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Genome analysis
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Abstract

Motivation: CRISPR-Cas9 loss-of-function (LOF) pooled screening promises to identify which long non-coding RNAs
(lncRNAs), amongst the many thousands to have been annotated so far, are capable of mediating cellular functions.
The two principal LOF perturbations, CRISPR-inhibition and CRISPR-deletion, employ one and two guide RNAs, re-
spectively. However, no software solution has the versatility to identify hits across both modalities, and the optimal
design parameters for such screens remain poorly understood.

Results: Here, we present CRISPR Analysis for Single and Paired RNA-guides (CASPR), a user-friendly, end-to-end
screen analysis tool. CASPR is compatible with both CRISPRi and CRISPR-del screens, and balances sensitivity and
specificity by generating consensus predictions from multiple algorithms. Benchmarking on ground-truth sets of
cancer-associated lncRNAs demonstrates CASPR’s improved sensitivity with respect to existing methods. Applying
CASPR to published screens, we identify two parameters that predict lncRNA hits: expression and annotation quality
of the transcription start site. Thus, CASPR is a versatile and complete solution for lncRNA CRISPR screen analysis,
and reveals principles for including lncRNAs in screening libraries.
Availability and implementation: https://judithbergada.github.io/CASPR/
Contact: rory.johnson@dbmr.unibe.ch
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CRISPR-Cas9 genome-engineering has been a breakthrough tech-
nology by enabling functional screening of non-protein-coding ele-
ments. Foremost amongst these are the long non-coding RNAs
(lncRNAs), which are challenging to perturb using classical RNA
interference (RNAi) technology (Stojic et al., 2018). Deployment of
CRISPR in high-throughput pooled screening format promises to
discover functional and disease-related genes amongst the tens of
thousands of lncRNA gene loci in the latest annotations (Esposito
et al., 2019).

Perturbation of lncRNAs requires distinct experimental design
compared to protein-coding genes (PCGs). The latter require one
single Cas9 protein, targeted by an engineered single guide RNA
(sgRNA), to induce an indel mutation in the open reading frame
(ORF) and achieve a complete loss-of-function (LOF) frameshift
mutation (Esposito et al., 2019). In contrast, lncRNAs have, by

definition, no ORF. Thus, two principal LOF approaches have been
applied (Fig. 1A). First, CRISPR-inhibition (CRISPRi), where tran-
scriptional repression is achieved by an enzymatically-dead Cas9
(dCas9) fused to a repressor domain, such as KRAB (Liu et al.,
2017). Second, CRISPR-deletion (CRISPR-del), where a pair of
Cas9 complexes is used to induce simultaneous DNA double-strand
breaks flanking the lncRNA and thereby delete it (Aparicio-Prat
et al., 2015). CRISPRi is transient and requires one sgRNA;
CRISPR-del is permanent and requires two sgRNAs, sometimes
referred to as paired guide RNAs (pgRNAs).

In pooled CRISPR screens, functional lncRNAs are identified by
the enrichment or depletion of their targeting sgRNAs between two
or more populations of phenotypically distinct cells (Esposito et al.,
2019). Multiple unique sgRNA constructs are used for every target,
and replicated experiments performed, in order to identify hits
against a background of technical and biological noise. At the end of
experiments, genomically-inserted sgRNA sequences are amplified
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by PCR and sequenced by next generation sequencing (Fig. 1B). The
unique 20mer protospacer(s) in each sgRNA or pair of sgRNAs, are
used as molecular barcodes to track the frequency of each knockout cell
population. A growing number of software packages has been created
to identify hits from such screens, based on a variety of statistical

approaches. These packages may either take as input the raw sequenc-
ing reads and provide an ‘end-to-end’ analysis (such as PinAPL-Py and
MAGeCK) (Li et al., 2014; Spahn et al., 2017), or just accept count
tables of already processed reads (such as BAGEL, STARS and PBNPA)
(Doench et al., 2016; Hart and Moffat, 2016; Jia et al., 2017).

