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Abstract 
Motivation: Interactions among such cis-regulatory elements as enhancers and promoters are main 
driving forces shaping context-specific chromatin structure and gene expression. Although there have 
been computational methods for predicting gene expression from genomic and epigenomic information, 
most of them overlook long-range enhancer-promoter interactions, due to the difficulty in precisely link-
ing regulatory enhancers to target genes. Recently, a novel high-throughput experimental approach 
named HiChIP has been developed and generating comprehensive data on high-resolution interactions 
between promoters and distal enhancers. On the other hand, plenty of studies have suggested that 
deep learning achieves state-of-the-art performance in epigenomic signal prediction, and thus promot-
ing the understanding of regulatory elements. In consideration of these two factors, we integrate prox-
imal promoter sequences and HiChIP distal enhancer-promoter interactions to accurately model gene 
expression. 
Results: We propose DeepExpression, a densely connected convolutional neural network to predict 
gene expression using both promoter sequences and enhancer-promoter interactions. We demonstrate 
that our model consistently outperforms baseline methods not only in the classification of binary gene 
expression status but also in the regression of continuous gene expression levels, in both cross-vali-
dation experiments and cross-cell lines predictions. We show that sequential promoter information is 
more informative than experimental enhancer information while enhancer-promoter interactions are 
most beneficial from those within ±100 kbp around the TSS of a gene. We finally visualize motifs in 
both promoter and enhancer regions and show the match of identified sequence signatures and known 
motifs. We expect to see a wide spectrum of applications using HiChIP data in deciphering the mech-
anism of gene regulation. 
Availability: DeepExpression is freely available at https://github.com/wanwenzeng/DeepExpression. 
Contact: ruijiang@tsinghua.edu.cn, ywang@amss.ac.cn  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Gene regulation, as one of the fundamental problems in biology, explains 
how different types of cells in the human body emerge from the identical 

information encoded by the genome (Ozbudak, et al., 2002). The tran-
scription of a gene is an extremely intricate process that requires a com-
plex set of interactions among a myriad of proteins and DNA sequences 
(Maston, et al., 2006). The regulation of this process is accomplished in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/341214doi: bioRxiv preprint 

https://doi.org/10.1101/341214
https://doi.org/10.1101/341214
https://doi.org/10.1101/341214
https://doi.org/10.1101/341214
https://doi.org/10.1101/341214
https://doi.org/10.1101/341214
https://doi.org/10.1101/341214


Zeng et al. 

large part by promoters and enhancers, which are DNA sequences con-
taining multiple binding sites for a variety of transcription factors (TFs) 
(Yao, et al., 2015). Enhancers can activate transcription independent of 
their location, distance or orientation with respect to the promoters of 
genes (Heinz, et al., 2013). Therefore, ever since the emergence of high-
throughput experiments for quantifying gene expression (Wang, et al., 
2009), computational biologists have long been interested in how well 
gene expression can be inferred by using TFs and regulatory elements 
(Rockman and Kruglyak, 2006), for deciphering the mechanism of gene 
regulation. 

In computational studies of gene regulation (Lee and Young, 2013), 
various experimental data related to one-dimensional (1D) epigenomic 
signals, including TFs binding (Li, et al., 2014), histones modification 
(Karlic, et al., 2010) and chromatin accessibility (Duren, et al., 2017), are 
taken as features to predict gene expression. These methods for predicting 
gene expression mainly fall into two categories. The first class of methods 
predict whether gene expression is high or low under a binary classifica-
tion formulation. For example, DeepChrome (Singh, et al., 2016) used 
five histone markers in promoter regions with a convolutional neural net-
work (CNN) to predict gene expression status. The second class of meth-
ods infer continuous gene expression levels under a regression framework, 
and thus can provide quantitative predictions. For example, Ouyang et al. 
used ChIP-Seq data of 12 TFs in mESC cells with a linear regression 
model to predict gene expression (Ouyang, et al., 2009). Karlić et al. col-
lected nineteen histones modification in promoter regions in mouse em-
bryonic stem cells and used a regression model for the prediction (Karlic, 
et al., 2010). Dong et al. used twelve histone modification markers and 
chromatin accessibility in promoter regions with a two-step model for the 
prediction (Dong, et al., 2012). They first constructed a random forest 
model to predict whether a promoter was active or not and then adopted a 
regression model to predict expression level of the corresponding gene. 
However, all these methods do not explicitly take enhancers and three-
dimensional (3D) enhancer-promoter interactions into consideration thus 
far, probably due to both the difficulty in accurately linking enhancers to 
their target genes and the uncertainty of how strong these interactions will 
affect the gene expression (Mora, et al., 2015).  

The recent development of HiChIP (Mumbach, et al., 2016), a high 
throughput experimental technique for sensitive and efficient analysis of 
protein-centric chromosome conformation, holds the promise to capture 
chromatin loops with high sensitivity and specificity. Compared with Hi-
C (Belton, et al., 2012) and chromatin interaction analysis by paired-end 
tag sequencing (ChIA-PET) (Li, et al., 2014), HiChIP is able to measure 
protein-centric chromatin conformation in a rapid, efficient, technically 
simplified and high-resolution way. Among existing HiChIP studies, two 
of them stand out to show the ability of HiChIP in identifying enhancer-
promoter interactions. First, Mumbach et al. evaluated H3K27ac, an en-
hancer- and promoter-associated mark, as a candidate factor to selectively 
interrogate enhancer-promoter interactions across the genome (Mumbach, 
et al., 2017). Second, Weintraub et al. found the binding of YY1 to active 
enhancers and promoter-proximal elements and formed dimers that facil-
itated the interaction of these DNA elements (Weintraub, et al., 2017). 
Therefore, HiChIP experiments of H3K27ac and YY1 have been devel-
oped to identify high-confidence 3D chromatin loops focused around en-
hancer-promoter interactions. These data sets provide valuable raw mate-
rials to study regulatory functions of enhancer-promoter interactions on 
gene expression. 

