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Abstract

Motivation: Inferring gene regulatory networks from gene expression time series data is important for
gaining insights into the complex processes of cell life. A popular approach is to infer Boolean networks.
However, it is still a pressing open problem to infer accurate Boolean networks from experimental data
that are typically short and noisy.

Results: To address the problem, we propose a Boolean network inference algorithm which is able to
infer accurate Boolean network topology and dynamics from short and noisy time series data. The main
idea is that, for each target gene, we use an And/Or tree ensemble algorithm to select prime implicants of
which each is a conjunction of a set of input genes. The selected prime implicants are important features
for predicting the states of the target gene. Using these important features we then infer the Boolean
function of the target gene. Finally, the Boolean functions of all target genes are combined as a Boolean
network. Using the data generated from artificial and real-world gene regulatory networks, we show that
our algorithm can infer more accurate Boolean network topology and dynamics from short and noisy time
series data than other algorithms. Our algorithm enables us to gain better insights into complex regulatory

mechanisms of cell life.

Availability: Package ATEN is freely available at https://github.com/ningshi/ATEN

Contact: s.he@cs.bham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulatory networks are important to elucidate complex processes
of cell life (Karlebach and Shamir, 2008; Chai et al., 2014). A gene
regulatory network is composed of interactions among proteins, genes and
metabolites in living cells, and models the regulation of gene expression
based on the relationships among genes and their products (de Jong, 2002;
Hecker et al., 2009; Saadatpour and Albert, 2013; Chai et al., 2014).
To infer gene regulatory networks, computational approaches such as
Bayesian networks (Friedman ef al., 2000; Sanchez-Castillo et al., 2017),
ordinary differential equations (Bansal et al., 2007)) and Boolean networks
(Kauffman, 1969; Liang et al., 1998; Saadatpour and Albert, 2013) have
been proposed.

© The Author 2019.

In this paper, we focus on Boolean networks. Although Boolean
networks are limited as the state of gene expression level can only
be described using two states, they can capture some fundamental
characteristics of signalling and gene regulatory mechanisms. They have
been widely used to reveal both the gene regulatory network topology (i.e.
the interactions between genes) and dynamics (i.e. the regulatory rules)
(Lihdesmiki er al., 2003; Hecker et al., 2009; Gates and Rocha, 2016).

Most Boolean network inference algorithms focus on inferring network
topology (Liang et al., 1998; Maucher et al., 2011; Pirkl et al., 2015).
There are only a few algorithms that can infer both the Boolean network
topology and its dynamics. For example, the Best-Fit (Lahdesmiki et al.,
2003) algorithm can find Boolean functions by solving the consistency
problem (Akutsu, 1999). Barman and Kwon (2017) proposed a Boolean
inference algorithm named MIBNI based on mutual information. The
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algorithm REACT (Vera-Licona et al., 2014) uses Boolean polynomials
to infer Boolean networks.

However, despite these advances, it is still challenging to infer accurate
Boolean networks from experimental data, which is typically short and
noisy (Bar-Joseph, 2004). To address this challenge, we propose an
And/Or tree ensemble (ATEN) algorithm for inferring both the Boolean
network topology and its dynamics. For each target gene, our ATEN
algorithm uses an And/Or tree ensemble to select prime implicants, i.e., the
conjunction (AND) of non-redundant input genes. These prime implicants
are important features for predicting the states of the target gene. Using
these important features, ATEN infers the Boolean function of the target
gene. Finally, ATEN combines the Boolean functions of all target genes
as a Boolean network.

The advantages of our ATEN algorithm are as follows. First, ATEN
is efficient because And/Or trees provide an efficient representation for
inferring prime implicants using binary time series data. Second, by using
an ensemble algorithm, ATEN can better handle the “large p small n”
problem (Genuer et al., 2010), i.e., the number of input genes p is larger
than the number of time points n, to select more reliable important features
(Huynh-Thu et al., 2010), i.e., prime implicants. Third, based on the
selected features, our algorithm can infer a minimal Boolean function
without redundant input genes, which results in a more accurate Boolean
network.

