the cohort in two equally sized groups. All

classifiers were applied to the complete cohort.

2.4 Performance and concordance of predictions
To assess the performance of the predictions, we generated Kaplan–

Meier plots and calculated the concordance index (c-index) for each

classifier. The c-index corresponds to the probability that for a pair

of randomly chosen samples, the sample with the higher risk score

experiences an event before the other sample.

As we are able to calculate several classifiers for the same cohort,

we compared their predictions by calculating Spearman’s correla-

tions and Cramer’s V which quantifies the association between two

nominal predictions. It ranges between 0 and 1, with values above

Table 1. Clinical characteristics of the PiA cohort, grouped by histopathological subtype

All Luminal

A-like

Luminal B-like

(HER2-negative)

Luminal B-like

(HER2-positive)

HER2-positive

(non-luminal-like)

Triple-negative

breast cancer

(TNBC, Basal-like)

Not

classified

No. patients 726 378 163 69 34 74 8

Grade

1 76 67 4 3 0 0 2

2 447 311 59 40 12 22 3

3 203 0 100 26 22 52 3

Size

<1 42 22 9 2 4 5 0

1–2 302 176 69 24 13 16 4

2–5 341 161 77 37 16 46 4

>5 41 19 8 6 1 7 0

Nodal status

0 450 239 102 41 21 42 5

1 201 108 48 16 8 20 1

2 47 22 5 7 4 7 2

3 28 9 8 5 1 5 0

Age

Avrg 62.62 62.46 64.89 59.19 61.32 63.11 54.25

Min 22 22 29 28 31 25 30

Max 90 89 90 86 81 88 75

Survival

Alive 630 348 136 58 28 53 7

Deceased 96 30 27 11 6 21 1

Note: Patients who do not fall in any category described in Section 2.1 are shown in the last column.
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0.5 indicating a strong association. We compared subtype classifiers

(PAM50 and scmgene) and risk scores separately, to account for the

different number of predicted groups.

Moreover, we used multivariate Cox regression to create a com-

bined predictor that uses the risk scores of the different classifiers as

input. For this, only risk scores that return a numeric risk score were

used (excluding PAM50 and scmgene) and their scores were scaled,

so that scores yielding a low risk prediction (i.e. having a score

below the corresponding cutoff) are mapped to 0–0.5 and high risk

scores to 0.5–1. Most risk scores are not able to return a score if one

of the measurements is missing due to technical errors during the

measurement. In this case, the combined risk score is also not able

to return a score. As this is more probable when more genes are

used, the combined risk score cannot return a score for many

patients. To nevertheless return a score for these patients, we trained

multiple models, excluding each risk score in turn. For the final pre-

diction, we used the model that uses all risk scores, and only used

one of the restricted models if the complete model does not return a

risk score. To evaluate the performance of this combined risk score,

a 5-fold cross validation was used to prevent overfitting.

2.5 Robustness of classifications
Like all measurements, also gene expression measurements are sub-

ject to noise. As most subtype classifiers use a combination of many

genes, the impact of noisy measurements is reduced, as no single

gene influences the prediction too strongly. To assess the impact of

noise on the prediction, we simulated noisy measurements and

checked how often the prediction changed due to small changes in

the gene expression data. For this, we repeatedly sampled for each

measurement a noise term from a normal distribution centered

around zero and added it to the measurement. Then we checked for

each classifier, whether the same subtype or risk group (high or low)

was predicted for the real and modified measurement. Robust classi-

fiers should be able to make the same prediction for the real and

modified measurements with simulated noise in most cases.

A similar approach allows us to estimate the probability that a

single noisy measurement results in a false prediction for a given pa-

tient. For this we calculate for each gene contained in the classifier

the minimal difference of the gene expression value that would re-

sult in a different prediction. For classifiers with simple formulas

this can be calculated directly, while it can be sampled by calculating

the score with a growing noise term for more complex classifiers.

Given a background noise distribution (e.g. a normal distribution

with mean zero) the probability of observing at least as much noise

can be calculated. These probability values can help to identify gene

expression measurements for which already small (i.e. highly prob-

able) deviations have an effect on the prediction. For these measure-

ments replicate measurements can then be considered to reduce the

impact of random noise and improve the quality of the prediction.