Besides the rapid progress in biological experiments, recently, deep 
learning techniques have achieved the state-of-the-art performance on 
many bioinformatics applications such as regulatory site identification 
(Alipanahi, et al., 2015) and biomedical image classification (Krizhevsky, 

et al., 2017). A deep learning model automatically learns a complex non-
linear function that maps inputs onto outputs, eliminating the need to use 
hand-crafted features or rules. As a representative model, CNN captures 
local characteristics in an input sample and learn important features that 
help make final predictions (LeCun, et al., 2015). In the recent years, 
CNNs have been successfully used in a wide spectrum of fields such as 
computer vision (Razavian, et al., 2014) and natural language processing 
(Vinyals, et al., 2015). In bioinformatics, CNNs have been used to predict 
regulatory elements (Min, et al., 2017), chromatin accessibility  (Liu, et 
al., 2018) and epigenetic states of a DNA fragment (Min, et al., 2017; 
Zhou and Troyanskaya, 2015) , as well as explain functional implications 
of genetic variants (Zhou and Troyanskaya, 2015). 

Inspired by promising HiChIP experiments and advanced deep learning 
techniques, we introduce DeepExpression, a deep learning framework to 
model gene expression, with the consideration of enhancer, promoter, and 
their interactions. For distal enhancers, we adopt the state-of-the-art high-
resolution 3D HiChIP experiments as features. For proximal promoters, 
we apply a recently developed deep learning model called densely con-
nected convolution neural networks to extract epigenomic features in pro-
moter regions. Validation experiments show that DeepExpression consist-
ently outperforms several baseline methods not only in the classification 
of binary gene expression status but also in the regression of continuous 
gene expression levels. Model ablation analysis indicates that both the 
promoter information and enhancer information is informative for gene 
expression prediction. Furthermore, through a visualization strategy, we 
show that DeepExpression successfully captures sequence motifs in both 
promoter and enhancer regions, which are matched in the JASPAR data-
base (Khan, et al., 2018). 

2 Methods 

2.1 Data collection and preprocessing  
We collected HiChIP data of H3K27ac for mouse embryonic stem cells 
(mESC) and identified corresponding RNA-seq data (Weintraub, et al., 
2017). We collected HiChIP data of YY1 for the HCT116, Jurkat and 
K562 cell lines (Weintraub, et al., 2017) and identified corresponding 
RNA-seq data from the ENCODE project (Consortium, 2012). We ex-
tracted DNA fragments of 2,000 base pairs around transcription start site 
(TSS) of a gene as its promoter region. The summary of the data is shown 
in Table 1. 

We followed the preprocessing pipeline described in (Weintraub, et al., 
2017) to deal with RNA-seq data. Taking mESC as an example, raw fasta 
data was aligned and quantified by using kallisto (version 0.43.0) (Bray, 
et al., 2016) with the RefSeq transcriptome of mm9, resulting in estimated 
transcript counts. These counts were then summated across all isoforms of 
a gene to obtain gene-level counts. Finally, gene expression levels were 
calculated by applying a logarithmic transform of base 10 to gene-level 
counts,	after adding a pseudocount of α	(α = 0.1), and then quantile nor-
malized across samples.  

We followed the preprocessing pipeline described in (Weintraub, et al., 

Table 1.  Summary of data. Columns are the name of cell line, reference genome, 
number of genes, definition of promoters, and definition of enhancers in correspond-
ing HiChIP experiment. 

Cell line Species Genes Promoter Enhancer 
mESC mm9 18871 TSS ±1000 bp H3K27ac HiChIP 
K562 hg19 17899 TSS ±1000 bp YY1 HiChIP 
Jurkat hg19 17899 TSS ±1000 bp YY1 HiChIP 

HCT116 hg19 17899 TSS ±1000 bp YY1 HiChIP 
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2017) to deal with HiChIP data. We processed HiChIP data by first iden-
tifying reads with a restriction fragment junction, i.e., a site where ligation 
occurred. Reads containing a restriction fragment junction were trimmed 
such that the information from 5’ to the junction was kept. Reads without 
restriction fragment junctions were left untrimmed. The resulting reads 
were then mapped using bowtie (Langmead, et al., 2009) against the mm9 
genome or hg19 genome assembly. All unmapped or repetitively mapped 
reads were discarded in further analysis. We then utilized a statistical 
method named Origami (Weintraub, et al., 2017) to identify high-confi-
dence interactions that represent specific chromatin contacts, among all 
putative interactions. Here, specific chromatin contacts are defined as 
those that are detected with greater frequency than expected, given the 
linear genomic distance between two contacting regions. Finally, to adjust 
for different sequencing depths, we divide interaction counts nij 	 for 
interaction j in sample i by the total read count of the sample Ni and then 
scale the result by multiplying the minimum read count of all samples N. 
After this procedure, the raw count 𝑛+,  for inteaction 𝑗 of sample 𝑖  was 
converted into a normalized read count ñ+, = 𝑛+, 𝑁+⁄ × 𝑁. 