To summarize, our main contributions are:

1. We propose the first And/Or tree ensemble algorithm. Although
And/Or trees have been widely used to search for solutions in
combinatorial and artificial intelligence (Marinescu and Dechter,
2009), no And/Or tree ensemble algorithm exists to search for robust
consensus solutions. We are the first to bridge the gap between
ensemble learning and And/Or trees.

2. We apply our And/Or tree ensemble algorithm to select important
prime implicants as features, which is different from most existing
algorithms, e.g., GENIE3 (Huynh-Thu er al., 2010) that select
individual input genes for each target gene.

3. We validate ATEN on both artificial and real-world gene regulatory
networks. Our experimental results show that ATEN compares
favourably with existing algorithms in terms of prediction accuracy
of network topology and dynamics, even when the gene expression
time series data is short and noisy.

2 Methods

2.1 Preliminaries

2.1.1 Boolean network model

A Boolean network G(X, F) is a set of nodes X = {z1,...,2n}
representing genes and a set of Boolean functions ' = {f1,..., fn}
describing the regulatory rules between genes. Each node (i.e., gene)
xz; is a Boolean variable taking 1 or O to describe its state, where 1
represents that the gene is expressed and O represents that the gene is
not expressed. The directed edges, or the interactions between the target
gene and input genes are associated with the regulatory rule, i.e., the
Boolean function. The Boolean function consists of three basic Boolean
operators (i.e. V, A and —) and Boolean variables. The Boolean function
fi determines the dynamical changes of the state of gene x; over time:
zi(t+1) = fi(zi, (), ..., mi, (t)), Vt, where x; (¢ 4 1) represents the
state of gene z; at time point ¢ + 1, and z;, (t) represents the state of
the kth input gene of gene x; at time point ¢. All genes update their
states synchronously. For each gene in a Boolean network, the goal of the
network inference problem is to identify the underlying Boolean function
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Fig. 1. And/Or tree example. An example of a three-level And/Or tree with 5 leaves that
represents a DNF formula (z1 A z2) V (z3 A —z4 A z5).

associated with input genes from the binary time series data by taking into
account every time point.

To represent a Boolean function associated with input genes, we
can use a logical formula in disjunctive normal form (DNF). A DNF
formula is a disjunction (OR) of one or more implicants. An implicant
p is the conjunction of literals (i.e., Boolean variables or their negations).
An implicant p is called a prime implicant if the deletion of any literal
from p results in a non-implicant. For example, a Boolean function
(z1 Ax2) V(23 A g Axs) for the target gene x1 represents two prime
implicants (x1 Az2) and (z3 A x4 Axs), where 21, 2, 3, T4, T5 are
input genes. We are interested in obtaining a minimal Boolean function
which includes a minimum set of prime implicants by eliminating the
redundant prime implicants. For example, a Boolean function (—z1 A
T2 /\333) Vv (—\J:1 ANxo N\ —‘mg) vV (1‘1 Nz /\—\.I3) \2 ($1 N x2 /\acg)
can be minimized to (—z1 A z2) V (21 A ~z2).

2.1.2 And/Or Trees representation of logic functions
A logic function, or more specifically, a DNF formula can be represented
as a three-level And/Or tree, which provides an efficient data structure to
fit the binary time series data. In such a tree, an internal node represents
a Boolean operator V or A, and a leaf denotes a Boolean variable or its
negation. The output of a Boolean function is determined by the valuation
of the And/Or tree with an assignment of "TRUE" or "FALSE" to each of
the leaves. In Figure 1, we show an example of a three-level And/Or tree
1 which is equivalent to the DNF formula (z1 A x2) V (23 A 24 A x5).
We can represent a Boolean function in DNF as a three-level And/Or
tree as follows:
o (First Level) The root is labeled by the Boolean operator V;
e (Second Level) The internal node is labeled by the Boolean operator
N;
e (Third Level) A leaf is labeled by a Boolean variable, or by a negation
(i.e., a Boolean variable associated with —);