A

B

C

D

E

Fig. 1. (A) CRISPR loss-of-function perturbations. In CRISPRi, a single sgRNA is used to recruit a chimaeric protein composed of an effector domain (such as KRAB) fused to

a catalytically-dead Cas9 (dCas9), and reversibly inhibits transcription of the target gene. In CRISPR-deletion (CRISPR-del), a pair of sgRNAs (pgRNA) recruit wild-type Cas9

endonucleases to sites flanking the target region (here, the gene’s transcription start site), creating a genomic deletion and silencing gene expression. (B) sgRNAs can be unique-

ly identified by sequencing their 20 nt protospacer region. For sgRNA libraries, forward reads that contain the 20 nt protospacers are sufficient. For pgRNA libraries, forward

and reverse reads are needed. (C) The CASPR pipeline. As inputs, it requires the sequencing reads, a design library of sgRNA protospacers, and an experimental design file

defining the treatment and control samples. Then, it performs the quality control and trimming of reads, as well as the indexing of the sgRNA library. CASPR maps the reads

to the library and provides a count table, which is used to identify gene hits by two different algorithms, MAGeCK and PBNPA. (D) Scheme for indexing the library.

Protospacers are converted to FASTA format and indexed with STAR. For pgRNA libraries, CASPR concatenates the two protospacers. (E) Read trimming of raw sequencing

reads to extract protospacer sequences. Resulting FASTQ file will be mapped to the indexed library
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Effective sgRNA library design is critical for the success of lncRNA
CRISPR screens. Both CRISPRi and CRISPR-del experiments require
the targeting of Cas9 complexes within narrow genomic window of
<1 kb around the TSS (Sanson et al., 2018). CRISPR-del studies can de-
lete the lncRNA’s promoter and TSS, rather than the whole gene, to
minimize off-target effects and maximize deletion efficiency (Aparicio-
Prat et al., 2015), although the single available CRISPR-del screen
incorporated a mixture of TSS and whole-gene deletions (Zhu et al.,
2016). In contrast to PCGs, lncRNA gene catalogues are growing rapid-
ly, their accuracy is poor [particularly in correctly annotating the tran-
scription start site (TSS)], and publicly available screening libraries are
highly incomplete (Uszczynska-Ratajczak et al., 2018). Thus, lncRNA
screens are at risk of high false negative rates arising from poor
annotations.

Although growing numbers of screens are being performed on
lncRNAs and other non-coding elements (Diao et al., 2017;
Gasperini et al., 2017; Zhu et al., 2016), key resources are lacking.
First, no analysis pipeline is capable of handling both single and
paired sgRNA experiments. Second, we lack an understanding of
the rules by which lncRNAs should be judged as good candidates
for inclusion in a screen (Liu et al., 2017). In the present study, we
address these issues through the creation of a new CRISPR screen
analysis pipeline capable of perturbation-independent, end-to-end
analysis. We deploy this pipeline on recently published screen data
to better understand the behaviour of such screens and establish
guidelines for design of future screens.

2 Materials and Methods

CRISPR Analysis for Single and Paired RNA-guides (CASPR) pipe-
line: The CASPR pipeline is programmed in Bash. It is based on five
subprograms following the workflow presented in Fig. 1C, each of
which can be run independently. CASPR is available at https://judith
bergada.github.io/CASPR/, with documentation and instructions.

Indexing: The library of single or paired sgRNAs must be pro-
vided as a text file with three or four columns, respectively: IDs, tar-
get gene names and 20 nt protospacer sequences. CASPR transforms
the library into a FASTA file. Importantly, for pgRNAs, this FASTA
file concatenates second and first protospacer sequences, in that
order (Fig. 1D). The library FASTA file is indexed using STAR
(Dobin et al., 2013).

Quality control of the reads: Read qualities are tested by FastQC
and outputs are stored for inspection (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/).

Trimming: Sequencing reads (FASTQ files) are trimmed with
cutadapt (EMBnet., 1994) based on adapters that are either speci-
fied by the users or set by default. Cutadapt identifies the 50 position
of the adapters and removes all nucleotides upstream and down-
stream of the protospacers (Fig. 1E). Reads are rejected if the adapt-
er is not found or the sequence of the remaining protospacer is
shorter than 5 bp. To handle pgRNA libraries, two protospacers
must be sequenced using forward and reverse reads (Fig. 1B). Thus,
their sequences can be extracted separately as described above.
CASPR computes then the reverse complement of the second proto-
spacer by employing the fastx_reverse_complement function avail-
able at FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),
and concatenates the resulting paired sgRNAs to create a new
FASTQ file (Fig. 1D). To account for situations in which adapters
are not sequenced, CASPR checks if they are placed at the same
coordinates in >25% of the reads. Otherwise, protospacers are
assumed to start at the first 50 base pair.