Normalized interaction counts from a total of n replicate samples were 
averaged and then logarithmic transformed with base 2 after adding a 
pseudocount of 1 to characterize the interaction affinity of an interaction 
in a cell line. The value of HiChIP interaction signal is therefore 

log6 71 +
1
𝑛
9 ñ+,

:

,;<
= 

We divided the 2,000 kilo-basepair (kbp) DNA region (±1000 kbp) around 
the TSS of each gene into bins of length 5 kbp. Each bin includes adjacent 
positions of 5 kbp flanking the TSS of a gene. The value of HiChIP signals 
for a bin is then used as its input feature. These HiChIP signals represented 
long-range enhancer-promoter interactions. 

2.2 Design of DeepExpression 
As illustrated in Figure 1, DeepExpression consists of three modules. First, 
a proximal promoter module is used to extract features from DNA se-
quences in promoter regions. Second, a distal enhancer-promoter interac-
tion module is used to extract features of HiChiP enhancer-promoter in-
teractions signals. Finally, a joint module integrates outputs of the proxi-

mal promoters and distal enhancer-promoter interaction modules to pro-
duces a predicted gene expression signal.  

Proximal promoter module as a densely connected convolutional neu-
ral network 

The proximal promoter module consists of three main components: a one-
hot encoding input layer, three densely connected convolution blocks and 
three fully connected layers. 

The one-hot encoding layer converts a DNA fragment into a numerical 
representation for downstream processing. It encodes the nucleotide in 
each position as a four-dimensional one-hot binary vector, in which each 
element represents one type of nucleotide: A, C, G, and T. The encoding 
layer then concatenates the binary vectors into a 4-by-2000 binary matrix, 
representing the whole 2000-bp target sequence.  

The densely connected convolution blocks automatically extract fea-
tures for an encoded DNA fragment. Recent advances in deep learning 
have shown that a classical convolutional neural network, though in 
general exhibiting high performance in prediction tasks, usually have hun-
dreds of thousands of parameters involved, and thus often result in the 
severe overfitting problem on tasks with small training set sizes 
(Srivastava, et al., 2014), like our data. To utilize parameters more effi-
ciently and avoid the overfitting problem, a densely connected convolu-
tion network (Huang, et al., 2017) connects all layers directly with each 
other, as schematically illustrated in Figure 1. In detail, in a block consists 
of L (L = 4) convolution layers, the input of the l-th	layer is the concate-
nation of the feature-maps produced by all preceding layers 0,… , 𝑙 − 1, as  

	𝐱B = HB([𝐱E, 𝐱<, … , 𝐱BF<]) 
where Hl	denotes the concatenation operation. Meanwhile, the feature-
map of the l-th layer are passed on to all 𝐿 − 𝑙 subsequent layers. This 
introduces 𝐿(𝐿 + 1)/2 connections in an 𝐿-layer network, instead of just 
L, as in a traditional architecture of convolutional neural networks.  

The convolution operation could be formulated as 

Conv(𝐗)+O = Relu S9 9𝑤U:O 𝑥+WU,:

XF<

:;E

YF<

U;E

Z 

where 𝐗 is the input matrix, M the size of the sliding window, N the num-
ber of input channels, 𝐖O = (𝑤U:O )Y×X  the weight matrix of the k-th con-
volution kernel with size 𝑀 × 𝑁. In the first convolution layer, N	is equal 

 

Figure 1. The graphical illustration of DeepExpression. First, a sequential promoter module is pre-trained to extract features from the input promoter regions. Second, an 
experimental HiChIP enhancer-promoter interactions module is adopted to fine-tune DeepExpression. Finally, a joint module integrates outputs of the promoter and enhancer 
modules to predict the gene expression.  
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to 4. This first convolution process is equivalent to scanning a position 
weighted matrix (PWM) across the target sequence. In the other convolu-
tion layers, N is equal to the total number of convolutional kernels of all 
the preceding layers. The convolution layer then applies the rectified lin-
ear unit (ReLU) nonlinear function as 

Relu(𝑥) 	= max(0, 𝑥) 
The pooling layer computes the maximum in each of the non-overlapping 
windows of size M, providing invariance to local shifts and reducing the 
number of parameters.  

Pool(𝐗)+O = maxa𝑥+Y,O, 𝑥+YW<,O, … , 𝑥+YWY,Ob 
Three fully connected layers with 80, 40, and 40 units, respectively, per-

forms linear transformations of the outputs of the previous layer, and ap-
plies the rectified linear unit nonlinear function. Multiple nonlinear layers 
enable the model to learn hierarchical representations of data with increas-
ing levels of abstraction. Finally, the proximal promoter module transfers 
each sequential input to a 40-dimensional real vector. 

Distal enhancer-promoter interaction module as a feedforward neu-
ral network 

The distal enhancer-promoter interaction module receives 400-dimen-
sional real vector HiChIP enhancer-promoter interactions signals as input.   
It uses two fully connected layers with 80 and 40 units to transform the 
one-dimensional numeric enhancer-promoter interaction strength input to 
a 40-dimensional real vector.  