2.2 Algorithm

Algorithm 1: ATEN for Boolean network inference

Data: A binary time series dataset with n genes.
Result: A Boolean network.

foreach rarget gene z;, 1 < i < ndo
Infer a set of prime implicants using Algorithms 3;

Select a set of important prime implicants using Algorithm 4;

Infer the final associated Boolean function using Algorithm 2.
Combine all Boolean functions of all target genes as a Boolean
network;

2.2.1 Algorithm overview

To infer an accurate Boolean network from short and noisy gene expression
time series data, our And/Or tree ensemble (ATEN) algorithm consists of
three key steps as summarized in Algorithm 1. For each target gene, the
first step is to infer a set of prime implicants based on an And/Or tree
ensemble. Each tree in the ensemble represents a putative Boolean function
of the target gene. The second step is to select a set of prime implicants as
important features using a recursive feature reconstruction and elimination
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procedure (see Algorithm 4). The third step is to infer a minimal Boolean
function without redundant prime implicants using the selected features
(see Algorithm 2). The Boolean functions of all target genes are combined
to represent the Boolean network.

In addition, ATEN can incorporate prior knowledge (e.g., the number
of input genes for target genes), which reduces the search space and might
improve inference accuracy (Studham ez al., 2014).

2.2.2 And/Or tree inference
‘We summarize the And/Or tree inference algorithm in Algorithm 2. Given
binary time series data including /N time points and n genes, ATEN infers
an And/Or tree that best predicts the state of the target gene z;, 1 < 7 < n.
The inference is achieved by searching the optimal input features (i.e.,
genes or prime implicants) and Boolean operators of the And/Or tree using
a simulated annealing (SA) algorithm (van Laarhoven and Aaris, 1987).
Specifically, the And/Or tree of a target gene is initialized with an
input feature (e.g., arandom gene, or a random prime implicant, or known
prime implicants). Then at each iteration k of the SA algorithm, a new
tree [, is proposed by randomly executing a permissible move based
on the old tree [;_1, e.g., adding a leaf, deleting a leaf, etc (for the
fully permissible move set, see the Supplementary Data). The acceptance
probability for the new tree [j, is determined by the misclassification
rates of [ and [, and the temperature 7" specified in the SA cooling
scheme, i.e., Pr;, = min{1l,exp((Ey,_, — Ey,)/T)}, where Ey,
and Ej, are the misclassification rates of I 1 and I respectively. The
misclassification rate £, of [y, is calculated by

N

D Iy, (t— 1) # 24(t)),

t=2

1
By, = —

N -1

1, if i, (E—1) # zi(2)

0, if yy (t —1) = z4(t)
and y;, (t — 1) is the output state predicated by I based on the states of
the input genes at time point ¢ — 1, and z; () is the true state of the target
gene at time point ¢, 2 < ¢ < N. The acceptance probability indicates: 1)

where I(-) is an indicator function I(-) =

if Iy, is better than I, 4 (i.e., By, < Ey, ), thenly, is always accepted;
2) if I, is not better than ;1 (i.e., By, > Ej, ), then lj is accepted
with a very small probability which gradually converges to zero as the
temperature decreases. The maximum number of iterations is predefined
to stop the searching scheme. The tree size which is defined as the number
of input genes in the tree can be set according to prior knowledge, i.e.,
the maximum in-degree of the network, or determined experimentally or
empirically. In addition, if the interactions between some pairs of nodes
are known, ATEN can include those interactions as fixed prime implicants
when inferring the tree.

Algorithm 2: And/Or tree inference for a target gene

Data: Binary time series data.