Mapping: Trimmed reads are mapped to the indexed protospacer
library using STAR (Dobin et al., 2013). CASPR allows users to
tune mapping parameters, in terms of mismatches and minimum
number of matched nucleotides. Reads that map to >1 library se-
quence are discarded to avoid confounding effects. In contrast to
other software, CASPR affords flexibility during the mapping step,
while providing a proper quantification for both sgRNA and
pgRNA libraries.

Test of gene significance: CASPR uses SAMtools (Li et al., 2009)
to convert the BAM files containing mapped reads into a count table,

which is taken as input to perform the assessment of gene significance.
PBNPA (Jia et al., 2017) and MAGeCK in the adjusted Robust Rank
Aggregation mode (a-RRA) (Li et al., 2014) are employed in parallel.
The degree of agreement between the two methods may be inspected
with Venn diagrams. The raw gene-level P-values of PBNPA and
MAGeCK are combined into a consensus value by Fisher’s method
(Fisher, 1970). Finally, P-values are adjusted to a false discovery rate
(FDR) by the Benjamini–Hochberg method. To aid visualization of
results, CASPR generates multiple plots in R - quantile–quantile plots,
volcano plots, box-plots and other scatter plots. It also creates configur-
ation files that can be inspected using VISPR, the web-based interactive
framework (Li et al., 2015).

Software and versions: CASPR was tested with STAR 2.6.0c,
FastQC v0.11.8, cutadapt 1.18, FASTX-Toolkit 0.0.14, SAMtools
1.4.1, MAGeCK 0.5.8, R 3.5.0, PBNPA 0.0.3 and VISPR 0.4.14.

2.1 Data and accession codes
All analyses were based on GENCODE 19 gene annotations, and
any other genes were discarded. Analyses presented here are based on
two published lncRNA CRISPR screens in human cells: the CRISPRi
study by Liu et al. (2017) and the CRISPR-del study by Zhu et al.
(2016). From these studies, we extracted the subset of gene targets
that belong to GENCODE annotations, leaving 4325 lncRNAs and
666 lncRNAs for the CRISPRi and CRISPR-del screens, respectively.
The names of genes targeted by each study were obtained from the
original publication, then converted to GENCODE identifiers using
BioMart-ENSEMBL (Smedley et al., 2015). For consistency and to
allow fair comparisons of the CRISPR-del and CRISPRi studies,
human genome assembly hg19/GRCh37 was used in analyses requir-
ing gene coordinates. RNA-sequencing expression data was obtained
from ENCODE, under accession codes ENCSR000CPR (HeLa),
ENCSR000CPT (MCF7) and ENCSR000BYO (U87). Cell lines and
lncRNAs for which data was not available were omitted.
Coordinates of FANTOM5 peaks were retrieved from FANTOM
database [FANTOM Consortium and the RIKEN PMI and CLST
(DGT) et al., 2014], considering the ‘robust’ CAGE peaks in hg19
coordinates. Studies of TSS annotation were not performed with the
CRISPR-del dataset, because it was designed to target multiple gen-
omic regions (e.g. introns, exons, promoters and whole genes), and
not only TSSs. The entire set of CASPR results across all cells, pertur-
bations and algorithms is provided in Supplementary File S1.