Joint expression prediction module as a feedforward neural network 

The joint module integrates different features from both the proximal pro-
moter and distal enhancer modules to predict gene expression. We merge 
outputs of these two modulus to form a feedforward neural network. For 
binary classification model, we use the softmax function to produce a 
probability output in the range of 0 to 1 that can easily and automatically 
be converted to output class values as 𝑓+(𝑧)= 𝑒fg ∑ 𝑒fi,⁄ , where 𝑓+(𝑧) is 
the predicted probability that the input gene belongs to class 𝑖 (i.e., +1 for 
high expression and -1 for low expression). For continuous regression 
model, we modified the output layer by replacing the softmax layer with 
a linear transformation layer.  

2.3 Training of DeepExpression 
We trained the proposed model in two main steps. First, in a model selec-
tion and pre-training step, we optimized the cross entropy loss function in 
the classification model and the mean squared error loss function in the 
regression model, using the RMSprop optimizer with a batch size of 4 and 
used dropout for the model regularization with a 0.5 dropout rate. We also 
applied the early stopping strategy (Erhan, et al., 2010) with the maximum 
number of iterations set to 60, and it would stop training after 5 epochs of 
unimproved loss on the validation set. We denote the model that has been 
trained up to this step as DeepExpression-seq.  

Second, in a fine-tuning step, we incorporated the enhancer-promoter 
interaction module right before the joint output module. During the fine-
tuning, we optimized the cross entropy or mean squared error loss function, 
only updating the weight parameters in the HiChIP enhancer-promoter in-
teraction module. By fixing the weight parameters in the other layers, 
DeepExpression could avoid overfitting and effectively learn to incorpo-
rate the sequence representations with the HiChIP enhancer-promoter in-
teractions information.   

We adopted multi-fold cross-validation experiments to evaluate our 
model. Taking 10-fold as an example, we split each dataset into ten strictly 
non-overlapping groups by random sampling. In the validation, we used 
nine groups to train our model and the rest one as testing data. Data of the 
nine groups was further split as a training set and a validation set with ratio 

0.8:0.1. The training set was used to adjust weights in the network, and 
the validation set was used to avoid overfitting. We implemented our 
method by using Keras, a deep learning library for Theano and Tensorflow. 
We used Theano as the backend, while the Tensorflow backend also gen-
erated very close results through our testing. The high-performance 
NVIDIA Tesla K80 GPU was used for model training. 

2.4 Comparison with baseline machine learning models 
To evaluate the performance of DeepExpression, we implemented three 
baseline methods for classification (logistic regression, SVM and random 
forest) and three methods for regression (linear regression, Lasso regres-
sion, and random forest regression). All the methods took both sequential 
and experimental data as input in accord with DeepExpression. For se-
quence data, we split the sequence of a DNA fragment into k-mers follow-
ing the idea of gkmSVM (Ghandi, et al., 2016). For experimental data, we 
took signals for bins to form an input vector. Baseline methods were im-
plemented using the SciKit-learn library (http://scikit-learn.org).  

We performed an internal 10-fold cross-validation experiment for 
model selection among regularization parameter and hyper-parameter 
configurations. For Lasso regression, we searched over 250 points that 
were evenly spaced between 10Fj and 10j  in log scale to optimize the 
regularization parameter. For SVM, we also searched over 250 points that 
were evenly spaced between 10Fj and 10j  in log scale to optimize the 
regularization parameter. For random forest classification and regression, 
we searched from all models selected from the following hyper-parameter 
configurations: the number of base estimators (chosen from [50, 100, 200, 
300, 400, 500, 600, 700, 800, 900, 1000]) and the maximum depth of the 
individual regression estimators (chosen from [2, 4, 6, 8, 10]).  

2.5 Statistical significance 
We used two statistical tests in the SciPy library (http://scipy.org) for de-
termining the statistical significance of prediction results. To determine 
the significance of the Pearson correlation between real and predicted gene 
expression levels, we used the two-tailed Student’s 𝑡-test with 𝑛 − 2 de-
grees of freedom under the null hypothesis that the two sets of values are 
uncorrelated. For comparing the performance (measured by the AUC 
score for classification and Pearson correlation for regression) of two 
methods in cross validation experiments, we used one-sided Wilcoxon 
rank sum tests, which tests whether our method achieves higher perfor-
mance than a baseline method. 

2.6 Motif visualization  
We convert each kernel of the first convolution layer into a position weight 
matrix (PWM) by scanning along input sequences for activated positions 
of the kernel and then calculating the PWM by pooling corresponding re-
gions. We regard a position i as being activated if   

9 9 𝜔U:O
XF<

:;E

YF<

U;E
𝑥+WU,: > α ⋅ EAV,	 

where M  is the length of a kernel, N the number of input channels, α the 
control coefficient ( 0 < α < 1 ), and EAV the extreme activation value 
defined as   

EAV =9 max(𝜔U:O |0 ≤ 𝑛 ≤ 𝑁 − 1)
YF<

U;E
.	 