Result: An And/Or tree [, of the target gene.
k=0;

Initialize an And/Or tree lp using an input feature;

repeat
k+ k+1;
ly, < Update l;,_1 to propose a new tree;
if Iy, is rejected according to the probability Pr;, then
L Ik < lk—1;

until & reaches the maximum iteration ;

The finally accepted And/Or tree may contain redundant regulatory
interactions (i.e., prime implicants) between the target gene and input

the 1sttime series the 2nd time series the jth time series
1 1 1

r 1T 1 11
=142 ... EN-1EN =1 &2 ENAEN 21622 e EN-1EN

x4

X2

X3
. vector in the bootstrap sample |:| vector in the oob sample

El vector not included in either the bootstrap sample and the oob sample

Em

Fig. 2. Illustration of bootstrap samples and the corresponding out-of-bag (oob) samples.
Each column represents an expression vector x7 (). Each row denotes an input feature (i.e.,
a gene or a prime implicant). For each target gene, we generate a set of pairs of a bootstrap
and an oob sample. Bootstrap samples are used to infer ensembles of trees. Oob samples

are used to compute the importances of prime implicants based on the tree ensemble.

genes that are unnecessary for predicting the state of the target gene.
Thus we introduce a Boolean minimization method aimed at obtaining a
minimal And/Or tree (i.e., aminimal DNF) based on the Quine-McCluskey
algorithm (Quine, 1955; McCluskey, 1956), where the Quine-McCluskey
algorithm tries to find essential prime implicants and other necessary prime
implicants to simplify Boolean functions.

Algorithm 3: Compute the importances of prime implicants of a
target gene

Data: A binary time series dataset D.

Result: The prime implicants with their importances
Initialization: The number of bootstrap samples B;
Generate bootstrap samples Sy by drawing B samples ;

foreach S, in B, 1 < b < Bdo
lp < Infer an And/Or tree using Algorithm 2;

| Op < Generate an oob sample;
P1I < Extract all distinct prime implicants p;,7 = 1,2, ...;
foreach p; € PI do

foreach [, do
Ey,, < Compute the misclassification of I, using Oy;

Ly /l;' < Remove/Append p; from/to ;
El_ /El+ <— Compute the misclassification of l;/l;r using
b b
Oy;
Determine the importance of p; by VI(p;) =

25;1 (Epielb (Elb_ - E,)+ Zpiélb (B, — Ezg'))

2.2.3 Prime implicant importance measure
‘We compute the importances of prime implicants as shown in Algorithm 3
based on logicFS (Ruczinski et al., 2003; Schwender and Ickstadt, 2008).
The main idea is to construct an And/Or tree ensemble to quantify how
much a prime implicant improves the predictive accuracy of the state of
the target gene. As shown in Figure 2, given a binary time series dataset
D, for a target gene, we draw B pairs of a bootstrap sample S; and an
out-of-bag (oob) sample O, 1 < b < B for inferring ensembles of trees
and computing the importances of prime implicants, respectively.
Formally, given J time series covering /N time points each, the jth
(1 < 5 < J)time series can be presented as a matrix of states of all genes,
denoted as X7 = (x/(1),---,x7(t), -+ ,xI(N)), where xI(t) =
(a:Jl (), a:% (t),-- - , @ (t))T isavector containing the states of all n genes
at time point ¢. We then construct the binary time series dataset matrix D
by concatenating the .J time series, i.e.,

D:{le"' 7Xj9"' ’XJ}'
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We draw a bootstrap sample by random sampling D with replacement,
which is done by randomly selecting a column from D. This sampling
procedure stops when the the bootstrap samples S}, reaches the size of
J % (N — 1). We also obtain a corresponding oob sample Oy, i.e., Op =
{xI(t)|x7 (t) € D,xI(t) ¢ Sp,t # N)}. Note that vectors x7 (N), Vj
are not included in both bootstrap samples and oob samples, because the
true states of the target gene recorded in x7 (N + 1) are unknown for
estimating the misclassification rate of an inferred tree.

