

genBaRcode – a comprehensive R package for
genetic barcode analysis
Lars Thielecke1,*, Kerstin Cornils2, Ingmar Glauche1
1Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Univer-
sität Dresden, Dresden, 2University Medical Center Hamburg-Eppendorf, Department of Pediatric Hematol-
ogy and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology and Research Institute,
Children’s Cancer Center Hamburg, 20246 Hamburg, Germany

*To whom correspondence should be addressed.

Abstract
Motivation: Genetic barcodes have been established as an efficient method to trace clonal progeny of
uniquely labeled cells by introducing artificial genetic sequences into the corresponding genomes. The
assessment of those sequences, relies on next generation sequencing and the subsequent analysis
aiming to identify sequences of interest and correctly quantifying their abundance.
Results: We developed the genBaRcode package as a toolbox combining the flexibility of digesting
next generation sequencing reads with or without a sophisticated barcode structure, with a variety of
error correction approaches and the availability of several types of visualization routines. Furthermore,
a graphical user interface was incorporated to allow also less experienced R users package-based
analyses. Finally, the provided tool is intended to bridge the gap between generating and analyzing
barcode data and thereby supporting the establishment of standardized and reproducible analysis strat-
egies.
Availability: The genBaRcode package is available at CRAN (https://cran.r-project.org/pack-
age=genBaRcode).
Contact: lars.thielecke@tu-dresden.de

1 Introduction
The ability to mark single cells and to follow their progeny is a key re-
quirement for many biological experiments. During the last decade, ge-
netic barcodes were introduced as a new tool to genetically label single
cells and all their future descendants [1-4]. It quickly became the method
of choice for the majority of cellular labeling studies. Consequently, re-
search groups developed their own barcode constructs, including the se-
lection of different viral vectors and amplification protocols [2, 3, 5-9].
Given the lack of standardization and available software solutions, specif-
ically tailored, in-house solutions were used in order to analyze the result-
ing data. Unfortunately, those different analysis strategies harbor the risk
of generating results that, at the very least, are difficult to compare. This
general short-coming of standardized reporting and analysis pipelines was
recently outlined as a major limitation to further expand the application of
barcoding and clonal tracking experiments [10].
Encountering similar problems while developing our own barcode con-
structs [11, 12] and comparing our solutions to already published results,
we decided to develop a comprehensive R-package combining basic func-
tionalities for data extraction and analysis with a collection of visualiza-
tions wrapped in a set of simple albeit adjustable R-functions. By adding
an ancillary shiny-app we also provide a graphical user interface (GUI) to
make the package accessible not only to experienced R-programmers but
also to investigators lacking the necessary programming skills.
We are convinced that such a “toolbox”-like software package will con-
tribute to standardization efforts in the field of barcode analysis [10].
Therefore, we deliberately chose R as a platform, as it is one of the most
wide-spread tools for data analyses utilized by both bioinformaticians and
biologists. Furthermore, R is a freely available software that has already a

large community constantly developing and publishing a large variety of
additional functionality (CRAN [13], Bioconductor [14]). In the following
we present the “genBaRcode”-package, currently at version 1.2.2, and de-
scribing an exemplary work flow spreading from data extraction to data
visualization.

2 Implementation
The package is available at CRAN and can be installed like every other
CRAN R-package:

> install.packages(“genBaRcode”)

Unfortunately, while installing CRAN packages it is not always possible
to automatically install also the necessary Bioconductor packages. There-
fore, if the installation process ends with an error message similar to
“ERROR: dependencies ‘Biostrings’, ‘ShortRead’, ‘ggnetwork’, ‘S4Vec-
tors’, ‘ggtree’ are not available for package ‘genBaRcode’”, the user has
to install those packages manually:

> if (!requireNamespace("BiocManager", quietly = TRUE)) {
 install.packages("BiocManager")
 }
> BiocManager::install(c("Biostrings", "ShortRead", "S4Vectors",
 "ggtree"))

After this installation process, the package can simply be loaded and used:

> library(“genBaRcode”)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thielecke et al.