We set length of filters in the first convolutional layer to 8 and α to 0.7 in 
our visualization experiments. We identify putative motifs using the tool 
TomTom 4.11.2 (Gupta, et al., 2007) with 𝐸 -value threshold 0.05 to 
match PWMs identified by our method to the JASPAR database (Khan, et 
al., 2018). 
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3 Results 

3.1 HiChIP enhancer-promoter interactions are discrimina-
tive features for predicting gene expression 

Since no previous studies have shown contributions of chromatin interac-
tions to gene expression in a quantitative way, we first devised and tested 
the ability of HiChIP enhancer-promoter interactions to discriminate gene 
expression levels from the mESC cell line. We first simply summated all 
the loop counts of each gene and drew the heatmap of scatter plot of loop 
counts and gene expression. Figure 1A shows that the correlation between 
gene expression levels and total HiChIP loop counts is up to 0.623. We 
then counted the number of loops of each gene and drew the heatmap of 
scatter plot of the number of loops and gene expression. Figure 1B shows 
that correlation between gene expression and the number of HiChIP loop 
counts is also high, around 0.583. We could conclude that these HiChIP 
signals are highly correlated with gene expressions. Owing to the high-
resolution and protein-centric HiChIP experiments, we could devise active 
enhancer-promoter interactions, which have huge impact on gene expres-
sion, from all the 3D interactions, and thus provides the promising features 
to predict gene expressions.  

We further show a simple example of the relationship between gene ex-
pression and HiChIP signal in three human cell lines. CTAGE8 is an im-
portant paralog of CTAGE4, a gene associated with Cutaneous T Cell 
Lymphoma (Usener, et al., 2003). We find that CTAGE4 only expresses 
in the HCT116 cell line and almost has no expression in K562 and Jurkat. 
From HiChIP data, no enhancer-CTAGE8 interactions are detected in 
K562 and Jurkat while two active enhancer-CTAGE8 interactions are 
found in HCT116.  

From the above analysis, we could draw the conclusion that cell-type 
specific enhancer-promoter interactions obtained from HiChIP indeed 
provide useful regulatory information on gene expression, and thus are 
discriminative features for predicting gene expression. 

3.2 DeepExpression accurately predicts binary gene expres-
sion status 

We discretized the expression value of a gene to a binary status that indi-
cates whether its expression is high or low. Given a specific cell line, we 
focused on all protein-coding genes collected from RefSeq, used the me-
dian of expression values across all such genes as a threshold, and assigned 
a positive label (+1) to a gene whose expression value is greater than or 

equal to the threshold and a negative label (-1) otherwise. We then sys-
tematically evaluated the performance of our method in capturing gene 
expression codes from the viewpoint of binary classification via a series 
of carefully designed multi-fold cross-validation experiments. We com-
pared the performance of DeepExpression with three baseline methods, 
including logistic regression, SVM and random forest. We also proposed 
a variation of our model, named DeepExpression-seq, which discarded the 
HiChIP experimental data integration module and predicted gene expres-
sion using only DNA sequence information. We repeated the cross-vali-
dation experiments for different number of folds (5, 10, 15, 20), evaluated 
the performance of each method using a criterion called AUC, the area 
under the receiver operating characteristic curve (ROC), and reported the 
classification performance measured in AUC in Figure 3. 

As shown in the figure, our method consistently outperforms all the 
baseline methods. For example, in the 10-fold cross-validation experiment 
for mESC, the AUC scores of our method are 0.0574, 0.677 and 0.1458 
higher than random forest, SVM and logistic regression, respectively. 
One-sided paired-sample Wilcoxon rank sum tests against the alternative 
hypothesis that our method achieves a higher AUC than a baseline method 
consistently show significant results (p-values < 3.1e-10 for all the three 
methods).  

Our method also demonstrates much higher robustness than the base-
line methods in Figure 3. For example, in the 10-fold cross-validation ex-
periment for mESC, the variance of AUC scores of our method are 0.010, 
0.024 and 0.047 lower than random forest, SVM and logistic regression, 
respectively. With such variances of AUCs calculated for cross-validation 
experiments of different folds for each cell line, one-sided paired-sample 
Wilcoxon rank sum tests against the alternative hypothesis that our 
method achieves smaller variance than a baseline method consistently 
show significant results (p-value < 6.1e-6 for all the three methods). We 
therefore conjecture that our method is not sensitive to the partition of 
training and test samples.  

It is worth noting that the performance of DeepExpression-seq, which 
only uses DNA sequence information, is also superior to the three baseline 
methods and performs more steadily. For example, in the 10-fold cross-
validation experiment for mESC, the AUCs of this model are 0.0073, 
0.176 and 0.0957 higher than random forest, SVM and logistic regression, 
respectively. One-sided paired-sample Wilcoxon rank sum tests against 
the alternative hypothesis that our method achieves higher AUC scores 
than a baseline method consistently show significant results (p-values < 
1.7e-4 for all the methods).  

 

Figure 2. A) Scatter plot of HiChIP loop counts and gene expression (PCC: 0.623). 
The color bar on the right indicates the density of the scatter plot. B) Scatter plot of 
the number HiChIP loop counts and gene expression (PCC: 0.583). The color bar on 
the right indicates the density of the scatter plot. C) Visualization of the HiChIP 
loops of CTAG8, the expression of CTAG8 in K562, Jurkat and HCT116 cell lines 
respectively. 
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Figure 3. The classification performance measured in auROC at different K-folds 
cross validation experiments (K=5, 10, 15, 20). 
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Finally, in terms of model training, benefit from the usage of dropout 
layers and the early stop strategy, the performance of DeepExpression on 
the test set is fairly close to that on the training set, indicating that our 
method is capable of avoiding overfitting. Taken together, these results 
suggest that deep learning outperforms the conventional machine learning 
methods for the prediction of gene expression based on target sequence 
composition and experimental enhancer-promoter interactions. 

