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Abstract  

Sequencing-based 3D genome mapping technologies can identify loops formed by 
interactions between regulatory elements hundreds of kilobases apart.  Existing loop-
calling tools are mostly restricted to a single data type, with accuracy dependent on a 
pre-defined resolution contact matrix or called peaks, and can have prohibitive 
hardware costs. Here we introduce cLoops (‘see loops’) to address these 
limitations. cLoops is based on the clustering algorithm cDBSCAN that directly 
analyzes the paired-end tags (PETs) to find candidate loops and uses a permuted local 
background to estimate statistical significance. These two data-type-independent 
processes enable loops to be reliably identified for both sharp and broad peak data, 
including but not limited to ChIA-PET, Hi-C, HiChIP and Trac-looping data. Loops 
identified by cLoops showed much less distance-dependent bias and 
higher enrichment relative to local regions than existing tools. Altogether, cLoops 
improves accuracy of detecting of 3D-genomic loops from sequencing data, is 
versatile,  flexible, efficient, and has modest hardware requirements, and is freely 
available at: https://github.com/YaqiangCao/cLoops.	
	

Introduction 

Three-dimensional genomic interactions are essential for genome organization which 
provides vital biological function. A loop is classified as two genomic loci that are 
linearly distant, but have a significantly higher contact frequency than random noise 
(Yu and Ren 2017). So far, the CTCF (Splinter et al. 2006; Handoko et al. 2011), 
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cohesin (Kagey et al. 2010; Rao et al. 2017), and YY1 (Weintraub et al. 2017) proteins 
are thought to anchor most of the chromatin loops. These chromatin loops may reveal 
the transcriptional regulatory roles of distal regulatory elements, such as in enhancer-
promoter looping. 	

Chromatin loops can be identified at near-kilobase resolution (Yu and Ren 2017). 
With the development of high-resolution chromosome conformation capture (3C) 
derived high-throughput sequencing methods, it is possible to identify loops genome-
wide (Dekker 2016). ChIA-PET (Fullwood et al. 2009; Tang et al. 2015) identifies high-
resolution interactions between regulatory elements using target antibodies. Hi-C 
(Lieberman-Aiden et al. 2009; Rao et al. 2014) maps all possible genomic interactions 
in an unbiased manner. With deep sequencing (i.e., 6.5 billion total paired-end tags 
(PETs)), in situ Hi-C can achieve 1kb level resolution (Rao et al. 2014), which enables 
the high-resolution detection of loops. Meanwhile, HiChIP (Mumbach et al. 2016) -
combining the advantages of ChIP and in situ Hi-C - uses fewer numbers of input cells 
than ChIA-PET, and attains higher signal-to-background enrichment than in situ Hi-C 
to provide high resolution loops. A new method to identify short and long range 
interactions called Trac-looping (Lai et al. 2018) was developed recently that uses 
transposon linkers prior to fragmentation and ligation. Each different technology 
generates huge datasets and has major computational demands, creating a need for 
efficient and versatile analysis tools. 	

Finding long-range loops from 3D genomic interaction data is a computational 
task equivalent to finding peaks from ChIP-seq data, and is the basic analysis step prior 
to biological interpretation. Due to the data-type specific technology biases and 
different resolutions between them, many tools have been designed to call loops. With 
Hi-C, no algorithm is yet considered to be a golden standard (Forcato et al. 2017). 
Recently developed loop calling tools for ChIA-PET data such as Mango (Phanstiel et 
al. 2015) and MICC (He et al. 2015) - implemented in ChIA-PET2 (Li et al. 2016) - 
often start with peak calling, and then use exhaustive combinations of peaks to find 
candidate loops, including modeling the relation between paired-end tags (PETs) and 
distances, and the peaks’ size and depth, which altogether increases data processing 
time. Importantly, uncertainty in analysis arises when modeling the PETs and distance 
relations, as different fitting functions and parameters can lead to different loop 
identification. There is also a problem of bias if the interacting loci forming loops may 
exist outside of peak regions, which would bias the background used in significance 
estimations. Correspondingly, we have noticed these tools fail to call loops accurately 
for data containing broad peaks, such as H3K4me1 ChIA-PET data. The hardware 
requirements for loop calling from Hi-C data present another major limitation. For 
example, the major Hi-C loop-calling tool HiCCUPS from Juicer (Durand et al. 2016b) 
requires NVIDIA GPUs, which are more expensive than random access memory (RAM) 
(e.g., a TITAN Xp is about 10-fold more expensive than 16GB RAM) and may be 
incompatible with many previous server setups. Due to huge PET numbers, loop-calling 
tools for Hi-C usually have high RAM usage. However, according to estimates in a Hi-
C tools comparative study, contact matrix based tools like Fit-Hi-C (Ay et al. 2014) and 
GOTHiC (Mifsud et al. 2017) require more than 512 GB of RAM for a 5kb resolution 
contact matrix (Forcato et al. 2017), making the loops calling on a 1kb high-resolution 
contact matrix from deep sequencing impossible. Currently, to our knowledge, there is 
only one targeted loop calling tool for HiChIP data, hichipper (Lareau and Aryee 2018). 
The basic loop calling procedure of hichipper is very similar to Mango and ChIA-PET2; 
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it first uses MACS to call peaks from the HiChIP data with custom background models 
and then depends on Mango to identify loops.   The method for calling loops from Trac-
looping data the same as in hichipper, thus the biases can also be inherited from those 
in Mango. 	