2.1 Data extraction and analysis
The first part of the package is dedicated to the initial data processing. It
provides the function processingRawData(), which conveniently com-
bines all necessary steps for the translation of raw next generation se-
quencing (NGS) data files into a sorted table of barcode (BC) sequences
and its corresponding read counts.

> bb <- getBackboneSelection(1)
> s_dir <- system.file("extdata", package = "genBaRcode")
> res_dir <- "/my/results/directory/"

> BC_dat <- processingRawData(file_name = "test_data.fastq.gz",
 source_dir = s_dir, results_dir = res_dir, mismatch = 1, label = "test",
 bc_backbone = bb, min_score = 30, min_reads = 2, save_it = FALSE,
 seqLogo = FALSE, cpus = 4, wobble_extraction = TRUE,
 dist_measure = "hamming")

Technically, the user has to supply one or multiple NGS data files
(file_name) and the path to the corresponding directory (source_dir).
Within the current version FASTA as well as FASTQ file formats will be
accepted. Furthermore, the user can provide none, one or multiple BC de-
sign pattern(s), so-called BC-backbones (bc_backbone), which, if sup-
plied, are then used as identifier for the actual BCs within the individual
NGS reads. A BC-backbone needs to be encoded as a character string con-
taining ‘N’s at the actual BC positions (also called wobble positions) and
nucleotides (A, T, G, C) at the accompanying fixed positions. Those fixed
positions are essential in order to identify individual BC sequences by
matching them against the actual read. An exemplary backbone could look
like this: “ATCNNTAGNNTCCNNAAGNN”. The matching procedure
also allows to specify a number of acceptable sequence mismatches (mis-
match). Moreover, if the parameter wobble_extraction was set to TRUE,
the identified sequences will be stripped from their fixed backbone posi-
tions and only the actual BC sequences (wobble positions) will be sus-
tained. Otherwise only the flanking regions of the read will be stripped
and the identified BC including the wobble positions will be returned. In
case no BC backbone was chosen, all NGS reads will be treated as BCs
and clustered based on the declared number of accepted dissimilarities
(mismatch) and the elected distance measure (dist_measure).

Furthermore, there are additional possibilities to customize the analysis
procedure. In case a FASTQ data file is available, the min_score parame-
ter restricts the analysis to reads with a certain minimum sequence quality
(calculated as the Phred-score average over the entire read length).

Optionally, the quantified BC sequences can automatically be filtered for
a minimum number of reads (min_reads) to exclude contaminations or
untrustworthy reads. A sequence logo of the entire NGS data file can be
created (seqLogo) and a csv-file of all detected BCs including their corre-
sponding read counts can be saved (save_it). Both will be stored within
the specified results directory (results_dir) for all the subsequent analyses.

In case of only one specified BC-backbone, only one csv-file will be cre-
ated while the function returns a specifically designed S4 data object
(called BCdat data type) containing not only the detected BCs but also
important parameters such as the used backbone pattern, a unique label
used as name tag e.g. for all saved csv-files and the path to the results
directory. If multiple backbones and/or NGS files are provided, also mul-
tiple csv-files will be created while the returned object will be a list con-
taining several similar S4 data objects in the same order as the provided
NGS files and BC-backbones.
The user can also decide, if available, how many CPUs (cpus) should be
utilized. The algorithm will then automatically start the analyses in a par-
allelized fashion, distributing not only the BC extraction but also the par-
allel analysis of multiple NGS data files onto multiple cores. Providing
several BC-backbones at once will shorten the computational time com-
pared to individual function calls with only one given BC-backbone each.
Admittedly, the algorithm sequentially searches for a given BC-backbone
but since the read length typically only allows for just one BC construct
per NGS read, it will automatically dismiss reads with an already identi-
fied BC and therefore significantly reduce the search space for the next
BC-backbone(s). Furthermore, since the parallelization is based on the fu-
ture R-package, it is also possible to choose a future-specific strategy in
order to utilize the capacity of different resources in the best way possible.