We use the B bootstrap samples in S as inputs of Algorithm 2 to
get ensembles of B And/Or trees. From the And/Or trees, we then extract
all distinct prime implicants P1. For each prime implicant p; in PI, we
compute its importance based on p;’s presence or absence over every lp
in the ensemble. If p; is present in /5, we compute the misclassification
rate El; of the new tree [,” obtained by removing p; from [;. On the
other hand, if p; is absent in the [;, we compute the misclassification
rate Elb+ of the new tree l;‘ obtained by appending p; to [; as a prime

implicant. In the end, the importance of p; is determined by VI(p;) =
B
21 (Zpielb (Elb_ - E)+ Zpiélb (B, — El;*'))

2.2.4 Recursive feature reconstruction and elimination
We propose a recursive feature reconstruction and elimination (RFRE)
procedure for selecting a set of important prime implicants as features,
which will be used for inferring Boolean functions. The main idea is
to recursively reconstruct the selected important prime implicants, and
eliminate the non-important ones. We summarize RFRE in Algorithm 4.
Initially, we apply Algorithm 3 to a binary time series dataset matrix
D containing J time series covering N time points each, which results in
a set of prime implicants Py with their importances. We then eliminate
the least important prime implicants, i.e., prime implicants with negative
importance and the 20% of prime implicants with the lowest importances.

Algorithm 4: RFRE for prime implicants selection

Data: A binary time series dataset D.
Result: A small set of prime implicants.
PIy < Apply Algorithm 3 to D and eliminate the non-important
prime implicants
r<+1;
repeat
D, _1 < Update a dataset matrix based on PI,._1;
PI, < Apply Algorithm 3 to D,._; and eliminate the
non-important prime implicants;
Plyew < PI-\ PI,_1;
Plyq < PIy \ Plpew;
r<r+1;
until VI(py) > VI(Plw), Ypv € Ploid,VPw € Plnew ;

Then at each recursion, we first update the time series dataset matrix D, _1
based on the important prime implicants:

D’l‘*l :{P71‘—17"' 7Pj

1

’Pi—l}v

where P171 denotes the jth time series dataset matrix of all prime

- 7p3~71(t)7"' 7pfy]71(N))
p?._ (t) is a vector containing the states of all prime implicants in P11

implicants, ie., PJ_; = (Pi,l(l)w"

at time point ¢t. We then apply Algorithm 3 to D,_; to reconstruct the
prime implicants. This step results in a set of important prime implicants,
i.e., PI,, which possibly contain some new ones (i.e., Plyeqw) that are
reconstructed from input prime implicants.

The RFRE procedure stops when the newly reconstructed prime
implicants are not important. Specifically, we compare VI(py) to
VI(pw), where py, € Pl 4 and Pl, € Plpeyw. If we cannot find

Fig. 3. Part of the topology of a single parasegment primordium network. The whole
network is an interconnected network of four identical cells. Nodes located inside the
dashed rectangle are in one cell. Nodes 16-21 are in the adjacent cells. The directed edges

represent the existence of regulation without implying the activation or inhibition.

any new prime implicants (i.e., p.,) that are more important than the input
prime implicants remained in P, (i.e. py), we terminate the recursion.

2.3 Datasets

2.3.1 Artificial network

We first validated the performance of ATEN by inferring three artificial
Boolean networks generated by BoolNet (Miissel ez al., 2010), where three
networks include 50 nodes, 100 nodes, and 150 nodes, respectively. The
maximum in-degree of each network is 5. For each network we generated
12 datasets D;,1 < i < 12 where each dataset includes 10 time series.
Each time series in D; (i = 1,2,3), D;(i = 4,5,6), D;(i = 7,8,9)
and D;(i = 10,11,12) has 5, 10, 15, 20 time points, respectively.
Additionally, we added 1% and 5% noise to D;(¢ = 2,5,8,11) and
D;(i = 3,6,9,12), respectively. The noise was introduced by randomly
flipping the state of each node with the probability of 1% or 5%.