To avoid biases present in the existing loop calling tools and to enable a low-
computational-cost and universal method for 3D-genome mapping data we developed 
a new tool: cLoops (“see loops”). cLoops is a versatile loop calling tool for multiple 
3D-genome mapping data. It uses an unbiased clustering algorithm to find candidate 
loops, coupled with a permutated local background method for estimation of a 
candidate loop’s statistical significance. We show the advantages of cLoops over 
existing state-of-the-art loop calling tools by comparisons with ChIA-PET, Hi-C, 
HiChIP and Trac-looping data. Briefly, 1) cLoops is easy to use, having only two 
essential input parameters, for which we provide predetermined default values for 
ChIA-PET, Hi-C, HiChIP and Trac-looping data. 2) cLoops can run efficiently on PCs 
and accurately identify loops for both sharp-peak and broad-peak data. 3) Compared to 
other tools, performance was distinguished by cLoops’ uniquely identified loops that 
showed more easily distinguishable signals within their neighboring regions, cLoops 
identified more distant loops from Hi-C and HiChIP data, and showed higher overlap 
with ChIA-PET loops. 4) cLoops’ reliability was not affected by sequencing depth, with 
equivalent performance in both deep and unsaturated HiChIP sequencing data. 5)  
cLoops is not tied to any particularly experimental method therefore is applicable to 
3D-genome mapping data generated by future experimental methods, as long as there 
are data with enriched interactions detectable on an interaction heatmap.	

Results 

The cDBSCAN algorithm  

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al. 
1996) is one of the most widely used unsupervised clustering algorithms. DBSCAN 
contains two key parameters: 𝑒𝑝𝑠 defines the distance within which for two points are 
classified as neighbors and 𝑚𝑖𝑛𝑃𝑡𝑠 defines the smallest number of points required in a 
cluster. It has been introduced for ChIA-PET by taking all paired-end tags (PETs) as 
2D points, and identifying significant clusters in 2D space as potential loops (Chepelev 
et al. 2012). The density-based principle, tolerance of noise, and unsupervised auto-
determination of the number of clusters, theoretically make DBSCAN very suitable for 
finding candidate loops from 3D genomic interaction data. However, the original 
DBSCAN algorithm runs very slowly for ChIA-PET and Hi-C data (with complexity 
of 𝑂 𝑁+  without any optimization for neighbor search, 𝑁 is the number of points). For 
example, if implemented with the C programming language based KD-Tree for 
neighbor search (named kDBSCAN, with complexity of 𝑂 𝑁𝑙𝑜𝑔 𝑁 , Methods) on a 
computer with a 3.2G CPU (see the detailed configuration of computers used in 
Supplemental Information), the average time of 5 runs for kDBSCAN is about 32 
seconds (𝑒𝑝𝑠 = 5,𝑚𝑖𝑛𝑃𝑡𝑠 = 750) to finish clustering on 99,674 PETs in the smallest 
human autosome (chromosome 21) from GM12878 CTCF ChIA-PET data 
(Supplemental Table 1) and about 1.1 hours ( 𝑒𝑝𝑠 = 20,𝑚𝑖𝑛𝑃𝑡𝑠 = 5000 ) for 
2,268,476 PETs in chromosome 21 from GM12878 Hi-C data (Supplemental Table 1). 
Although DBSCAN has been implemented in TADLib for interaction block analysis 
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within topological associated domains (TADs)  (Wang et al. 2015), so far no tools have 
implemented it for loop calling, or to determine the loop calling effectiveness or 
significance. We thus first propose a specific improvement to DBSCAN (named 
cDBSCAN for cLoops’ DBSCAN) for 2D data, by introducing an indexing method for 
noise reduction and neighbor search (see toy example data in Figure 1A for illustration 
of the algorithm). 	

cDBSCAN also has two key parameters with the same meaning as those in 
DBSCAN: 𝑒𝑝𝑠 and 𝑚𝑖𝑛𝑃𝑡𝑠. For 3C-based genome wide sequencing data like ChIA-
PET, HiChIP and Hi-C data, the Manhattan distance (also known as city block distance) 
is suitable for measuring the absolute position difference for two PETs. Unless 
specifically mentioned, the distance measurements hereafter refer to Manhattan 
distance. For the 2D dataset 𝐷 𝑋, 𝑌   in the cDBSCAN algorithm, X and Y can be 
integer or float values, but for loop calling, they are all both integers corresponding to 
genomic coordinates. We mark the minimum 𝑋, 𝑌 as 𝑚𝑖𝑛𝑋,𝑚𝑖𝑛	 𝑌 for the 2D space. 
cDBSCAN indexes each point 𝑋9, 𝑌9   as 𝐼𝑛𝑑𝑒𝑥= = 𝑖𝑛𝑡 >?@A9B>

CDE
+

1, 𝑖𝑛𝑡 H?@A9BH
CDE

+ 1  which means each point is assigned to a square whose side length 
is 𝑒𝑝𝑠 (0.2 is used for the toy example) (Figure 1B) and j marks the index id of the 
point id i. For an indexed 𝑒𝑝𝑠  square, if the square together with its surrounding 8 
squares contains points fewer than 𝑚𝑖𝑛𝑃𝑡𝑠 (5 is used for the toy example), then it is 
defined as a noise index. We highlight a region in Figure 1B (also used in Figure 1C 
and D) to show how cDBSCAN removes noise. There are two rounds of index scanning 
in cDBSCAN to detect noise. The first round finds all potential noise indexes (marked 
by a cross in Figure 1C), and the second round only searches previously detected noise 
indexes (cross marked indexes). If there is a first round signal index (marked by 
checkmarks) in any of its 8 neighbors, then it is marked as a signal index (Figure 1D 
orange checkmarks). The highlighted region in Figure 1D is an example showing an 
outer index that is not re-marked is a signal index and a closer index that is re-marked 
as a signal index. The idea benefits from k-Nearest Neighbor (KNN) algorithm - that is, 
if all neighbors are noise then the index is noise. A signal index detected in the second-
round search is not counted as a signal index when a noise is corrected back to a signal 
(Figure 1D). This indexing process reduces the search space and saves memory (Figure 
1E). After indexing, the clustering is performed the same as DBSCAN for the 
remaining points, but uses the 3×3𝑒𝑝𝑠 squares for neighbor search. 	