3.3 DeepExpression accurately regresses continuous gene 
expression levels 

In the above classification experiments, we simply consider genes with 
two distinct status, namely highly or lowly expressed. However, degree of 
gene expression is actually a continuous variable, and hence binary clas-
sification models are unable to identify putative genes with different ex-
pression in more detailed level. To address this problem, we built a Deep-
Expression regression model to further recover the degree of gene expres-
sion levels. We modified the structure of the classification model by re-
placing the softmax output layer with a linear transformation layer. Be-
sides, we used mean square error (MSE) as the loss function, thus forming 
the DeepExpression regression model. 

Similar to the experiments in classification, we used our regression 
model to recover the gene expression with the same datasets. For evalua-
tion purpose, we computed the Pearson Correlation Coefficient (PCC). 
We reported the regression performance measured in PCC in cross-vali-
dation experiments of different folds in Figure 4.  

As shown in the figure, our method consistently outperforms all the 
baseline methods. For example, in the 10-fold cross-validation experiment 
for mESC, the PCC of our method are on average 0.0404, 0.1669, and 
0.2763 higher than random forest regression, Lasso and linear regression, 
respectively. One-sided paired-sample Wilcoxon rank sum tests against 
the alternative hypothesis that our method achieves higher PCCs than a 
baseline method consistently show significant results (p-values < 7.8e-13 
for all the three methods). It is also worth noting that the performance of 
the DeepExpression-seq model is also superior to the three baseline meth-
ods and performs more steadily. For example, in the 10-fold cross-valida-
tion experiment for mESC, the PCC of DeepExpression-seq are on aver-
age 0.0020, 0.1227, and 0.2321 higher than random forest, Lasso and lin-
ear regression, respectively. One-sided paired-sample Wilcoxon rank sum 
tests against the alternative hypothesis that our method achieves higher 
PCCs than a baseline method consistently show significant results (p-val-
ues < 4.1e-5 for all the three methods). 

Our method again demonstrates much higher robustness than the base-
line methods in the regression task. With variances of PCCs calculated for 
cross-validation experiments of different folds for each cell line, one-sided 
paired-sample Wilcoxon rank sum tests as described in the previous sec-
tion consistently suggest that our method achieves significantly smaller 
variance than a baseline method (p-value < 3.6e-8 for all the three meth-
ods).  

Besides, we also noticed that all methods achieved higher performance 
in mESC than the other three cell lines in both classification and regression 
cases. We conjecture this is probably due to two reasons. First, gene reg-
ulation in stem cells is simpler than differentiated cells, and this reason 
may explain the situation that most gene expression prediction methods 
are only trained and predicted in mESC. Moreover, K562, Jurkat and 
HCT116 are all cancer cell lines, making it harder to model gene expres-
sion. Second, since H3K27ac has long been recognized as enhancers and 
promoters markers while YY1 is found to related to enhancer-promoter 
interaction recently, we presume that HiChIP experiments of H3K27ac 
might have higher accuracy than those of YY1 in capturing enhancer-pro-
moter interactions.  

In summary, the superior performance of our method in all cell lines 
indicate the general prediction ability of DeepExpression. With our regres-
sion model, we could determine and quantify the expression degree of a 
input gene with a continuous value. DeepExpression regression model 
hence provides us a broader way of predicting gene expression and infer-
ring genes status.  

3.4 Cross-cell line prediction 
A HiChIP experiment provides a means of measuring how strong an en-
hancer regulates a target gene in a cell line. Since such regulatory relation-
ships may be shared among cell lines, it could be possible to impute the 
expression of a gene in a cell line with the incorporation of HiChIP exper-
imental data of other cell lines. To simulate this scenario, we performed a 
series of experiments for cross-cell line prediction by employing a collec-
tive scoring strategy. Given a cell line of interest and a gene, we used 
DeepExpression models trained on other cell lines to predict expression of 
the gene, and then averaged over such predictions to obtain the final pre-
diction result of the gene for the given cell line. 

We used the datasets of the three human cell lines to demonstrate the 
ability of our method to regress gene expression in a cross-cell line manner. 
For each of the three cell lines, we used the regression models of the other 
two cell lines to make predictions, and then averaged over the resulting 
two regression values to obtain a final regression value for a test gene. As 

 

Figure 4. The regression performance measured in PCC at different K-folds cross 
validation experiments (K=5, 10, 15, 20). 
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Figure 5. The cross-cell line performance measured in PCC at different independent 
testing cell lines. 

0.4

0.5

0.6

0.7

0.8

2 5 10 15 20
K−folds cross−validation

m
ea

n 
PC

C
 sc

or
es

Methods 1DeepExp 2Seq−deepExp 3RandomForestRegression 4Lasso 5LinearRegression

HCT116

0.4

0.5

0.6

0.7

0.8

2 5 10 15 20
K−folds cross−validation

m
ea

n 
PC

C
 sc

or
es

Methods 1DeepExp 2Seq−deepExp 3RandomForestRegression 4Lasso 5LinearRegression

HCT116

0.4

0.5

0.6

0.7

0.8

2 5 10 15 20
K−folds cross−validation

m
ea

n 
PC

C
 sc

or
es

Methods 1DeepExp 2Seq−deepExp 3RandomForestRegression 4Lasso 5LinearRegression

HCT116

0.4

0.5

0.6

0.7

0.8

2 5 10 15 20
K−folds cross−validation

m
ea

n 
PC

C
 s

co
re

s

Methods 1DeepExp 2Seq−deepExp 3RandomForestRegression 4Lasso 5LinearRegression

HCT116

DeepExpression Random forest regression Lasso Linear regression

0.3

0.4

0.5

0.6

K562 Jurkat HCT116
the predicted cell line

PC
C

 sc
or

es



Predicting gene expression via densely connected convolutional neural network 

shown in Figure 5, this cross-cell line predicting strategy is consistently 
superior to the three baseline methods. In more detail, the PCC of our 
method are on average 0.33, 0.30 and 0.27 higher than random forest, 
Lasso and linear regression, respectively.  