2.6 Interactive report
In addition to the results presented in this paper, we provide a web-

site (https://services.bio.ifi.lmu.de/pia/) that contains an interactive

report of the results. The overview page contains all the main

results: the clinical and pathological characteristics table, perform-

ance table, coherence plot and Cramer’s V table and additionally an

overview of all features for all patients. In the clinical characteristics

table for large enough patient groups with similar characteristics the

performance results for this sub-cohort can be analyzed. Moreover,

for each entry in the performance table the corresponding Kaplan–

Meier plot can be shown in a popup window, to evaluate the

performance in more detail. The survival endpoint used in the

Kaplan–Meier plot can be selected to directly compare the influence

of the different survival endpoints. Furthermore, a page comparing

two classifiers is linked to the corresponding entry of the Cramer’s V

table. This comparison page shows both Kaplan–Meier plots side by

side, so that they can be compared directly. Furthermore, a contin-

gency table shows how many patients are classified with a given

combination of classifications of the two selected classifiers. This

table is again linked to a list of the corresponding patients, with all

available clinical features, classifications and survival information.

This way, one can analyze the patients who were classified discord-

antly in full detail. The patient overview table is linked to a details

view for each individual patient. This view not only shows the avail-

able features of this patient, but also for each classifier an overview

of the corresponding gene expression measurements and how they

relate to the distribution of the gene expression measurements of the

whole cohort, or the subsets that experienced an event or not.

Furthermore, the minimal difference in gene expression to change

the prediction and the corresponding probability to experience this

difference due to random noise is shown for each gene contained in

the classifier. Such a detailed view on individual patients can greatly

help to understand individual predictions and the influence of the

contained genes.

3 Results

3.1 Comparability of Fluidigm chips
With appropriate normalization the different Fluidigm chips should

be comparable. To test this, the CFX and Fluidigm measurements

were compared for the five genes that were also measured on the

CFX platform. Figure 1 shows the comparison of the C(t) values of

the two platforms for the reference gene RPLP0. The different

Fluidigm chips are highlighted by different colors and there is only

some bias for chips 1 and 2. For the first three chips, the sample

amounts differed slightly as they were not done in one batch with

the other chips. This variation is normally corrected for by the

housekeeping normalization that was not applied for this compari-

son due to the small number of genes on the CFX platform. The con-

cordance between the two measurements is quite good with only

few outliers. The C(t) values are shifted between the different qPCR

platforms as they are using different amounts of cDNA and the

cDNA is pre-amplified for the Fluidigm platform. But in general, the

two platforms agree very well, so that the Fluidigm platform seems

to be suitable for its use in gene expression profiling also of large

cohorts using multiple chips.

3.2 Survival analysis
For the PiA study endpoints were assessed five years after the end of

recruitment. Median observation time of patients alive was

5.13 years. We analyzed the OS (n¼97 events), invasive disease-free

survival (n¼122 events), distant disease-free survival (n¼117

events) and recurrence-free interval (RFI¼67 events), all defined

according to STEEP criteria (Hudis et al., 2007). In this paper, we

focus on OS, the results for the other endpoints can be found in the

interactive report. The survival data were used to calculate different

measures for the performance of the risk scores: hazard ratios, log-

rank P-values and the c-index.

Table 2 shows these measures for all risk scores. The correspond-

ing Kaplan–Meier plots are available in the Supplementary Material

and the interactive report. All risk scores yield significant P-values,

hazard ratios well above 1 and a c-index above 0.5. Values above
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0.7 are often considered to indicate good prognostic ability for the c-

index. For the endpoint OS, only EPclin yields a c-index above 0.7

whereas RS, EndoPredict and ROR-S have scores slightly below 0.7.

For the RFI, however, all risk scores yield c-index scores above 0.7.