We first evaluated the performance of cDBSCAN by comparing to a C coded KD-
tree for neighbor search (termed it kDBSCAN as mentioned above) (Methods) using 
the simulated data. We set 10,000 signal points of 100 clusters and different noise/signal 
ratios for the simulation data (Methods). cDBSCAN coded in pure Python gives the 
exact same result as kDBSCAN (measured by Adjusted Rand Score (ARS)) (Hubert 
and Arabie 1985). ARS measures the similarity between clustering results ranging from 
-1.0 to 1.0, with 0 indicating random labeling and 1 a perfect match. cDBSCAN had 
reduced memory usage and improved speed (8-16 fold, without considering the 
inefficiency of Python compared to C for the simulation data (Figure 1F). We also 
validated the speed increase on real GM12878 CTCF ChIA-PET data and found a ~8-
1000 fold increases (Figure 1G). Comparing to kDBSCAN 𝑂 𝑁𝑙𝑜𝑔 𝑁  complexity, 
cDBSCAN is 𝑂 𝑁  complexity in most ideal situation, which is further validated by 
running cDBSCAN for the PETs in chromosome 1 for CTCF ChIA-PET 
(Supplemental Figure 1A), GM12878 Hi-C (Supplemental Figure 1B), GM12878 
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cohesin HiChIP (Supplemental Figure 1C) and the Trac-looping data (Supplemental 
Figure 1D) as the run time increases nearly linearly as the PETs increase. 	

The overview of cLoops  

Based on cDBSCAN we built cLoops (see loops) as a two-step loop-calling algorithm. 
cLoops is a light-weight tool coded in pure Python with dependence on only a few 
commonly used and well maintained packages such as scipy, numpy, pandas, joblib and 
seaborn. The first step uses cDBSCAN to find candidate loops from mapped PET data, 
without binning PETs into a specific assigned resolution contact matrix (as usually 
occurs with Hi-C loop-calling tools such as Fit-Hi-C) and without first identifying 
peaks from PETs and then finding the significant combinations of peaks (as needed by 
common ChIA-PET loop-calling tools such as Mango). In the second step the 
estimation of candidate loops’ significance is compared to permuted local backgrounds. 
The overview of data processing steps of cLoops is demonstrated in Supplemental 
Figure 1E. We show the algorithm details of cLoops using the GM12878 CTCF ChIA-
PET data as follows. 	

First, each intra-chromosomal PET is mapped to a 2D space by taking the middle 
coordinate of the left-end tag as the X-coordinate, and the middle coordinate of the 
right-end tag as Y-coordinate into 𝑋9, 𝑌9  where i indicates the PET id (Figure 2A). 
All PETs are therefore clustered by cDBSCAN. After clustering, each cluster can be 
marked as 𝑋K,A9B, 𝑋K,ALM , 𝑌K,A9B, 𝑌K,ALM , where 𝑘 is the cluster id, 𝑋K,A9B is the 
left boundary of left anchor (𝑋K,A9B  equals 𝑥O in Figure 2A),  𝑋K,ALM  is the right 
boundary of left anchor (𝑋K,ALMequals 𝑥+ in Figure 2A), 𝑌K,A9B is the left boundary of 
right anchor (𝑌K,A9B equals 𝑦Oin Figure 2A),  𝑌K,ALM is the right boundary of left anchor 
(𝑌K,ALMequals  𝑦+ in Figure2A). A model based distance cutoff was used to filter out 
potential self-ligated PETs (Figure 2B) (Methods). If there are fewer PETs in the inter-
ligation clusters than 𝑚𝑖𝑛𝑃𝑡𝑠, such clusters are removed. The remaining inter-ligation 
clusters are treated as candidate loops which then have their significance estimated 
against the local background. 

The	key	parameters	used	in	cLoops	are	those	used	to	run	cDBSCAN,	𝑒𝑝𝑠	and	
𝑚𝑖𝑛𝑃𝑡𝑠.	𝑚𝑖𝑛𝑃𝑡𝑠	determines	the	least	number	of	PETs	required	for	a	loop,	and	𝑒𝑝𝑠	
defines	the	distance	 for	two	PETs	to	be	neighbors	and	this	setting	 is	more	data	
dependent.	Multiple	𝑒𝑝𝑠	and	𝑚𝑖𝑛𝑃𝑡𝑠	can	be	assigned	to	cLoops	to	run	cDBSCAN	
clustering	multiple	times	to	find	merged	consensus	candidate	loops.	Empirically	
determined	parameters	were	used	 for	ChIA-PET,	HiChIP,	Hi-C	and	Trac-looping	
data	(Methods).		

Permuted local background for estimating significance of candidate loops  

For the second step, to test the significance of a candidate loop over the nearby genomic 
background, a permuted local background (PLB) is used (Figure 2C). Linearly closer 
anchors in the genome have higher probabilities to capture more PETs linking them due 
to experimental ligation bias in both ChIA-PET and Hi-C (Paulsen et al. 2014), which 
needs to be modeled and corrected for in loop significance tests. We designed this 
permuted local background to save the effort of correcting PET distance bias. For each 
candidate loop (red peaks), PLBs are defined as all combinations of their upstream and 
downstream 5 moving windows (light blue peaks, one upstream and one downstream 
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PLB plotted for the left/right anchor, in cLoops 5 moving windows are used to obtain 
100 permuted background regions) with the same length as the loop anchors (Figure 
2C). The shifting size for the moving windows is the mean length of these two anchors. 
Thus, the mean distance of all permutated windows is exactly the same as the candidate 
loop. Based on the PLB, the commonly used hypergeometric test, Poisson test and 
binomial test were used together to determine a candidate loop’s statistical significance; 
the details of the mathematical model and cutoff are described in Methods.	

For	 cLoops-called	 loops,	 due	 to	 the	 density-based	 clustering	 method	 and	
removal	 of	 suspected	 self-ligation	 PETs	 based	 on	 distance	 distributions,	 PET	
numbers	 are	 actually	 independent	 of	 loop	 distances.	 For	 example,	 in	 the	 CTCF	
ChIA-PET	data,	the	Pearson	correlation	coefficient	(PCC)	is	-0.0237	between	PETs	
numbers	and	distances	between	anchors	(Figure	2D).	The	p-values	derived	using	
different	statistical	tests	are	also	independent	of	loop	distances	(Figure	2E).			

cLoops application to ChIA-PET data	

We compared cLoops with three peak-calling based tools loop-calling tool, ChiaSig 
(Paulsen et al. 2014), ChIA-PET2 (Li et al. 2016) and Mango (Phanstiel et al. 2015) 
(Supplemental Table 2) using multiple ChIA-PET datasets (Supplemental Table 1). 
These three ChIA-PET tools were selected because they are the most frequently used. 
The run time for these tools is shown in Supplemental Table 3. cLoops is designed 
with parallel computing, while other tools were not, however, even when cLoops was 
run with only one CPU it was still much faster than ChiaSig and ChIA-PET2 on the 
GM12878 CTCF and RAD21 ChIA-PET, the HeLa CTCF ChIA-PET data, and K562 
H3K4me1 ChIA-PET data (Supplemental Table 3).	