These results suggest that by combining information of both promoters 
and enhancer-promoter interactions, we might learn the core code of gene 
regulation across different cell types. As the boosting of HiChIP enhancer-
promoter interactions data, we expect to train DeepExpression in more and 
more cell lines, and consequently we could predict the gene expression for 
a new cell line that have not been studied yet. More importantly, we expect 
to learn the comprehensive and general gene regulation mechanisms with 
enhancer regulation across different cell lines. 

3.5 Contributions of sequential and experimental features 
The distal enhancer-promoter interaction module incorporates experi-
mental HiChIP long-range enhancer-promoter interaction information 
into our methods. To prove that the experimental data is informative, we 
performed a model ablation analysis by repeating the cross-validation ex-
periments with the enhancer-promoter interaction modules excluded. In a 
similar way, we excluded the promoter module to evaluate its contribution.  

As shown in Figure 6, there are evident differences in the contributions 
of the proximal promoter and distal enhancer-promoter interaction module. 
Taking mESC as an example, after removing the promoter module, the 
mean PCCs decrease by 23.64%. When removing the enhancer-promoter 
module, however, the mean PCCs drop by 8.39%. Obviously, promoter 
sequences provide more information than enhancer-promoter interaction 
data to accurately predict gene expression. We speculate that there are two 
reasons accounting for the phenomenon. First, we incorporate HiChIP en-
hancer-promoter interactions using a simple fine-tuning way. These prim-
itive feedforward networks might not catch all the information in HiChIP 
data. Second, since HiChIP is a newly developed experimental technique, 
there is no formal pipeline to process HiChIP data, and thus we might lose 
some information during the processing procedure. However, we could 
still conclude that using sequential promoter data and experimental en-
hancer jointly effectively improves the performance and both of them play 
important roles in predicting gene expression.  

3.6 Contribution of enhancer-promoter interactions at dif-
ferent distances 

To evaluate the contribution of enhancers at different distance, we carry 
out sensitivity analysis for different length of the HiChIP experimental 
input region. As shown in Figure 7, we find that when the length of the 

input region decreases, the performance of our model degrades slightly. 
For example, the mean PCC of DeepExpression on K562 is 0.6545 when 
the input region is ±1000 kbp around the TSS of each gene. Setting the 
input region to ±500 kbp around the TSS while retaining all the other pa-
rameters, we find the mean PCC is 0.6531, almost unchanged while the 
performance for input region ±100 kbp around the TSS drops a little bit to 
0.6422. These results are consistent with our knowledge that most enhanc-
ers regulate the nearest genes (Spitz, 2016).  From the above results, we 
could conclude that the information of HiChIP enhancer-promoter interac-
tions is most beneficial from those within ±100 kbp around the TSS of a 
gene since there is no significant difference between performance under 
±2000 kbp and ±100 kbp.  

Enhancers are notoriously difficult to locate and may reside at consid-
erable distances from the transcription units on which they operate, for 
example, the enhancer of SHH is located more than 1Mb from its TSS. 
We considered that all genes can be divided into two group. Most genes 
are regulated by its neighboring enhancers (referred to as neighboring reg-
ulating genes), while some genes are regaled by long-range enhancers (re-
ferred to as long-range regulating genes). Since we do not have enough 
samples to distinguish long-range regulating genes from neighboring reg-
ulating genes now, we expect to carry out more detailed differential anal-
ysis between the long-range regulating genes and neighboring regulating 
genes when there are more data from HiChIP experiments in the near fu-
ture. 

3.7 DeepExpression recovers TF binding motifs in promoter 
regions 

To demonstrate the interpretability of our model, we identified motifs 
learned from the first convolution layer of DeepExpression using the strat-
egy detailed in Methods, and we compared these motifs with known Ver-
tebrates motifs in the JASPAR database. Using motif comparison tool 
TomTom with significant E-value threshold 0.05, we matched about 65% 
(83/128) of motifs learned by DeepExpression to known motifs in differ-
ent cell lines, as shown in Figure 8.  

To name a few, in mESC, DeepExpression recovers Nanog, a transcrip-
tion factor involved in embryonic stem (ES) cell proliferation, renewal, 
and pluripotency. The protein encoded by this gene can block ES cell dif-
ferentiation and can also autorepress its own expression in differentiating 
cells (Han, et al., 2008). In HCT116, DeepExpression recovers FOXQ1, a 
member of the FOX gene family that is characterized by a conserved 110-

 