2.2 Benchmark dataset
As a ground-truth dataset for lncRNAs regulating cancer cell growth,
we used an updated version of the manually curated Cancer LncRNA
Census (Carlevaro-Fita et al., 2019), and the MiTranscriptome set of
tumour-dysregulated lncRNAs (Iyer et al., 2015). Throughout the
paper, we refer to these as functionally validated (FV) and differen-
tially expressed (DE) datasets, respectively. FV genes are defined as
those with experimental or genetic evidence for a causative role in
tumourigenesis, and were collected through careful manual curation
from the scientific literature up to 2018. This dataset will be pub-
lished shortly (Adrienne Vancura et al., manuscript in preparation).
DE is based on gene expression analyses of human transcripts from
diverse cancer types, and contains significantly differentially-
expressed lncRNAs between tumour and normal samples in at least
one cancer type. Although an absolute ground-truth is lacking for
lncRNAs, FV and DE are currently the most reliable set of positive
control cancer lncRNAs available. For the analyses, only the subset of
GENCODE-annotated lncRNAs are considered. FV comprises a total
of 387 lncRNAs (Fig. 2A), of which 206 and 79 overlap genes
screened in CRISPRi and CRISPR-del, respectively. Equivalent num-
bers for DE are 496, 266 and 86 lncRNAs.

3 Results

3.1 CASPR: versatile CRISPR screen analysis
In order to study lncRNA CRISPR screens, we developed a pipeline
called CASPR (Fig. 1C). CASPR has several desirable features. First,
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it is compatible with the two principal types of CRISPR screen,
namely single-end sequencing of single sgRNAs (such as in CRISPRi
screens) (Fig. 1A), and paired-end sequencing of paired sgRNAs
(CRISPR-del screens, Fig. 1C). Second, CASPR balances the sensitiv-
ity and specificity of predictions, by generating a consensus signifi-
cance estimate from leading yet methodologically distinct methods
MAGeCK and PBNPA (Jia et al., 2017; Li et al., 2014). Third,
CASPR offers an end-to-end analysis, commencing with raw ampli-
con sequencing reads and delivering finished analyses and
publication-ready plots. All analyses are accompanied by compre-
hensive quality-control analysis and statistics.

3.2 Improved functional maps of lncRNAs in

human cells
We evaluated the performance of CASPR by reanalyzing the princi-
pal LOF lncRNA CRISPR screens published to date. The Liu study
(Liu et al., 2017) utilized CRISPRi with single sgRNAs to knock
down 16,401 lncRNAs across seven cell lines. The Zhu study uti-
lized CRISPR-del with paired sgRNAs to target different genomic
regions (e.g. introns, exons, promoters and whole genes) of around
700 lncRNAs in two cell lines (Zhu et al., 2016). Both studies
screened HeLa cells, where 281 lncRNAs were targeted in common.

We compared the performance of CASPR’s two integrated hit-
identification algorithms, MAGeCK and PBNPA. MAGeCK
employs a negative binomial statistical model to identify significant-
ly enriched or depleted targets, while PBNPA utilizes an empirical
model. The two methods identify significantly overlapping but dis-
tinct sets of hits (Fig. 2B).

To fairly evaluate screen performance, we used a benchmark
dataset of high-confidence cancer lncRNAs, by combining a manu-
ally curated set of lncRNAs with functionally validated roles in can-
cer (FV), with a set of lncRNAs DE in tumours (see Section 2). In
previous screens, MAGeCK has tended to be run with very permis-
sive FDR cutoffs, suggesting it has a stringent behaviour (Gasperini
et al., 2017; Zhu et al., 2016). Indeed, when run at default settings
on CRISPRi data, it showed high precision but low sensitivity (light-
er panels in Fig. 2C). PBNPA exhibited similar performance, yet
with high variability between cell lines (Fig. 2B). Worryingly, both
tools identified almost no hits in the CRISPR-del data for either cell
type (darker panels in Fig. 2C and D). Values of performance across
cell lines are provided in Supplementary File S2.

We hypothesized that this relatively poor performance of indi-
vidual methods might be mitigated by integrating the predictions of
both. Thus, raw P-values were merged by the Fisher method to yield
a consensus significance estimate (Fisher, 1970). For the CRISPRi
screens, this resulted in improved sensitivity, with only a slight re-
duction in precision as compared to MAGeCK (Fig. 2C). More im-
portantly, the consensus method identified hits for the CRISPR-del
data with acceptable precision, where far fewer were observed by ei-
ther of the two algorithms alone (Fig. 2C and D). Thanks to its
improved sensitivity, the consensus approach yields an increased
number of hits over the individual methods across all cell lines and
perturbations (Fig. 2D). As expected, the consensus method pro-
duced lncRNA hits with significantly enriched and depleted sgRNAs
(Fig. 2E).