Heatmaps and global quality of loops were visualized with mean profile heatmaps 
of loops (centerNormedAPA heatmaps) and the mean P2M (Peak to Mean) scores, 
respectively (Methods). The centerNormedAPA heatmaps were generated by Juicer 
APA. In a centerNormedAPA heatmap, loops are aligned in the center, and a high 
contrast ratio compared to the nearby regions indicates good loop quality. If there are 
highly interacting regions other than the center in a centerNormedAPA heatmap, it 
indicates either that there are shifts of loop boundaries or global loop quality is not good. 
As a quantitative indicator for enrichment of loops compared to nearby regions, P2M 
(computed by Juicer APA), is defined as the ratio of the central pixel to the mean of the 
remaining pixels (Durand et al. 2016b). In addition to P2M scores, we also show the 
global mean P2LL scores (Peak to Lower Left) and the related ZscoreLL scores 
(suggested by the Juicer documentation) for comparison (Supplemental Figure 7). A 
comparison of the loop anchor size distributions indicates that cLoops can identify 
loops with a larger range in anchor size than the other peak identification based 
algorithms, some of which have a predefined anchor size (Supplemental Figure 8).	

In general, cLoops and Mango outperformed ChiaSig and ChIA-PET2 for all 
tested ChIA-PET data as indicated by the mean profile heatmaps and the mean P2M 
scores for ChIA-PET data contain sharp peaks (e.g. CTCF and RAD21) (Supplemental 
Figure 2). We noticed that Mango, ChiaSig and ChIA-PET do not work well with 
histone modification ChIA-PET data, such as with K562 H3K27ac and H3K4me1 
datasets. Mango, ChiaSig and ChIA-PET2 identified limited loop numbers, and the 
loops’ qualities were worse compared to cLoops, as evaluated both by mean profile 
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heatmaps of loops and the mean P2M scores (Figure 3A, Supplemental Figure 2 and 
Supplemental Figure 3B). The cumulative aggregate peak analysis (CAPA) designed 
by Mango to evaluate quality of loops called from ChIA-PET data through Hi-C data 
was used to further compare performance. CAPA validated advantages of cLoops and 
Mango over ChiaSig and ChIA-PET2 (Supplemental Figure 3A) in enriching for Hi-
C interacting signals for ChIA-PET data containing broad peaks (Figure 3B), and 
similar performances of cLoops and Mango for ChIA-PET data containing sharp peaks 
(Supplemental Figure 3B). Worse performances are partially due to use of the narrow 
peak calling model of MACS (Zhang et al. 2008) as a default setting. We show two 
randomly selected unique loops called by cLoops from H3K4me1 ChIA-PET data 
(Figure 3C) and H3K27ac ChIA-PET data (Figure 3D) as examples to illustrate 
cLoops’ ability to detect reliable loops that could be observed from the visualization of 
raw PETs which are missed by other tools. Moreover, Mango estimated p-values 
showed a higher dependence on the anchors’ distance, showing higher significance for 
closer anchors, which suggests insufficient correction for the experimental bias 
(Supplemental Figure 3C). 	

cLoops application to Hi-C data	

We compared cLoops with five Hi-C loop calling tools recently evaluated in a tool-
performance comparison study (Forcato et al. 2017), namely diffHic (Lun and Smyth 
2015), Fit-Hi-C (Ay et al. 2014), GOTHiC (Mifsud et al. 2017), HiCCUPS (Durand et 
al. 2016b) and HOMER (Heinz et al. 2010)  (Supplemental Table 2),  using the high 
resolution deep sequencing data from GM12878 and K562 Hi-C data (Supplemental 
Table 1). To compare performance on the same hardware system, we used a PC system 
(Supplemental Information) and equivalent pre-processing with HiC-Pro. We did not 
compare HIPPIE (Hwang et al. 2015) for following reasons : 1) HIPPIE requires the 
Sun Grid Engine system and to compare tools based on equivalent systems we could 
only access a PC system with GPUs. 2) HIPPIE pre-processing differs because it uses 
STAR (Dobin et al. 2013) for mapping and requires its own pre-processing pipeline. 3) 
HIPPIE didn’t show unique advantages for calling loops in the comparison study  
(Forcato et al. 2017).  Parameters and loops selections were mostly set according to 
those used in a previous comparison study (Forcato et al. 2017) (Supplemental Table 
2). Raw FASTQ data was first processed by HiC-Pro and the required input files for 
each tool were converted from HiC-Pro output files (Methods). The runtimes for these 
tools are available as Supplemental Table 4. 	

For both GM12878 and K562 Hi-C data, a region on chromosome 21 (36,000 to 
39,500kb) contained 6 obvious conserved, visibly salient loops in the 5kb resolution 
heatmaps (5kb resolution was chosen for visualization in Juicebox to get clear views of 
loops and 5kb is default most high-resolution setting for a .hic file visualized in 
Juicebox ), designated as “a”, “b”, “c”, “d”, “e”, “f” (note that there are actually 2 loops 
at the “e” region if further zoomed in) (Figure 4A and B). We compared the loops 
detected by different tools for this example region for both Hi-C and the following 
HiChIP data. Generally, cLoops and HiCCUPS outperformed other tools in detecting 
most of the visible loops, while also avoiding detection of probable false-positives 
located near the heatmap diagonal for both GM12878 and K562 data (Figure 4A and 
B). More examples of visible loop comparisons are shown in Supplemental Figure 5. 
The mean loop profile heatmaps and mean P2M scores indicated that the majority of 
loops detected by diffHic, Fit-Hi-C, GOTHiC and HOMER are located very near to the 
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diagonal line and have no enriched interaction signals compared to nearby regions. The 
distribution of distances between loop anchors also supported this conclusion, as 
HOMER and GOTHiC tended to identify closer loops, thus showing distance 
dependency (Supplemental Figure 4E). The mean profile heatmaps showed cLoops 
had higher enrichment of interacting signals of loops compared to nearby regions, while 
loops from HiCCUPS showed no enrichment at the center of called loops (center on 
heatmaps) compared with its upper left corner region (Figure 4A and B). 	