2.3.2 Real-world network

We also applied ATEN to infer a real-world gene regulatory network using
experimentally-observed gene expression data. The network is derived
from a well-studied Drosophila segment polarity gene regulatory network
(Albert and Othmer, 2003) and modified by REACT (Vera-Licona et
al., 2014). It is considered as a single parasegment primordium of four
identical cells (Albert and Othmer, 2003; Laubenbacher and Stigler,
2004). As shown in Figure 3 and Supplementary Data Table 12, we
present part of the network topology and its dynamic model (i.e., Boolean
functions), respectively. The network of one cell consists of 15 nodes and
6 extracellular nodes, where the 6 extracellular nodes are connected with
other nodes (not shown in Figure 3) in the adjacent cells. In the experiment,
the whole network of a single parasegment primordium which consists of
15%4=60 nodes was used for network inference.

For the dataset used for inference, we introduced three datasets that
were used in REACT. The datasets were initialized using experimentally
observed gene expression data (Albert and Othmer, 2003) and knockout
perturbations. These three datasets included 0%, 1%, 5% data noise,
respectively. Each dataset has 24 time series containing 202 time points in
total. Moreover, we used the same initialization to generate 9 additional
datasets D;,1 < ¢ < 9, where each dataset has 10 time series. Each
time series in D; (i = 1,2,3), D;(i = 4,5,6) and D;(i = 7,8,9) has
5, 10, 15 time points, respectively. We also added 1% and 5% noise into
D;(i=2,5,8) and D;(i = 3,6,9), respectively.

2.4 Computational experiments

We compared ATEN with the other three existing network inference
algorithms, i.e., MIBNI (Barman and Kwon, 2017), Best-Fit (Lihdesmiki
et al.,2003) and REACT (Vera-Licona et al., 2014). Because ATEN uses a
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Table 1. ATEN inferred more accurate artificial network topology from short and noisy data. Experimental results of ATEN, MIBNI and Best-Fit for the networks
with 100 nodes inferred from the datasets including 1% noise and 5% noise. The maximum in-degree of each target gene inferred by ATEN, MIBNI and Best-fit
was limited to 8. The results of ATEN are presented using average and standard deviation values. The best result among three algorithms is highlighted in boldface.

The symbol ‘-’ indicates that the results of Best-Fit cannot be obtained due to the walltime limit (8 days).

. . . Noise 1% Noise 5%
Number of Time Points | Algorithm
Recall FPR F-score Recall FPR F-score
ATEN | 0.898+0.010 | 0.009+0.001 | 0.702+0.016 | 0.827+0.018 | 0.022+0.001 | 0.468+0.012
50 MIBNI 0.758 0.071 0.209 0.758 0.071 0.209
Best-Fit 0.797 0.018 0.499 0.664 0.031 0.327
ATEN [ 0.950+0.010 | 0.007+£0.001 | 0.765+0.020 | 0.922+0.017 | 0.0160.002 | 0.579+0.019
100 MIBNI 0.773 0.071 0.213 0.766 0.071 0.211
Best-Fit 0.906 0.027 0.458 0.781 0.046 0.293
ATEN |0.9534+0.010 | 0.008+0.001 | 0.755+0.018 | 0.913+0.013 | 0.011+0.002 | 0.667+0.016
150 MIBNI 0.758 0.071 0.209 0.766 0.071 0.211
Best-Fit 0.930 0.029 0.447 - - -
ATEN | 0.901£0.009 | 0.007+0.001 | 0.735+0.019 | 0.881-£0.015 | 0.013+0.001 | 0.615+0.010
200 MIBNI 0.766 0.071 0.211 0.773 0.071 0.213
Best-Fit - - - - - -
heuristic algorithm, we executed ATEN 30 times with B = 100 on every 3 Results

dataset. Due to the unavailable implementation of REACT, we adopted the
results from the literature (i.e., Vera-Licona et al. (2014)) for comparison.
‘We present the details of computing resources in the Supplementary Data.

For inferring the artificial network, we compared the performance
of ATEN with that of Best-Fit and MIBNI. For inferring the real-world
gene regulatory network, we compared ATEN with MIBNI, Best-Fit and
REACT.