We next compared CASPR to the state-of-the-art in CRISPR
screen analysis, CB2. CB2 has been shown to outcompete many

A

D
E

B C

Fig. 2. (A) Two benchmark sets of cancer-associated genes were compiled from the literature (see Section 2). Numbers indicate only GENCODE-annotated lncRNA gene loci.

(B) Overlap of hits identified by MAGeCK and PBNPA algorithms in HeLa CRISPRi screen. (C) Sensitivity and precision of MAGeCK, PBNPA and their Fisher consensus, as

measured across cell types and perturbations. Accuracy is measured with respect to the union of the benchmark gene sets. The consensus measure shows the highest sensitivity,

while maintaining relatively stable precision across conditions. (D) Numbers of hits identified by MAGeCK, PBNPA and consensus, separated by cell line and perturbation. (E)

Volcano plot showing the non-hits (gray) and hits (blue) based on the consensus method in HeLa CRISPRi screen. Log-fold changes of each gene, obtained from the log-fold

changes of all sgRNAs, are shown in the x-axis; statistical significance is shown on the y-axis
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existing methods (Jeong et al., 2019). Using CB2, we reanalyzed the
CRISPRi screen in MCF7 and U87, which were the cell lines with the
lowest and highest performance of CASPR, respectively. In both screens,
a greater number of hits were identified by CASPR compared to CB2,
and CB2 hits were essentially a subset of CASPR hits (Supplementary
Fig. S1A–C). Importantly, CB2 provided a higher precision at the cost of
reducing the sensitivity, and the areas under the curves (AUC) was al-
ways lower (Supplementary Fig. S1E and F). It is important to note that
performance estimates based on ROC curve are likely to be underesti-
mates, since our benchmarking data is incomplete and many true posi-
tives are likely to be interpreted here as false positives.

We also tested the performance of CASPR on CRISPR growth
screens of PCGs. Taking known essential and non-essential genes as
the benchmark, we evaluated performance of CASPR and CB2 on
two screens: a conventional CRISPR mutation and a CRISPRi screen
in RT112 cells (Evers et al., 2016). For CASPR at an FDR <0.01,
precision is 100%/100% and sensitivity is 52%/26%, respectively,
while optimal performance in each was achieved at FDR <0.75/
0.13, respectively. The overall performance of CASPR is slightly
below that of CB2 (Supplementary Fig. S1G and H), indicating that
CASPR can be used for analysis of PCG screens.

Thus, CASPR provides an improved sensitivity performance in
the analysis of lncRNA CRISPR screens. For the rest of the paper,
we use CASPR hits at an FDR cutoff of <0.01.

3.3 Comparing performance of CRISPRi and CRISPR-del
We next sought to compare the performance of the two LOF pertur-
bations, CRISPRi and CRISPR-del. It should be noted that data
comes from distinct publications, targeting different (but partially
overlapping) sets of lncRNAs.

First, we compared the hits in common between the two methods
in the shared cell line, HeLa. Surprisingly, when only considering
lncRNAs targeted in both experiments, one observes zero overlap in
the hits. These differences are underlined by the fact that no correl-
ation is observed in screening results (Fig. 3A).

We used our benchmark dataset to evaluate the performance of
CRISPRi and CRISPR-del across studied cell lines. For CRISPRi, the
union of hits is significantly enriched in both functionally validated
lncRNAs and DE lncRNAs (Fig. 3B). In contrast, the union of
CRISPR-del hits is significantly enriched in neither (Fig. 3C). It
should be noted that the lower number of CRISPR-del hits is likely
to impact statistical power.