For independent confirmation, the higher overlap of cLoops and HiCCUPS called 
GM12878 Hi-C loops with CTCF and RAD21 ChIA-PET loops (Supplemental Figure 
4A and B) and HiChIP loops (Supplemental Figure 4C) supported the robustness of 
performance of cLoops and HiCCUPS over other tools. That is, the higher mean density 
of CTCF, RAD21 and SMC3 ChIP-seq binding signals on anchors called by cLoops 
and HiCCUPS strongly support their higher accuracy and comparatively better 
performance. Moreover, we also observed two distinct advantages of cLoops compared 
to all other tools: 1) for called loops, the PET numbers are less dependent on distance 
between anchors (Supplemental Figure 4D), and 2) cLoops can better detect more 
distant loops (Supplemental Figure 4E).	

HiCCUPS is mainly based on comparing observed values to expected values for 
every pixel (where pixel size depends on the pre-defined resolution for contact matrix), 
and then determining the significance for the pixel using a modified Benjamini-
Hochberg FDR control procedure (so called “𝜆-chunking”), with additional filters for 
local neighborhoods. Then the loops are clustered from the significant pixels. The 
concept of the HiCCUPS algorithm is quite different from cLoops; the setting of Hi-C 
specific “𝜆 -chunking” and the additional filters may limit HiCCUPS to other 3D-
genomic data, and the time-consuming pixel level computing is also limited to an inside 
loops distance cutoff (<=2MB), while cLoops does not have such limitations. Overall, 
cLoops’ loops are better supported by ChIA-PET and HiChIP data overlap in GM12878 
and showed less bias against distant loops, and cLoops does not need GPUs to run. 	

cLoops application to deep-sequencing HiChIP data	

Although Fit-Hi-C and Mango were used for calling loops in their original HiChIP 
method paper (Mumbach et al. 2016), only HiCCUPS called loops using merged PETs 
from biological and technical replicates were provided as Supplemental data, so we first 
compared cLoops to HiCCUPS using the merged GM12878 cohesin HiChIP data. 	

cLoops obtained similar numbers of loops as HiCCUPS for the GM12878 cohesin 
HiChIP data on the example chromosome 21 region mentioned above in the Hi-C 
comparisons (Figure 4), where cLoops detected all 6 visible loops (Figure 5A).  
HiCCUPS did not detect loop “f” despite detecting the “f” loop in Hi-C data (Figure 
5A). The mean loops profile heatmaps indicated HiCCUPS may detect more loops close 
to the heatmap diagonal line (Figure 5 B and C). We validated this by showing the 
distance between anchors for all loops (Figure 5F), and with the unique loops mean 
profile heatmap for cLoops and HiCCUPS (Figure 5G) and the distance between 
anchors for unique loops (Figure 5I), which altogether show cLoops can detect more 
distant loops and the loops with higher signal enrichment. Furthermore, the loops called 
by cLoops are better supported by both ChIA-PET loops and Hi-C loops for all called 
loops (Figure 5E), and for the unique loops (Figure 5H). Moreover, the loop anchors 
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called by cLoops have higher CTCF, RAD21 and SMC3 ChIP-seq tag densities than 
those of HiCCUPS (Figure 5D).	

cLoops application with low-depth sequencing HiChIP data 

With the capture enrichment process, HiChIP could in principle reveal enriched loops 
with under-sequenced PETs compared to Hi-C. Therefore, we wondered whether 
cLoops’ performance is still relatively good in this situation. We compared cLoops with 
the Hi-C loop calling tools compared above and hichipper (Lareau and Aryee 2018) 
(Supplemental Table 2) using the two technical replicates of biological replicate 1 
from the cohesin GM12878 HiChIP data. The run time for these tools is shown in 
Supplemental Table 5. Even when using only one CPU, cLoops was faster than 
HOMER, hichipper, Fit-Hi-C and GOTHiC.	

The performances of each tool were assessed in a similar way as for Hi-C data above. 
For the low-depth sequenced HiChIP data, in summary, 1) cLoops, HiCCUPS, HOMER 
and hichipper can obtain similar visible loops as shown in the example region (Figure 
6A), detecting majority of the four example loops (“a”, “b”, “c”, “d”) on the heatmaps 
for both replicates, and not detecting artificial interaction signals  close to diagonal line. 
Also, the mean profile heatmaps for all loops from all four tools showed enrichment 
over nearby regions, while loops from diffHic and GOTHiC showed obvious patterns 
close to the diagonal line (Figure 6B). 2) Loops called by cLoops, HiCCUPS and 
HOMER were consistent with CTCF ChIA-PET loops (Supplemental Figure 6A), 
RAD21 ChIA-PET loops (Supplemental Figure 6B) and Hi-C loops (Supplemental 
Figure 6C), as measured by the Jaccard index. 3) The detected PET numbers in loops 
called by cLoops and HiCCUPS are far less dependent on distance between anchors 
than with other tools (Supplemental Figure 6D). The distance dependence is especially 
high for HOMER, hichipper and Fit-Hi-C. 4) cLoops, HiCCUPS and Fit-Hi-C could 
detect more distant loops compared to others (Supplemental Figure 6E). Notably, 
cLoops does not need additional control parameters like –L and –U in Fit-Hi-C to detect 
distant loops. 5) HiCCUPS and cLoops had the highest Jaccard Index of overlapping 
loops between technical replicates, except for GOTHiC, as it appeared to call too many 
loops (e.g., the example region called loops at nearly all positions), whereas hichipper 
showed the lowest Jaccard Index, indicating the peak-based strategy might be biased 
by errors in peak calling (Supplemental Figure 6F). 6) The anchors of loops detected 
by cLoops, HOMER and hichipper are better supported by the CTCF, RAD21 and 
SMC3 ChIP-seq data (Supplemental Figure 6G). Due to the first pre-customized 
peak-calling step of hichipper, the higher enrichment of ChIP signal on hichipper 
anchors is expected by design. 7) Again, cLoops does not need GPU like HiCCUPS. 	