One important control parameter of ATEN is the upper limit on tree
size, i.e., the maximum number of input genes of a target gene. This
parameter essentially defines the search space of the problem, which affects
not only the prediction accuracy but also the computational time of ATEN.
However, finding a suitable value of this parameter is challenging not
only for ATEN but also for other algorithms (Barman and Kwon, 2017).
To determine the value of this parameter, we executed experiments on
an artificial network with 150 nodes (See Supplementary Data). Based
on the experimental results, we set the upper limit on tree size to 8. For
fair comparison, MIBNI and Best-Fit were limited to infer up to 8 input
genes for each target gene. Additionally, we also presented the results with
known maximum number of input genes of the artificial and real-world
networks in the Supplementary Data.

2.5 Performance matrices

To quantify the quality of the inferred network topology, we

used the performance metrics used in Maucher et al. (2011),
namely, Recall:%, False Positive Rate (FPR)=% and
F—score:%, where T'P denotes the number of inferred

interactions that are present in the ground truth network; F'P denotes the
number of inferred interactions that are absent in the ground truth network;
TN denotes the number of absent interactions in the inferred network that
are also absent in the ground truth network; F'N denotes the number of
absent edges in the inferred network that are present in the ground truth
network.

To evaluate the quality of the dynamic model of the inferred networks,
we used 6 steady states that have been investigated in existing literature as
detailed in (Vera-Licona et al., 2014) and Supplementary Data Table 13.
‘We checked whether the Boolean functions inferred by each algorithm can
retrieve these steady states.

3.1 Performance on artificial network

‘We summarize experimental results from ATEN, Best-Fit and MIBNI on
the artificial networks with 100 nodes inferred from noisy data (with 1%
and 5% noise) where we set the upper limit on tree size to 8 in Table 1 (The
results from the noise-free data are detailed in Supplementary Data Table
3.). We summarize the results of inferring the networks with 50 and 150
nodes without known maximum in-degree in Supplementary Data Tables
1-2 and 4-5. In addition, the results of inferring all artificial networks using
known maximum in-degree are detailed in Supplementary Data Tables
6-11.

From Table 1, we can see that ATEN always obtained the best Recall,
FPR and F-score when the datasets are noisy (i.e., 1% and 5% noise).
We can also see that since Best-Fit uses exhaustive search, it cannot
successfully infer the networks from the datasets including 200 time
points with 1% and 5% noise within the walltime. When the data is
noise-free, from Supplementary Data Table 3, Best-Fit outperformed than
other algorithms. For the networks consisting of 50 and 150 nodes, from
Supplementary Data Tables 1-2 and 4-5, we can observe that ATEN
inferred the best results from noisy data and Best-Fit obtained the best
results from noise-free data.

3.2 Performance on real-world network

We used the real-world gene regulatory network to evaluate ATEN’s
performance of inferring network topology and its dynamic model (i.e.,
Boolean functions), in comparison with other three algorithms (i.e.,
MIBNI, Best-Fit and REACT).

3.2.1 Inference of network topology

Overall, ATEN outperformed the other three algorithms for inferring the
network topology from short and noisy data. We present their performance
among the datasets including 1% and 5% noise with setting the maximum
in-degree of target genes to 8 in Figure 4. (The results from the noise-free
data are detailed in Supplementary Data Table 14.) We also discuss the
experimental results where we set the upper limit on tree size to 4, the
exact maximum in-degree of the network.

In Figure 4, the average and standard deviation values of Recall and
FPR obtained from ATEN were used for comparison. From Figure 4,
among all these four algorithms ATEN always obtained the best FPR and
F-score values. Compared with the performance of MIBNI, it can be seen
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Table 2. ATEN inferred more accurate real-world dynamic model from short and noisy data. The maximum in-degree of each target gene inferred by ATEN, MIBNI
and Best-fit was limited to 8. The numbers indicate the number of steady states that was successfully retrieved. The best result among three algorithms is highlighted
in boldface. Note that the experimental results of REACT was collected from Vera-Licona et al. (2014) and the symbol ‘** indicates that the corresponding results

cannot be collected.