The entire package is suitable for any kind of BC designs as long as they
adhere to the aforementioned backbone structure. The BC extraction func-
tion is based on the “Biostrings”-package, meaning that the BC design
pattern will not only allow for the wildcard letter ‘N’ but also for all letters
which are part of the nucleic acid notation of the International Union of
Pure and Applied Chemistry (IUPAC notation), making it highly custom-
izable and capable of searching for almost every kind of BC design. Ad-
ditionally, utilizing the getBackboneSelection() function, the user can se-
lect from eight predefined and already published BC designs [11, 12].

After the BC identification, the newly created BCdat object(s) can then be
subjected to the following function to initiate the error-correction (EC) of
the detected BCs.

Figure 1. The quality of NGS data files can be visualized by plotting (a) the frequency of the mean quality scores over all reads, (b) the mean and
median quality scores per sequencing cycle and/or (c) the sequence logo of the whole NGS file over the entire read length.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

genBaRcode

> BC_dat_EC <- errorCorrection(BC_dat, maxDist = 8, save_it =
 FALSE, m = "hamming", type = "standard", EC_analysis = FALSE)

This default EC-procedure (type = “standard”) is an implementation of
the method described in Thielecke et al. [11] that merges highly similar
BC sequences in order to reduce erroneous/diverging BC sequences,
which regularly occur as a result of polymerase chain reactions (PCR) dur-
ing sample preparation and NGS. Sequence similarity calculations are
based on a given distance measure m. For equally sized BCs we would
recommend using the Hamming distance, but the package is also able to
calculate a broad variety of additional measures, e.g. the Levenstein dis-
tance (m = “lv”), the longest common substring distance (m = “lcs”) or
the Jaro-Winker distance (m = “jw”). The following command will show
the user all available distance measures, provided by the stringdist() func-
tion of the stringdist package.

> ?'stringdist-metrics'

All of those sequence similarity calculations are further accompanied by
an adjustable similarity threshold maxDist. BCs with a distance <
𝑚𝑎𝑥𝐷𝑖𝑠𝑡 will be clustered together, starting with the least frequent BC.
In case there is more than one BC with the same distance, per default, only
the two BCs with the lowest read count will be clustered together (the
method is inspired by the idea that during PCR successive point mutations
occur and, in a perfect world, one would find a chain of BCs successively
increasing the number of diverging nucleotides while decreasing the num-
ber of read counts).
Although the “standard” method is recommended by us, the parameter
start_small, if set to FALSE, offers the possibility to invert the procedure
and therefore to always cluster the BC of interest starting with the most
frequent one.
There is also the EC-type "connectivity based" available, which follows
the “standard” procedure but instead of ordering the available BCs by
read counts and starting the clustering with the least frequent one, it now
will be ordered by the amount of highly similar analogues (depending on
the maxDist value) and consequently the clustering will start with the BC
possessing the lowest number of highly similar counterparts.

The "graph based" EC-type is based on the idea of graph-theoretic (con-
nected) components. Firstly, for each and every BC the distances to all the
other BCs will be calculated and all distances > 	𝑚𝑎𝑥𝐷𝑖𝑠𝑡 will then be set
to zero. Secondly, the resulting matrix will serve as an adjacency matrix
for which existing components can be identified. Finally, all of the “mem-
ber-BCs” of those components will be clustered together, with the most
abundant BC as the respective “cluster-label”.
The EC-type called "clustering" just starts with the most frequent BC,
identifies all highly similar counterparts (again based on the method m and
the threshold maxDist), adds up all of the corresponding reads and lastly
all of those added up BC sequences will be dismissed. Then, the procedure
continues with the second most abundant BC until all BCs are processed.
Since the actual EC-algorithms are hardly parallelizable, parallel compu-
tations are only feasible if a list of BCdat-objects is supplied. The error-
Correction() routine will automatically initiate a parallel execution de-
pending on the number of data objects and the cpus parameter. The result-
ing data object will again be one or a list of BCdat objects. Optionally, the
final list of corrected BC sequences can also be saved as a common csv-
file (save_it) in the specified directory (results_dir).