cLoops application to Trac-looping data	

We further demonstrated the generality of cLoops for calling accurate loops using the 
recently published Trac-looping data (Lai et al. 2018). The advantages of cLoops over 
the Trac-looping-methods are shown by the following: 1) Globally, loops called by 
cLoops were more enriched for the Trac-looping PETs compared to nearby regions 
(Figure 7A). 2) cLoops detected much more distant loops (Figure 7B). 3) The loops 
uniquely detected by cLoops were much more enriched for interacting signals (Figure 
7C) and most of the uniquely detected loops of cLoops are more distant (Figure 7D).  
A randomly selected example shows 3 distant loops uniquely detected by cLoops as 
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linking the significant interactions between promoters while the Trac-looping-methods 
detected a very close loop nearby (Figure 7E).  4) Hi-C signals on the Trac-looping 
loops also show higher enrichment of cLoops called loops compared to the Trac-
looping-methods (Figure 7F). Even though there was no peak-calling step in cLoops, 
the PETs density on cLoops called loop anchors were as high as that of the Trac-
looping-methods (Figure 7G). 	

Discussion and conclusion   

In summary we report cLoops as a new loop-calling tool based on an improved 
clustering algorithm, cDBSCAN, and permuted local background. We first showed the 
cDBSCAN clustering algorithm drastically improved speed on both simulated data and 
real CTCF ChIA-PET data compared to the original DBSCAN algorithm. cLoops 
determines the significance of loop calling by a permuted, instead of model-based, local 
background. These two features make cLoops applicable to ChIA-PET, HiChIP, Hi-C 
and Trac-looping data, other 3C-based chromatin interaction data, and yet-to-be-
developed 3D mapping technologies. 	

Methods 

kDBSCAN and the simulation data for performance comparison with cDBSCAN 

kDBSCAN is implemented in DBSCAN with KD-tree for neighbor search. We used 
scipy.spatial.cKDTree for the KD-tree, which was coded in C. Specifically, the points 
in the 2D spaces were first built as a KD-tree, when querying for neighbors in expand 
cluster functions, the kdtree.query_ball_point was called. The code of cDBSCAN and 
kDBSCAN have been deposited to GitHub and are available at:	
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Supplementar
yData/benchmarking/1.simulatedData , with file names of cDBSCAN.py and 
kDBSCAN.py. 	

100 clusters were generated randomly with centers 𝑋9, 𝑌9  for i from 1 to 100, where 
𝑋9 and 𝑌9 are random integers uniformly selected from (-5000, 5000). And the signal 
points were generated by sklearn.datasets.samples_generator.make_blobs around the 
centers with samples set to 10,000 and std to 0.2. The noise points were generated 
randomly in the space as floats. For the comparison, parameters 𝑒𝑝𝑠 = 0.2  and 
𝑚𝑖𝑛𝑃𝑡𝑠 = 5  were used. The code for benchmarking is available at: 
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Suppl
ementaryData/benchmarking	  

Mathematical model for loop significance determination 

Using the permuted local background (PLB), an enrichment score is calculated as: 

𝐸𝑆9,= =
U?,V
UW,XW,X B?,V

   E 1	

where 𝑅9,=  is the number of PETs linking the anchors 𝑖, 𝑗 , 𝑛9,=  is the number of 
permutated regions, 𝑅[,\ is the number of PETs linking the permuted regions. 	

FDR is defined as the ratio of permuted local regions that have more PETs than 
the candidate loop. 	
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𝐹𝐷𝑅9,= = 𝐼 𝑅[,\ > 𝑅9,=[,\ 𝑛9,=  E 2	

The hypergeometric test is carried out as, 

ℎ𝑝9,= = 1 −
aV
K

b@aV
a?@K
b
a?

U?,V@O
Kcd    E 3 	

Where 𝑀 is the total PET number in the chromosome for the region 𝑖, 𝑗, 𝐷= are the 
total PETs in the region j (one anchor).	

Using the PLB, the Poisson test can be carried out (as all numbers are integers) as,  

𝑝𝑜𝑝9,= = 1 − fgChi

K!

U?,V@O
Kcd   𝜆 = 𝑅[,\[,\ 𝑛9,=  E 4	

and the binomial test as, 

𝑏𝑝9,= = 1 − 𝑀
𝑘

U?,V@O
Kcd 𝑃9,=K 1 − 𝑃9,=

b@K E 5	

Where 𝑃9,=  is the possibility of observing 1 PETs link of the two regions 
normalized by the depth of the interacting regions, estimated as:	

𝑃9,= = 	 (
UW,X

baWaX
[,\ 𝑛9,=	)𝐷9𝐷= E 6	

The final p-values for the hypergeometric test, Poisson test and binomial test are 
reported before and after correcting for multiple hypothesis testing using the Bonferroni 
method, multiplying the numbers of tests in that chromosome.  

Public data used 

Used datasets were summarized in Supplemental Table 1.  

Pre-processing of ChIA-PET, Hi-C, HiChIP and Trac-looping data 

The raw FASTQ files of ChIA-PET data were pre-processed by Mango (Phanstiel et al. 
2015) into mapped de-duplicated intra-chromosomal PETs. To call loops with ChIA-
PET2 (Li et al. 2016) , ChIA-PET2 pipeline was used. Only intra-chromosomal PETs 
in chr1-22 and chrX were used to call loops to avoid bugs in Mango. 	
The raw FASTQ files of cohesin HiChIP data were first processed into mapped de-
duplicated intra-chromosomal PETs by HiCUP (v0.5.4) (Wingett et al. 2015) , using the 
genome version of hg38. HiC-Pro (v2.10.0) (Servant et al. 2015) was used to produce 
a fair pre-processing of data to compare performances between Hi-C loop calling tools 
for GM12878, K562 Hi-C data and two cohesin HiChIP technical replicates. Only intra-
chromosomal PETs in chr1-22, and chrX were used to call loops. The BEDPE files for 
mapped resting CD4+ Trac-looping data to hg19 were obtained from GEO and 
replicates were combined. 	
   