Figure 6. Contributions of sequential promoter and experimental enhancer features. 
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Figure 7. The mean PCC of different length of experimental input in each cell line. 
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amino acid DNA-binding motif called the forkhead or winged helix do-
main. FOX genes are involved in embryonic development, cell cycle reg-
ulation, tissue-specific gene expression, cell signaling, and tumorigenesis 
(Qiao, et al., 2011). In Jurkat, DeepExpression discovers ETS1, which 
functions either as transcriptional activators or repressors of numerous 
genes and are involved in stem cell development, cell senescence and 
death, and tumorigenesis (Thomas, et al., 1995). In K562, DeepExpres-
sion discovers MYC, a proto-oncogene and encodes a nuclear phospho-
protein that plays a role in cell cycle progression, apoptosis and cellular 
transformation (Gomez-Casares, et al., 2013). The encoded protein forms 
a heterodimer with the related transcription factor MAX. This complex 
binds to the E box DNA consensus sequence and regulates the transcrip-
tion of specific target genes. Amplification of this gene is frequently ob-
served in numerous human cancers. Translocations involving this gene are 
associated with Burkitt lymphoma and multiple myeloma in human pa-
tients (Ceballos, et al., 2000). To sum up, the powerful learning ability of 
DeepExpression could not only help us find potential TFs binding in spe-
cific cell line, but also guide us to find novel motifs which are not discov-
ered by experiments yet. 

3.8 DeepExpression recovers TF binding motifs in enhancer 
regions 

To further make DeepExpression model more interpretable and convinc-
ing, we apply CisModule (Zhou and Wong, 2004) to visualize motifs 
learned from enhancer sequences in HiChIP data. CisModule is a hierar-
chical mixture de novo motif discovery algorithm, which develops a fully 
Bayesian approach for the simultaneous inference of TF modules and mo-
tif patterns based on their joint posterior distribution. We selected the 
highly interacted enhancer-promoter interactions in each cell line as the 
input and got the motif learned from these regions using CisModule. We 
then compared these motifs with known Vertebrates motifs in the 
JASPAR database. Using motif comparison tool TomTom with significant 
E-value threshold 0.05, we match about 92% (22/24) of motifs from 
HiChiP interactions. Moreover, the four distinguished motifs learned from 
promoter regions are also learned by the CisModule (Figure 9).  

The consistency of TF discovered in promoter regions and enhancer 
regions demonstrate that the reason that jointly using both promoters and 
enhancers features could improve DeepExpression performance. Further-
more, the motif relevance in promoter regions and enhancer regions will 
be modelled explicitly in future version of DeepExpression. 

4 Discussion 
We have introduced a deep learning framework named DeepExpression 
to integrate DNA sequence information and enhancer-promoter interac-
tion data for modelling gene expression. Through comprehensive valida-
tion experiments, we have shown that DeepExpression is superior to base-
line methods in different cell lines and different species, capable of mak-
ing cross-cell line predictions, and interpretable in extracted features. 

DeepExpression is distinct from other methods for predicting gene ex-
pression in the following aspects. First, we adopt novel stat-of-the-art 3D 
HiChIP experimental features while existing methods only use 1D fea-
tures like histone modification and chromatin accessibility (Shu, et al., 
2011). HiChIP defines the high-resolution landscape of enhancer-pro-
moter regulation. Many complex features of the 3D enhancer connectome 
cannot simply be predicted from 1D data, demonstrating that it is neces-
sary to employ these features. Second, we combine promoters and en-
hancer features together to model gene expression. Enhancers and promot-
ers are the most important cis-regulatory elements and have huge impact 
on gene expression. Taking these two types of features into account, we 
could better model gene expression. Third, we apply densely connected 
convolution neural networks in DeepExpression. By reusing the features 
in each layer, densely connected convolution neural networks could use 
much less parameters and avoid overfitting in small training sets. 

Nevertheless, our work can be further improved in several aspects. First, 
the incorporation of the long short-term memory (LSTM) network, a kind 
of recurrent neural network architectures, into our densely network frame-
work may further improve the performance, because LSTM may be able 
to capture very long-range interaction in the sequence. In addition, the ad-
aptation of an embedding representation of DNA sequences instead of the 
use of the one-hot encoding may also benefit the prediction accuracy (Min, 
et al., 2017). Second, since we have shown that the first convolutional 
layer could capture motif information, researchers may use our model to 
learn the complex grammar of TF binding in specific cell lines. In addition, 
one can also explore interactions of motifs in higher convolutional layers. 
Third, our deep learning framework can possibly be adapted for the inte-
gration of other 3D functional elements interactions in the genome, in-
cluding but not limited to silencers (Kolovos, et al., 2012), repressors and 
insulators (Raab and Kamakaka, 2010). Forth, we should better model the 
motif information located in promoter and enhancer regions. Through sec-
tion 3.6 and section 3.7, we could de novo discover import motifs in pro-

 

Figure 8. Motif visualization by promoter regions in each cell line. 
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Figure 9. Motif visualization by enhancer regions in each cell line. 
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Predicting gene expression via densely connected convolutional neural network 

moters and enhancers respectively. We could combine these motifs infor-
mation in a unified framework to better model gene expression. Fifth, we 
could modify enhancer-promoter integration module in a more compli-
cated way to better extract information from HiChIP data. Sixth, we ex-
pect to carry out cross-species predictions in our DeepExpression frame-
work. We will integrate cross-species prediction once there are the same 
cell line in different species such as hESC and mESC. We look forward to 
decipher the enhancer-promoter interactions regulatory mechanism across 
species. Finally, our framework can be generalized for the prediction of 
functional impacts of genomic mutations and the prioritization of candi-
date variants in whole genome sequencing studies, thereby facilitating 
both research and practice of precision medicine (Alipanahi, et al., 2015). 
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