Interestingly, PAM50 yields a very high hazard ratio and low P-value

for the RFI endpoint. For most endpoints, EPclin performs best: it

yields both the lowest P-value and the highest c-index. For the OS end-

point, of the 292 patients in the low-risk group of EPclin, only 17 had

an event, while 75 of the 395 patients from the high-risk group had an

event after five years. For GGI on the other hand, 28 of the 363 low-

risk patients and 68 of the 363 high-risk patients experienced an event.

Additionally, for each classifier we performed a multivariate Cox re-

gression incorporating clinical features (Supplementary Material). All

classifiers except scmgene contributed additional prognostic informa-

tion. The combined risk score, derived from the multivariate Cox re-

gression performs even slightly better than EPclin, with a lower P-

value, higher hazard ratio and comparable c-index. However, the effect

is moderate, given the increased number of measurements needed.

Gene expression-based classifiers are especially interesting for

patients whose histopathological features are neither clearly associ-

ated with low or high risk. We therefore repeated the analysis limit-

ing the cohort to 370 patients with intermediate risk according to

histopathological features (ERþ/PgRþ/HER2� patients with grade

2). In this sub-cohort, ROR-S and GGI perform slightly better than

the other risk scores (Supplementary Material). Generally, the P-val-

ues are higher for all risk scores as these patients cannot be classified

into low and high risk as easily as the other patients.

For the two subtype classifiers PAM50, scmgene and the histo-

pathological classification, the values for the Luminal A (low risk)

subtypes are shown. While for PAM50 the Luminal A patients have

significantly better prognosis, for scmgene the logrank P-value is

only 0.001 and also its hazard ratio of 1.48 is by far the lowest of all

classifiers. The histopathological classification that does not take

any gene expression measurements into account preforms similarly

well as the other classifiers.

3.3 Concordance of classifications
Figure 2 shows the predictions of all classifiers, as well as some clin-

ical characteristics for all patients. Each row corresponds to one

classifier/characteristic and each column corresponds to one patient.

The patients are ordered in the same way in all rows (according to

the histopathological subtype), so that the predictions/characteristics

can be compared for each patient. Both variants of PAM50 [using

the published model (PAM50) or training a new model (PAM50

new)] yielded similar results. The main difference is that the newly

trained model only returns four subtypes, so that the normal-like

subtype is missing. The predicted subtypes are in many cases the

same as the histopathological subtype, only for HER2 and Luminal

B subtype patients, the two classifications differ. The predictions of

scmgene that only uses three genes to predict the subtype differ in

many cases from the prediction of PAM50. Especially the normal-

like patients are predicted to be basal according to scmgene, while

the newly trained PAM50 classifies them as Luminal A. These

patients are assigned a low risk score by all other methods and they

are ER-positive and HER2-negative according to the immunohisto-

logical measurements. Also, only 2 of the 19 patients had an event

within five years, so these are likely false predictions of scmgene.

All the risk scores predict predominantly low risk scores for the

patients who had Luminal A or normal-like subtypes, and high risk

scores for the basal and HER2 subtypes according to PAM50. Their

predictions differ most for the Luminal B patients. Here, GGI and

EPclin predict high scores for most patients, whereas EndoPredict

and RS yield mostly low scores. The RS did not return a risk score

for many patients, as it uses 21 genes, and cannot return a result if a

measurement for any of these genes is missing.

Table 3 shows the correlation of the risk scores and the Cramer’s

V statistic for the subtype classifiers. All risk scores correspond quite

well to each other, with Spearman’s rank correlation values about

0.7–0.9. Additionally, the Cramer’s V statistic for the risk score’s

classifications into low- and high-risk patients is given in
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Fig. 1. Comparison of C(t) values for the RPLP0 gene for 726 samples meas-

ured on 10 Fluidigm chips and the CFX platform. On the top the C(t) values

are scattered against each other. The correlation between the two measure-

ments was calculated using all measurements (first number) and excluding

the outliers (below 5% quantile or above 95% quantile, second number). The

correlations are given for each chip separately (see legend) and for all chips

combined (see title). There is a shift in the absolute C(t) values due to the dif-