Summary of loop-calling tools comparison methods  

Software version, references, key parameters, and input of loop calling tools for ChIA-
PET, Hi-C and HiChIP to compare with cLoops are summarized in Supplemental 
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Table 2. The Trac-looping-methods called loops for resting CD4+ 
(GSE87254_DHS1K_rest_3PETs_fdr.txt.gz) were obtained from GEO. 

To run HiCCUPS, HIC files were generated by Juicer with the input converted from 
HiC-Pro’s output file with suffix of allValidPairs. When running HiCCUPS for the 
K562 Hi-C data, there was an error of jcuda.CudaException halt the result, so we 
separated K562 Hi-C data by chromosomes and run HiCCUPS for every chromosomes 
then combined all the result. To run HOMER, HiC-Pro’s output file with suffix of 
allValidPairs was converted to the required HiCSummary format. There was no specific 
setting or errors when analyzing Hi-C and HiChIP data by HOMER. To run Fit-Hi-C, 
Hi-C and HiChIP data were separated by chromosome. The output from HiC-Pro was 
converted to Fit-Hi-C input by HiC-Pro’s script named hicpro2fithic.py. Even for the 
10kb resolution contact matrix fed to Fit-Hi-C, chr1 needs more than 75G RAM and 
chr2 needs about 80G. To run GOTHiC, PETs BAM file output by HiC-Pro was 
separated by chromosome and then feed to GOTHiC. To run diffHic, PETs BAM file 
output by HiC-Pro was used as input. If a specific resolution of contact matrix was 
needed by a tool, it was set to 10kb.  

For all data tested, cLoops needs no more than 30G RAM when using one CPU. Loops 
called by cLoops for ChIA-PET data and the commands to run cLoops are available at:	
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Supplementar
yData/loops/ChIA-PET. Loops called by cLoops for Hi-C data and the commands to 
run cLoops are available at : 
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Supplementar
yData/loops/Hi-C . Loops called by cLoops for HiChIP data and the commands to run 
cLoops are available at :	
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Supplementar
yData/loops/HiChIP.  Loops called by cLoops for Trac-looping data and the commands 
to run cLoops are available at: 
https://github.com/YaqiangCao/cLoops_supplementaryData/tree/master/Supplementar
yData/loops/Trac-looping. 

 
Cumulative aggregate peak analysis  

The cumulative aggregate peak analysis (CAPA) was carried out according to Mango 
(Phanstiel et al. 2015) to evaluate loops quality called from ChIA-PET data using Hi-
C. Briefly, to generate CAPA plots, we ranked loops by p-values (or FDR of ChIA-PET, 
hypergeometric test p-values were used for cLoops called loops) and calculated a 
recommend P2LL aggregate peaks analysis score by the command of APA in Juicer 
(Durand et al. 2016b), in a cumulative process adding 100 for most ChIA-PET loops 
and 20 for loops fewer than 1000 loops at a time.	

Aggregate peak analysis for loops comparison 

To show the enrichment of global mean profiles of all called loops with their nearby 
regions for the Hi-C and HiChIP data, Juicer APA (Durand et al. 2016b) with following 
parameters: -n 0 –w 5 –r 5000 –u was used to get the view of centerNormedAPA and 
the P2M score (indicating the enrichment of loops compared to nearby regions) was 
used. Here –n 0 was used to analyze all loops without filtering out loops that are close 
to the diagonal line of the input contact matrix. For ChIA-PET data, -n was set to 0, 10, 
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20 and 30 (default), respectively for comparison. When carrying APA for Trac-looping 
loops, 1kb resolution was used both for Trac-looping and Hi-C data. The 
centerNormedAPA heatmaps output by Juicer APA were used for visualization 
comparison in genome-wide way. In a centerNormedAPA heatmap, loops are 
normalized at the heatmap center and indicating the loops enrichment comparing to 
nearby regions. If there are higher interacting regions than the center in a heatmap, may 
indicate there are shifts of loops boundaries or global loops quality are not good. We 
obtained the centerNormedAPA matrix in Juicer APA’s output of gw/enhancement.txt. 
We mainly used the P2M score as a loops global quality indicator due to following 
reasons. 1) According to Juicer (Durand et al. 2016b) documentation, the definition of 
P2M (Peak to Mean) score is the ratio of the central pixel to the mean of the remaining 
pixels, which tends to indicate the enrichment of interactions in loop regions against 
nearby background. We also compared the P2LL (Peak to Lower Left) score (P2LL 
score was suggested by Juicer APA guide) and its related ZscoreLL, which is the ratio 
of the central pixel to the mean of the mean of pixels in the lower left corner. 2) If there 
are too many loops fed to Juicer APA, for example 748,786 GM12878 Hi-C loops 
output by GOTHiC, Juicer APA will crash that leads to no output of gw/measures.txt 
file, which records the global P2LL score and other indicators. Meanwhile, there is 
always a file named “enhancement.txt” recording P2M score for every loop when 
feeding loops to Juicer APA one chromosome at a time.	