Number of Time Points 50 100 150 202
Algorithms Noise 0% 1% 5% |[Noise 0% 1% 5% | Noise 0% 1% 5% |Noise 0% 1% 5%
ATEN 5 5 3 4 5 5 4 4 6 4 4 5
MIBNI 0 0 0 0 0 0 0 0 0 0 0 0
Best-Fit 3 2 2 4 1 1 5 2 2 5 2 2

that ATEN was significantly better. With respect to the network inferred
from the dataset including 50 time points and 1% noise, ATEN achieved
similar experimental results with Best-Fit. However, when the datasets
including 5% noise, we can find that ATEN achieved significantly better
recall, FPR and F-score values than Best-Fit. Compared with the best recall
and FPR values of REACT, ATEN achieved similar but more stable results.
Moreover, from Figure 4, it can be concluded that ATEN outperformed
the other three algorithms when the data was shorter (i.e., 50 time points)
with higher noise level (i.e., 5% noise). When we inferred the network
from noise-free data (see Supplementary Data Table 14), Best-Fit achieved
better results than other algorithms.

3.2.2 Inference of dynamic model

The overall performance of ATEN for predicting the dynamic model was
better than MIBNI, Best-Fit and similar to REACT. Table 2 presents the
number of steady states that can be retrieved by ATEN and other algorithms
when the maximum in-degree of inferred network is unknown.

From Table 2, We can observe that ATEN always retrieved at least
50% steady states even when the input data was short and noisy (i.e.,
50 time points and 5% noise). The MIBNI did not find any steady
states, since MIBNI can infer only conjunctive or disjunctive Boolean
functions. Compared with Best-Fit and MIBNI, we can see that ATEN was
significantly better than both the compared algorithms among all datasets.
Compared with REACT, ATEN correctly retrieved the same number of
steady states. The experimental results also show that ATEN was more
robust to different levels of noise and different numbers of time points for
inferring the network dynamic model.

4 Discussion

Inferring topological structure and network dynamics of gene regulatory
networks from gene expression time series data is a major challenge in
systems biology. To tackle this challenge, we propose ATEN, which is the
first algorithm that combines ensemble learning and And/Or trees.

Our experimental results (Tables 1 and 2, Supplementary Data Tables
2,5,7,9, 11 16 and 17) show that, when the data was noisy, ATEN
performed better than the other three algorithms in terms of the prediction
accuracy. When the data was noise-free, Best-Fit achieved the best results.
We therefore recommend using ATEN for inferring Boolean networks
from noisy data, while Best-Fit for noise-free data.

We used Simulated Annealing algorithm to infer And/Or trees because
of its simplicity and good search performance. Any other heuristic
algorithms such as Genetic Algorithms could be suitable for this task.
It would be interesting to investigate whether other heuristic algorithms
could improve the performance. Another reason that we used heuristic
algorithm is because it is faster than exhaustive search method (e.g. Best-
Fit). However it cannot guarantee that the inferred network is optimal.
To find the optimal solution, it is possible to introduce mathematical
programming (Knijnenburg et al., 2016) into ATEN.

ATEN has been evaluated on Boolean networks with synchronous
updating scheme due to its computational efficiency. However,
asynchronous updates is more biological plausible although the inference
is more difficult. It will be our future work to utilize Boolean state space
scoring function (Lim et al., 2016) for inferring asynchronous Boolean
networks.

Another interesting direction is to extend ATEN to infer Probabilistic
Boolean networks (PBNs) (Shmulevich et al., 2002a,b) which improves
Boolean networks for handling noise and uncertainty. The PBN allows
each target gene to be associated with multiple Boolean functions with
corresponding selection probabilities. We expect to extend our ATEN
algorithm to infer probabilistic Boolean networks from the gene expression
time series data in the future.
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