ferent cDNA concentrations and the pre-amplification, but there is a clear cor-

relation between the two measurements and no apparent bias between the

Fluidigm chips. The bottom plot shows the deviations between the Fluidigm

and CFX measurements for each Fluidigm chip separately. (Color version of

this figure is available at Bioinformatics online.)
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Supplementary Material. The concordance of the subtype classifiers

was inferior to the risk scores. Only the published and newly trained

PAM50 classifiers corresponded well to each other, while scmgene

only yielded Cramer’s V statistics of 0.484 and 0.486. Note that in

the literature Cramer’s V values between 0.36 and 0.49 are consid-

ered a substantial relation while values above 0.5 indicate a strong

relation. We also compared the subtype classifier’s predictions to

the clinical histopathological subtypes. The newly trained PAM50

had the highest correspondence with these clinical subtypes, yielding

a Cramer’s V value of 0.58, whereas scmgene again yielded the least

correspondence with a Cramer’s V value of 0.419.

3.4 Robustness to noise
To analyze the robustness of the classifiers to experimental noise,

we simulated 100 datasets where we added a small noise term to

each measurement, and compared the resulting prediction to the

predictions without noise. Figure 3a shows for each classifier how

many patients were misclassified how often in the 100 runs, using a

normal distribution with mean 0 and SD 0.7 [N(0, 0.7)] as noise dis-

tribution. The ROR-S score performed best, with 506 patients with-

out any misclassification, respectively. Interestingly, PAM50 with a

newly trained model seems to overfit and yields for many patients

different predictions when noise is added. Only 219 patients were

never or only once misclassified. Similarly, scmgene is very sensitive

to noise and yields different predictions for nearly all patients: only

44 patients were never or only once misclassified. The robustness to

noise does not seem to depend only on the number of genes used by

the classifier, as, e.g. the RS that uses 21 genes, performs slightly

worse than EPclin that uses only 7 genes and 2 clinical features. It

might rather depend on the way the gene expression measurements

are used or which genes are selected by the classifier.

We repeated this simulation using a smaller noise term sampled

from an N(0, 0.3). The newly trained PAM50 and scmgene still

yielded many misclassifications for most patients. The other risk

Table 2. Logrank P-values, hazard ratios (HR) and concordance index (c-index) for the different risk scores

OS RFI

Risk score logrank P HR c-index No. event No. no event logrank P HR c-index No. event No. no event

Recurrence score 2.818e�7 3.47 0.66 (0.54–0.76) 62/20 220/272 9.406e�9 4.36 0.73 (0.58–0.84) 46/10 236/285

EndoPredict 4.546e�6 3.75 0.69 (0.57–0.78) 80/12 366/230 2.715e�7 11.17 0.78 (0.65–0.87) 59/3 387/239

EPclin 1.20e�6 3.41 0.72 (0.61–0.81) 75/17 320/275 7.159e�8 7.30 0.80 (0.67–0.89) 56/6 339/286

GGI 9.19e�6 2.61 0.64 (0.52–0.73) 68/28 295/335 2.871e�7 4.29 0.70 (0.57–0.81) 53/13 310/350

ROR-S 3.03e�6 3.43 0.68 (0.57–0.77) 88/8 430/200 8.360e�6 7.15 0.75 (0.62–0.85) 62/4 456/204

Combination 8.644e�7 4.49 0.72 (0.61–0.81) 82/9 367/230 7.77e�7 10.46 0.70 (0.59–0.79) 57/4 392/235

PAM50 1.678e�5 3.82 – 72/24 331/299 3.054e�12 11.25 – 59/7 344/316

scmgene 0.001 1.48 – 53/12 313/183 1.086e�2 1.80 – 31/7 335/188

histopathological 7.184–6 2.45 – 66/30 274/348 2.566e�9 6.57 – 51/15 289/363

Note: Additionally, the number of patients with high/low risk score with and without an event is given. On the left the results for the overall survival (OS) endpoint and

on the right for the recurrence-free interval (RFI) are shown. For the concordance index, the lower and upper bound of the 95% confidence interval is given in brackets.

For the subtype classifiers PAM50, scmgene and the histopathological classification we used the values for the Luminal A (low risk) subtype to make them comparable to

the binary predictions of the risk scores. For all risk scores, the low- and high-risk patients differ significantly in their survival, but overall, EPclin performed best.