2.2 Data visualization
The second part of the package covers the data visualization. The imple-
mented routines also include illustrations to check the quality of the sup-
plied NGS data. As such, it is possible to visualize the frequency of mean
quality scores over all reads (Fig. 1a) and an overview plot which displays
the quality score distribution per sequencing cycle (Fig. 1b). Additionally,
the function plotSeqLogo() creates a sequence logo either from all NGS
reads (see processingRawData()), the entire barcode construct or only the
wobble positions.
Such plots offer the possibility to visually check for prominent mismatch
positions within the backbone or general irregularities regarding the nu-
cleotide distribution (Fig. 1c).

To examine the actual BC data, the plot function generateKirchenplot()
depicts the sorted read counts of all detected BCs (before or after error-
correction) as a simple barplot (Fig. 2a).

> generateKirchenplot (BC_dat, ori_BCs = NULL, ori_BCs2 = NULL,
loga = TRUE, col_type = NULL, m = "hamming")

Figure 2. A simple barplot of sorted read counts of all detected BCs (a) will be generated by the function generateKirchenplot(). If the user also provides
 a list of known reference BCs (b) there will be a color-coding of each detected BC according to its sequence similarity value of the most similar
 reference BC. (c) If, at the same time, two distinct subsets of known BCs are provided there will be three panels containing the respective BC
 subsets.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thielecke et al.

If the user is interested in a subset of known BCs, a corresponding list of
those reference BCs can be provided (ori_BCs), thereby enabling a color-
coding of each measured BC according to its minimal sequence similari-
ties to the entire subset of reference BCs (Fig. 2b). It is also possible to
provide two distinct subsets of known BCs (ori_BCs, ori_BCs2), e.g. BCs
of the designed BC library and known contaminations (Fig. 2c). To make
a visual discrimination of those two subsets easier, the resulting plot con-
sists of three panels containing all BCs of the respective subset. By default,
the function calculates the Hamming distances (HD, number of nucleotide
differences) between the reference set and all other BCs and uses the min-
imum HD as color-coding basis. The information about sequence similar-
ities (before EC) can be used to either approximate the extend of generated
sequence errors (assuming that highly similar sequences are caused by one
or few single nucleotide exchanges) or to visually check the unique-
ness/discriminability of the used BCs in terms of total sequence variations
(after EC).

The sequence similarities can also be conveniently visualized in a net-
work-like structure. Figure 3 shows one instance of a possible variety of
different network plots utilizing different third-party R-packages (ggnet-
work: ggplotDistanceGraph(), igraph: plotDistanceIgraph(), visNetwork:
plotDistanceVisNetwork()) available. This kind of visualization represents
every BC sequence as a node and every edge indicates a minimal similar-
ity value between adjacent nodes or BC sequences (by default a minimal
Hamming distance of 𝑚 = 1 will be visualized). It is also possible to con-
nect each node with its most similar neighbor (complete), assuring at least
one edge per node and therefore allowing for Hamming distances > 1.
While these plots are 2D representations, utilization of the “rgl”-package
allows for the creation of an interactive 3D graph (encoded by the threeD
parameter of the plotDistanceIgraph() function). As further options, the
user can also create a gdf-file (createGDF()), which was defined and is
used by GUESS (Graph Exploration System) but can also be imported into
the open source graphic software Gephi [15]. Both programs are special-
ized in visualizing networks and allow for an even broader variety of de-
sign options.
Besides a network-based representation it is also possible to visualize se-
quence similarities as a tree-like structure utilizing the plotClus-
terGgTree() function. In those plots, each forked branch and its respective
distance to the previous branch represents the estimated sequence relation-
ship.
Additionally, it is also possible to visualize the EC-procedure in order to
develop an understanding of the amount and specificity of the corrected
errors or/and to decide which EC-approach best suits the specific data set.
In order to generate the needed data, the errorCorrection() function pro-
vides the parameter EC_analysis which, if set to TRUE, will document
the entire EC-process (since a lot of additional data will be calculated and
stored, it will slow down the execution time noticeable, therefore it is rec-
ommended to activate it only when needed). The returned BCdat object
will then be composed not only of the usual BC list but will also include
EC-specific cluster information (i.e. cluster sizes, added read counts, clus-
ter specific BC lists) necessary for the aforementioned EC-plots.

