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Abstract

Motivation: Linkage disequilibrium measures the correlation between genetic loci and is highly informative

for association mapping and population genetics. As many studies rely on called genotypes for estimating

linkage disequilibrium, their results can be affected by data uncertainty, especially when employing a low

read depth sequencing strategy. Furthermore, there is a manifest lack of tools for the analysis of large-

scale, low-depth and short-read sequencing data from non-model organisms with limited sample sizes.

Results: ngsLD addresses these issues by estimating linkage disequilibrium directly from genotype

likelihoods in a fast, reliable and user-friendly implementation. This method makes use of the full

information available from sequencing data and provides accurate estimates of linkage disequilibrium

patterns compared to approaches based on genotype calling. We conducted a case study to investigate

how linkage disequilibrium decays over physical distance in two avian species.

Availability: The methods presented in this work were implemented in C/C++ and are freely available for

non-commercial use from https://github.com/fgvieira/ngsLD

Contact: fgvieira@snm.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Linkage disequilibrium (LD) measures the non random association of

alleles at different loci. There are several definitions of LD, each one

differing in the information they rely on to measure the statistical

association between loci (Slatkin, 2008). One of the most widely used

is D, which quantifies the difference between the frequency of haplotypes

carrying two pairs of alleles at different loci and the product of the

individual allele frequencies. A standardized version ofD calledD0 is also

often used, since it takes into account the full range of possible D values.

Another common definition of LD is r2, which is widely interpreted as

the squared correlation coefficient for the occurrence of pairs of alleles at

different loci. Both D0 and r2 are defined between 0 and 1.

Information on LD patterns across the genome is useful in both medical

and evolutionary genetics. In the latter case, LD information is used to

infer past historical events and demographic history of the species, or

population, under investigation. Indeed, several factors affect the extent of

LD, including mating system, recombination rate, mutation rate, genetic

drift, and population structure. As a consequence, patterns of LD in a

genome have been used to infer several population genetic parameters

(Tenesa et al., 2007).

Accuracy in the calculation of LD is therefore vital to make sensible

inferences about the population of interest. As more traditional methods

to measure LD rely on resolving individual haplotypes from genotype

data, they are not applicable on low depth sequencing data, where only

few reads cover each position on average. Furthermore, in the study of

non-model organisms, the lack of reference information and large sample

sizes prevent the use of imputation of missing data and haplotype phasing.

Recent studies attempted to integrate data uncertainty into the estimation of

LD and obtained promising results for high frequency alleles and moderate

sample sizes (Maruki and Lynch, 2014; Bilton et al., 2018).

Here we present ngsLD, a comprehensive package designed to

calculate several measures of LD directly from genotype likelihoods.

Using simulations, we show that this method is particularly suitable for

low depth sequencing. Finally, we apply ngsLD on a mRNA sequencing
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dataset from two avian species and confirm a significant difference in their

effective population sizes.

2 Methods

We implemented two algorithms to estimate LD levels from genotype

likelihoods. The main one is a maximum likelihood approach to

estimate haplotype frequencies between pairs of sites using an expectation

maximization (EM) algorithm (Excoffier and Slatkin, 1995) and, from

these, calculate D, D0 and r2. The EM functions were adapted from

bcftools v0.1.18 (Li, 2011). A second approach is based on the

squared Pearson correlation (r2) between expected genotypes, calculated

from the genotype posterior probabilities.

ngsLD accepts both genotype likelihoods and genotype data as input,

and outputs the pairwise LD between all pairs of valid SNPS, with running

time compatible with genome-wide datasets 1. It supports several filtering

options, such as distance between SNPs, minor allele frequency, and

random subset pairs of SNPs. Apart from ngsLD, we also provide several

auxiliary scripts to perform some of the most common LD-related analyses,

such as LD decay curve fitting, LD blocks plotting and SNP pruning.

3 Results

At high sequencing depth (>= 20×) we observed no significant

differences using either called genotypes (CG) or genotype likelihoods

(GL). At lower depths, results show a rise in both Root Mean Square

Deviation (RMSD) and Mean Standard Bias (MSB), but markedly lower

for the GL method (Fig. S1, Tables S2-S3). The largest difference in

performance was observed when estimating r2 and D0 at low depth,

with the EM method based on GL implemented outperforming estimates

based on CG. As an example, D0 estimates from GL at 2× have similar

RMSD to those based on CG at 5×, and r2 estimates from GL at 5× with

similar RMSD to those based on CG at 10×. Estimate of r2 from expected

genotypes tend to display low accuracy at depths < 10× (Tables S2-S3),

regardless of the method used (CG or GL).

We then assessed the accuracy of fitting LD decay curves from r2

(Fig. 1, S2) and D0 (Fig. S3). At higher depth (> 5×), we do not

observe significant differences between CG and GL, probably because the

amount of SNPs available can partially compensate for the lower coverage.

However, at <= 5×, we observe a loss of fitting power when using CG

but not when using GL. For very low sequencing depths (<= 1×), it

is difficult to obtain reliable fittings, although this might be mitigated

with larger sample sizes (Fig. S4). The script for pruning of SNPs based

on their LD levels (prune_graph.pl) removed 3, 810 SNPs in one

simulation, from a total of 67, 726, and drastically reduced LD levels as

expected (Fig. S5). We also illustrate the use of the script to plot LD blocks

(LD_blocks.sh), and plot the region between 35kb and 50kb from the

simulated data at 50× (Fig. S6).

4 Application

We analyzed mRNA sequencing data from gonad and spleen of 10

mallard ducks (Anas platyrhynchos) and 11 turkeys (Meleagris gallopavo)

(Harrison et al., 2015), that has highly variable coverage distributions (Fig.

S7 and S8). Both populations were captive reared and have previously been

shown to have different effective population sizes (Wright et al., 2015) but

with reasonably conserved recombination rates. We processed each data

set separately and fitted an LD decay curve for each species. We observe

a significantly greater intercept and slope of LD decay against physical

distance in the turkey (Fig. S9), consistent with lower effective population

size in the turkey population, as previously shown (Wright et al., 2015).
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Fig. 1. Fitting of r2 decay from simulated data from both called genotypes (CG) and

genotype likelihoods (GL), across different coverages. The best-fitted curves were based

on 250bps bins.

When comparing ngsLD against GUS-LD (Bilton et al., 2018) on

a subset of this real dataset, we observe that ngsLD is less affected by

artificially downsampling data to lower depths (Fig. S10), although both

methods tend to overestimate LD values.

5 Conclusion

ngsLD provides a valid and robust solution for estimating LD values from

low depth sequencing data and limited sample sizes. We show that we can

successfully infer LD values for depths as low as 2×, while still keeping

acceptable error rates. We also provide several companion scripts designed

to perform common LD-related analyses, such as SNP pruning and LD-

decay fitting, which are the baseline for population genetic inferences.

Finally, we show that ngsLD outperforms an existing method for LD

estimation from low depth data in accuracy and memory-usage.
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