Fig. 2. Overview of classification results and clinical variables for all patients. The first four rows correspond to subtype classifications, the next 7 rows are clinical

characteristics, and the remaining rows are risk scores. A continuous scale between green and purple is used for numeric values such as the risk scores or age

and grading and different colors for the categorial attributes. The different subtype classifications are mapped to each other by using prior knowledge (e.g. slight-

ly different names for the Luminal A subtype by PAM50, scmgene or the histopathological classification) or by maximizing the overlap to the histopathological

classification (for the newly trained PAM50). (Color version of this figure is available at Bioinformatics online.)
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scores, however, became comparable to ROR-S, except that all but

the RS yielded more patients who were misclassified in many of the

noisy datasets (�5 misclassifications).

Moreover, we calculated for each patient and classifier, how

much each individual gene would have to differ to change the pre-

diction. The probability of observing noise at least that high can be

calculated if a given noise distribution [e.g. N(0, 0.7)] is assumed.

These probabilities range from 0 (for measurements that would have

to be changed a lot to alter the prediction) to �0.6 for our cohort

and are available in the interactive report. This way, measurements

that are very susceptible to noise can be identified and if possible

replicate measurements can reduce the impact of noise for these

measurements.

3.5 Interactive report
Figure 4 shows two screenshots of the iReport. The screenshot on

the left is part of the overall view that shows a summary of the main

results discussed in the paper. It shows an interactive version of the

concordance plot of Figure 2. The user can select which features are

included in the plot and by which classifiers the patients should be

ordered. This allows to compare several features at once. In

Figure 4a, the patients are ordered first by the tumor grade and then

after the GGI risk score that was developed to determine the grade

by gene expression. The corresponding two rows are shown at the

top of the plot. As can be seen there is some concordance between

the two features, with patients with low grade (purple block on the

left in first (grade) row) have predominantly low GGI scores, and

patients with high grade (green block on the right) have higher GGI

scores. However, the majority of patients have intermediate grade

and these patients show a distribution of both, high and low, GGI

scores.

The screenshot on the right (Fig. 4b) shows the comparison view

for PAM50 and EPclin. It contains the two Kaplan–Meier plots side

by side and a contingency table below. The cutoff of EPclin that is

used to divide the patients into low and high risk can be modified

and the corresponding Kaplan–Meier plot will be updated accord-

ingly. The contingency table shows how many patients are classified

by the different combinations of subgroups of the two classifiers.

The numbers in this table are linked to the corresponding list of

patients, so that by clicking on them a table showing all available

features of the patients is shown. This way subsets of patients can be

analyzed in more detail. For example, by clicking on the correspond-

ing entry in the contingency table, all information for the 82 patients

who were classified as Luminal A by PAM50 and high risk by

EPclin is shown. This allows the user to look at the survival status of

these patients and see that only 11 of these 82 patients are still alive

after five years, which justifies the high-risk prediction of EPclin.

4 Discussion

The Fluidigm IFC platform allows to measure the expression of

many genes for many patients at rather low cost and with little ef-

fort. In this paper, we showed that it can be used to measure the

genes required for several breast cancer classifiers in a large cohort,

which enabled us to systematically compare and evaluate these clas-

sifiers. For a smaller set of five genes, we measured the expression

also on a different qPCR platform and the results showed a good

agreement between the different platforms after normalization.

The comparison of the classifiers showed that they all performed

well on our independent cohort. This shows that the classifiers do not

overfit for the cohort on which they were trained but that they are ap-

plicable also using a different methodology (Fluidigm) and this new

cohort. They provide good estimates of the risk of recurrence of the in-

dividual patients. Also their predictions were concordant, which also

Fig. 3. Number of patients with a given number of misclassifications for each classifier when noise sampled from N(0, 0.7) (left) and N(0, 0.3) (right) is added to

the measurements. For each patient random noise is added 100 times and the patients are classified according to the number of misclassifications in the 100 sim-

ulations. (Color version of this figure is available at Bioinformatics online.)