We further evaluated performance by calculating the precision in
identifying cancer lncRNAs, as a function of increasing FDR
(Fig. 3D and E). Note that precision should be compared to the
overall frequency of cancer lncRNAs amongst the screen targets
(shown as dotted lines). In the CRISPRi study, the expected behav-
iour is observed: high precision at low FDR, decreasing as FDR
threshold is increased (Fig. 3D). This trend holds for all cell lines, al-
though MCF7 cells show comparatively weak performance. For
CRISPR-del, one observes moderate precision at low FDR for
Huh7.5 cells, but this tapers off rapidly with increasing FDR cutoff
(Fig. 3D). In contrast, hits in HeLa are depleted for cancer lncRNAs
compared to background expectation (Fig. 3D). Receiver-operator
curves (Supplementary Fig. S2A–F) support these observations, al-
though the incompleteness of the benchmarking dataset likely leads
to underestimates of the AUC.

Overall, these data show that CRISPRi screens are generally cap-
able of identifying bona fide cancer lncRNAs, while the two avail-
able CRISPR-del screens display weaker and more variable
performance.

A

D E

B C

Fig. 3. (A) Pearson’s correlation between CRISPRi and CRISPR-del FDR in HeLa. (B and C) Overlap of consensus hits with benchmark datasets. CRISPRi hits (light gray)

show a significant overlap with experimentally validated (light green) and DE (dark green) lncRNA sets, while CRISPR-del hits (dark gray) show a weaker and non-significant

overlap with both sets. (D and E) Precision of CASPR consensus method with increasing FDR threshold, for each cell line. Dashed lines indicate the expected background

precision
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3.4 Parameters correlating with success of CRISPR

screens
Factors correlating with phenotypic hits in CRISPR screens could be
used in future to optimize screen design. Liu et al. (2017) showed
that target gene expression is the single factor with greatest predict-
ive power for identifying hits. We tested this in the CRISPRi data for
cells where ENCODE public RNA-sequencing data is also available.
In agreement, we found that on average, lncRNA hits have between
3- and 6-fold greater expression than non-hits in CRISPRi data
(lighter panels in Fig. 4A). A different behaviour was observed for
CRISPR-del screen in HeLa, in which no significant difference is
observed in the expression between hits and non-hits, again suggest-
ing that this screen produced few true positives (darker panels in
Fig. 4A).

For effective perturbation, sgRNAs must be recruited within a nar-
row genomic window around the target’s TSS (Sanson et al., 2018).

The accuracy of present lncRNA transcript annotations is rather poor,
and a large fraction of annotated transcript 50 ends probably lie kilo-
bases or more from the true TSS (Uszczynska-Ratajczak et al., 2018).
Thus, we hypothesized that lncRNA hits should have annotated start
sites closer to true TSS, compared to non-hits.

To test this, we compared the start position of lncRNA annota-
tions to a map of true TSS, as defined by Cap Analysis of Gene
Expression (CAGE) [FANTOM Consortium and the RIKEN PMI
and CLST (DGT) et al., 2014]. We observed that the average hit’s
annotated TSS is within 100 bp of a CAGE peak, whereas average
non-hits are >1 kb away (Fig. 4B). This is observed in all CRISPRi
experiments. For CRISPR-del screens, these analyses were not feas-
ible, due to the mixture of TSS and whole-gene targeting.

We considered the possibility of a confounding interaction be-
tween gene expression and CAGE peak presence. However, linear
models trained with CAGE peak distance and gene expression

A B

C

E

D

Fig. 4. (A) Gene expression levels between consensus screen hits (blue) and non-hits (orange). Expression is measured by RNA-sequencing from the ENCODE consortium. (B)

The distance from targeted TSS to the true TSS, the latter inferred from CAGE peaks mapped by the FANTOM consortium. (C–E) Selection criteria for lncRNA inclusion fu-

ture screens. Each cell holds the hit rate (percent of screened lncRNAs that are a hit, as defined by consensus method). Axes indicate increasing thresholds for gene expression

(y-axis) and distance from targeted TSS to nearest CAGE peaks (x-axis). High hit rates (blue) are identified at high expression levels and low distances
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showed that interaction was not significant, while each factor indi-
vidually contributed to the probability of being a screen hit (P-values
are shown in Fig. 4A and B).