Visualization of example loops  

Juicebox (Durand et al. 2016a) was used to show loops with a resolution for the 
heatmap of 5kb. 	
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Figure 1. The cDBSCAN algorithm  
(A) A toy example of the simulated test data, mainly 3 clusters, centered at (-1,-1), (1,-
1) and (1, 1) with 𝑠𝑡𝑑 = 0.2, a total of 60 signal points and 60 noise points. Noise is 
generated randomly and marked as grey points. (B) Indexing result, each point is 
attached to a square with side length of 𝑒𝑝𝑠, which equals to𝑠𝑡𝑑 here, the numbers in 
the squares indicate the number of points indexed in that square. The highlighted region 
is used to represent detected noise. (C) An example of first round of noise removal, the 
region is highlighted in (B). For an 𝑒𝑝𝑠 square, scan the nearby 8 squares, if the total 
number of nearby points is less than required 𝑚𝑖𝑛𝑃𝑡𝑠 which is 5 here, then the index 
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square is marked as noise. A noise index is marked by a cross, while a signal index is 
marked by a checkmark. (D) Second round of noise removal for the same region in (C), 
for a noise index detected in (C), if one of its neighbor square index is a signal index, 
then it is re-marked to a signal index. Examples are marked by orange checkmarks. The 
highlighted region is an example and an outer index that is not re-marked as signal 
index. (E) An example of indexed 𝑒𝑝𝑠 square after noise removal. (F) Comparison of 
running CPU time at different noise/signal ratio based on 10 repeats for the simulation 
data. Left y-axis marks the bars for running time ratios; right y-axis marks the lines for 
adjusted rand scores (ARS). The two ARS are exactly the same. (G) Comparison of 
running CPU time using real GM12878 CTCF ChIA-PET data (GSM1872886) for each 
chromosome based on 5 repeats, with 𝑒𝑝𝑠 = 750 and 𝑚𝑖𝑛𝑃𝑡𝑠 = 5. Error bars denote 
standard deviations. 
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Figure 2. Overview of cLoops  
(A) To carry out clustering, each PET is mapped to 2D space as its middle coordinate 
of left PET mapped to X-axis and right mapped to Y-axis. (B) Distance distribution for 
GM12878 CTCF ChIA-PET PETs in classified inter-ligation and self-ligation clusters 
(Methods). (C) Permutated local background for estimating candidate loops statistical 
significance. For two anchors of a candidate loop, all combinations of their upstream 
and downstream 5 moving windows with size of anchors and step size of the mean 
length of these two anchors. The mean distance for all combinations is exactly the same 
as the interacting loop region. (D) Hexbin plot of detected PETs and distance between 
loop anchors for CTCF ChIA-PET data. (E) Hexbin plot of estimated p-values using 
different methods and the distance between loop anchors for CTCF ChIA-PET data.  
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Figure 3. cLoops applied to ChIA-PET data and comparison with other tools 
(A) centerNormedAPA heatmaps from Juicer (Durand et al. 2016b) aggregate peak 
analysis (APA) were shown for loops obtained by cLoops from K562 POLR2A, 
H3K27ac and H3K4me1 ChIA-PET data. The number of loops and P2M score from 
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whole genome-wide analysis were annotated at head of each dataset heatmap. The P2M 
score is the mean of all P2M values, which indicate the enrichment of loops compared 
to nearby regions. In the Juicer APA analysis, -n was set to 30 (default parameter) to 
analysis loops with anchor distance >= 150kb. More comparisons for distance filtered 
loops are shown in Supplemental Figure 2. (B) Cumulative APA (CAPA) for 
evaluating the qualities of loops called from ChIA-PET data using Hi-C data. Higher 
scores mean the loops are better supported by Hi-C (APA score > 1.0). (C, D) Example 
of unique loops detected by cLoops for H3K4me1 (C) and H3K27ac (D) ChIA-PET 
data.  	
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 8, 2018. ; https://doi.org/10.1101/465849doi: bioRxiv preprint 

https://doi.org/10.1101/465849


	
19	

 
Figure 4. cLoops applied to Hi-C data and comparison with other tools 
(A) Example of loops called by each tool for the same region (left) and APA for called 
loops (right) for GM12878 Hi-C data. centerNormedAPA heatmaps from Juicer APA 
analysis were shown for the mean loops. The number of loops and P2M score from 
whole genome-wide analysis were annotated at head of each dataset heatmap. (B) 
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Comparison for K562 Hi-C data.  
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Figure 5. cLoops applied to deep sequenced HiChIP data and comparison with 
HiCCUPS 
(A) Examples of loops called by cLoops (upper) and HiCCUPS (lower) for merged 
GM12878 cohesin HiChIP data. The loops called by HiCCUPS were obtained from the 
HiChIP original paper. (B) Mean profile heatmap of loops called cLoops. (C) Mean 
profile heatmap of loops called by HiCCUPS. (D) Mean ChIP-seq signal of CTCF, 
RAD21 and SMC3 on loop anchors. (E) Loops overlapping with CTCF ChIA-PET 
loops, RAD21 ChIA-PET loops and Hi-C loops. (F) Distribution of distances between 
loop anchors for all loops. (G) Mean profile heatmap of unique loops detected by 
cLoops (upper) and HiCCUPS (lower). (H) Uniquely detected loops overlapping with 
CTCF ChIA-PET loops, RAD21 ChIA-PET loops and Hi-C loops. (I) Distribution of 
distances between loop anchors of uniquely detected loops. 
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Figure 6. cLoops applied to under-sequenced HiChIP data and comparison with 
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other tools  
(A) Examples of loops called for the same region of under-sequenced two technical 
replicates for cohesin GM12878 HiChIP data. (B) Mean profile heatmaps. 
 
 

 
Figure 7. cLoops applied to Trac-looping data compared to the Trac-looping-
methods 
(A) Mean profile heatmaps of all loops called cLoops and the Trac-looping-method. 
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Mapped PETs of Trac-looping data for the resting CD4 cell in BEDPE files and the 
Trac-looping-methods called were obtained from GSE87253. (B) Distribution of 
distances between loop anchors for all loops. (C) Mean profile heatmaps of unique 
loops called by cLoops and the Trac-looping-methods. (D) Distribution of distances 
between loop anchors for unique loops. (E) Randomly selected examples for cLoops 
and Trac-looping-methods called loops. (F) APA for evaluating the qualities of loops 
called from Trac-looping data using Hi-C data. The P2LL (Peak to Lower Left, 
suggested by Juicer) was used to show enrichment of Hi-C signal on Trac-looping loop 
regions. (G) Mean Trac-looping PETs densities on loop anchors. 
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