Table 3. Correlation for risk scores (above) and Cramer’s V for clas-

sifiers (below)

RORS RS EndoPredict EPclin GGI

RORS 1.000 0.800 0.811 0.754 0.857

RS 1.000 0.824 0.748 0.770

EndoPredict 1.000 0.889 0.753

EPclin 1.000 0.715

GGI 1.000

PAM50 PAM50 new scmgene histopathological

PAM50 1.000 0.837 0.484 0.478

PAM50 new 1.000 0.486 0.578

scmgene 1.000 0.419

histopathological 1.000
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explains why a combined risk score integrating several classifiers

yielded only a slightly better performance. It should be noted that also

the histopathological classification that is easily available in routine

practice performed well concerning the discrimination of high- and

low-risk patients as well as allocating a similar number of low-risk

patients compared with the other classifiers. Most classifiers per-

formed similarly well, only scmgene performed less good and also the

concordance to the PAM50 classifier was lower as described in its ori-

ginal paper (Haibe-Kains et al., 2012; 57% identical predictions com-

pared with 70% reported in the paper). As it only uses the expression

of three genes it is also less robust to noise. However, we cannot de-

cide whether this difference is due to the different cohort or due to the

different experimental platform.

Moreover, we analyzed the robustness of these classifiers with

respect to noise by simulating noisy measurements by adding a ran-

dom noise term. The results showed that especially the classifiers

that are newly trained on each cohort, like scmgene or a newly

trained model using the PAM50 algorithm, are very sensitive to

noise. This also indicates that the cohort that is used to train a new

classifier must be of very good quality as noisy measurements can

greatly impair the quality of the classifier. Furthermore, also be-

tween the classifiers with a fixed model there were large differences

in their robustness to noise, as e.g. GGI yielded the same prediction

for all 100 noisy measurements only in half as many patients as

ROR-S. Furthermore, this kind of noise analysis can also be used to

attribute each measurement with a probability that noise changes

the prediction for a given patient. This can be used to identify meas-

urements for additional replicates to reduce the impact of noise.

It has to be noted that our unselected cohort was comprised of

patients with relatively good clinical prognostic factors. Those

HER2-positive or receptor-negative cases who received neoadju-

vant chemotherapy were not included since fresh frozen material

has not been available. This leads to underrepresentation of clear-

ly high-risk HER2-positive patients and under-representation of

clearly low-risk very small tumors. Thus the proportion of certain

high- and low-risk patients is reduced and effects probably become

smaller. The classifiers perform differently on cohorts with higher

proportions of these patients. In this work, we demonstrated feasi-

bility to analyze a large number of genes by qPCR and use the pub-

licly available research versions of the classifiers on that same

cohort. Second, because we used the research versions of the clas-

sifiers and not the commercial versions, the results may differ

slightly. Third, we could not include information on therapy

which certainly had an effect on outcome: chemotherapy

improving survival of high-risk patients, endocrine treatment

improving survival of ER-positive patients and targeted therapy

improving survival of HER2-positive patients. Thus the differen-

ces between the high- and low-risk groups are diminished.

All the results of this paper are also available as interactive re-

port (iReport) on the accompanying website in order to make all

results reproducible and transparent. This website allows to analyze

the results and especially the differences between the classifiers in

much more detail as is possible in a paper. The online tool allows se-

lection of cases, strata, classifiers, endpoints and visualization of

results. Cross-sectional comparison of clinical and histopathological

data and classifiers assigned to each patient can be seen.

Longitudinal data are shown as Kaplan–Meier curves as by defined

groups. Thus on the one hand, the iReport provides an easy to use

interface to results that cannot be shown in a paper due to page limi-

tations, as e.g. the Kaplan–Meier plots for all classifiers for all sur-

vival endpoints. On the other hand, it also includes much more

detail for individual results by linking the raw data to the summar-

ized result, as is, e.g. done by showing the patient lists with all avail-

able data for the contingency table of the classifications of two

classifiers. We believe that this detailed data can help to generate

new hypotheses, e.g. about the patients who are discordantly classi-

fied and can thus help the further development of new classifiers.
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