To facilitate future screen designs, we integrated the above insights
into a scheme for target selection (Fig. 4C–E). For given thresholds of
annotated TSS to CAGE distance (x-axis) and expression (y-axis), one
can look up the hit rates in each cell line. In HeLa (Fig. 4C), hit rates
range from a baseline of 2.3% with no filtering, to around 8% when
only considering lncRNAs with TSS <100 bp from a CAGE peak and
expression >2 FPKM. Similar trends were observed for other cell lines,
considering only lncRNAs annotated in GENCODE and for which ex-
pression data was available. These values should be a useful guide in the
selection of targets for future lncRNA screens.

4 Discussion

Here, we have presented CASPR, a pipeline for CRISPR screen ana-
lysis that is characterized by being an end-to-end solution that can
equally handle single or paired sgRNA datasets, and balances sensi-
tivity and specificity through consensus prediction from two leading
algorithms. We anticipate that CASPR will be useful for the growing
number of groups worldwide who are applying CRISPR functional
screening to lncRNAs and other non-coding genomic elements
including enhancers (Diao et al., 2017; Gasperini et al., 2017).

In terms of performance, CASPR displays improved sensitivity
compared to leading methods MAGeCK and PBNPA, while main-
taining similar precision. Critically, CASPR maintains competitive
performance in both single (CRISPRi) and paired (CRISPR-del)
sgRNA experiments, compared to either algorithm alone. Thus,
CASPR is suitable for both main CRISPR screen types. CASPR has
been mainly designed and applied to study lncRNA datasets, but it
also performs well on CRISPR screens of PCGs with either mutation
or CRISPRi perturbations.

The growing interest in CRISPR screening highlights the need
for library design guidelines. This is particularly challenging for
lncRNAs, due to our ignorance of which ones are functional, and
the incomplete state of their gene annotations (Kopp and Mendell,
2018; Uszczynska-Ratajczak et al., 2018). Previous work suggested
that steady-state RNA levels were a useful guide to predicting
lncRNA hits in CRISPRi screens (Liu et al., 2017). We have corro-
borated this, and identified a new criterion for target selection in the
form of TSS annotations. Combining these two measures, we have
produced guidelines for selection of lncRNAs for inclusion in
CRISPR libraries. These guidelines should improve future projects
by enabling researchers to create smaller libraries focussed on more
promising lncRNAs.

We also evaluated the performance of the small number of avail-
able CRISPR screens. Overall, CRISPRi data from Liu et al. con-
tained a large and statistically significant number of previously
identified benchmark gene sets of cancer-promoting or cancer-
related lncRNAs. Furthermore, CRISPRi hits tend to be higher
expressed and have well-annotated TSS. Altogether, this highlights
the quality of the Liu data and the power of CRISPRi in identifying
functional lncRNAs. On the other hand, the CRISPR-del data, at
least for HeLa cells that could be compared to CRISPRi and for
which RNA-seq data were available, displayed no enrichment for
known cancer lncRNAs, suggesting that this experiment yielded few
genuine hits. It is possible that this low sensitivity arises, in part, due
to the fact that in many cases, entire lncRNA genes were targeted, in
contrast to their TSS alone. It is likely that these relatively large dele-
tions are less efficient (Canver et al., 2014). Other studies have dem-
onstrated the efficacy of CRISPR-del as a perturbation strategy
(Aparicio-Prat et al., 2015; Ho et al., 2015), although a recent study
and our own unpublished work, suggests that promoter deletions
may give rise to unexpected gene perturbations (Lavalou et al.,
2019). At any rate, the Huh7.5 CRISPR-del screen did appear to
make true positive predictions. In summary, these findings show
that both CRISPRi and CRISPR-del are effective perturbations for
pooled screening approaches, although more CRISPR-del data will
be necessary to properly compare the performance of these two
methods.

Finally, these results support the existence of bona fide function-
al lncRNAs that regulate cell growth, a fundamental cellular pheno-
type. The fact that CRISPRi screen hits significantly overlap two
independently generated sets of cancer lncRNAs, suggest that sig-
nificant numbers of functional lncRNAs exist and may be found by
CRISPR-based strategies.

In summary, CASPR will be a useful tool for researchers wishing
to employ CRISPR screening to map the functional elements within
the non-coding genome.
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8 J.Bergadà-Pijuan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz811/5612095 by U

niversitaetsbibliothek Bern user on 27 N
ovem

ber 2019


	1