Depending on the EC-method the composition of single clusters is not al-
ways foreseeable therefore the function error_correction_clustered_
HDs() will create a scatter plot displaying the maximal distances within
each of the barcode sequence clusters. Furthermore, the two functions er-
ror_correction_circlePlot() and error_correction_treePlot() will both
create a specialized plot visualizing the size of the emerged barcode clus-
ters including the abundance of the involved BCs. Both functions visualize
the same kind of data but one in a circular and the other in a tree-like
representation style.

The “genBaRcode”-package also offers the possibility to analyze and vis-
ualize time series data. As already mentioned, the processingRawData()
function also accepts a list of NGS files which if 𝑐𝑝𝑢𝑠	 > 	1 will be ana-
lyzed in parallel and will result in a list of BCdat objects. In order to ana-
lyze repetitive measurements, generateTimeSeriesData() takes such a list
of BCdat objects and calculates a matrix containing all unique BC se-
quences over all single BCdat objects as rows and their respective number
of read counts over all time points (data objects) as columns. The

plotTimeSeries() function utilizes such a matrix to depict the time depend-
ent development of each and every BC detected at least once. Furthermore,
it is also possible to provide a vector containing the time information of
each measurement which will then be factored in the final plot to achieve
the appropriate time scale.

Finally, the package also offers the option to visualize multiple measure-
ments as Venn diagrams. The function plotVennDiagramm() also accepts
a list of BCdat objects from which the corresponding Venn diagram will
be generated. Almost all of the mentioned plotting functions return a
ggplot2 object which can be plotted directly or customized further.

2.3 Graphical User Interface
In addition to the described functionality of the R-package, we developed
an easy-to-use interface mainly for investigators with little or no program-
ming experience. Therefore, the third and final piece of the package con-
sists of a shiny-app making the majority of the aforementioned functions
available within a graphical user interface (GUI). The GUI enables the
unexperienced user to perform the majority of the available analyses es-
sentially without typing any line of R-code. The app not only allows for
the BC extraction from raw NGS data files, the error-correction and the
storage of those BC sequences within external csv-files but also for a vis-
ual inspection of the corresponding results directly within the app and to
further manipulate and save the generated figures. Furthermore, for the
more skilled user the app doubles as a convenient possibility to familiarize
oneself with the package’s functionality and its intended usage. It can eas-
ily be started utilizing the genBaRcode_app() function, immediately
prompting the user to specify a path to the NGS files of interest. If no
specific path is provided, the included template will be made available for
example analyses.

Within the app, the user can specify one or multiple NGS files for a quan-
titative analyze and adjust further essential parameters (Fig. 4a). It is also
possible to just read one or multiple existing csv-file(s) containing already
extracted and counted BC sequences in order to generate new plots or to
reanalyze certain data sets. If multiple files have been chosen, the app au-
tomatically initiates a time series analysis. BC extraction and error-correc-
tion will be performed according to the user specifications. After finishing
the necessary calculations, a list of selectable plots and supplementing tabs
containing meta-information as well as lists of the detected barcodes in
combination with their respective read-counts before and after error-cor-
rection will become available (Fig. 4b).

Selecting a particular plot style prompts the app to display the correspond-
ing figure utilizing the shiny specific output und render function of the

Figure 3. The sequence similarities can also be visualized in a network-
or tree-like structure. Within a network-based visualization, every BC
sequence will be represented as a node and every edge indicates a mini-
mal similarity value between adjacent nodes (BC sequences). By default,
a minimal Hamming distance of 1 will be visualized but it is also possible
to always connect each node with its most similar neighbor, therefore
assuring that each node will be connected to at least one other node (al-
lowing for a possible hamming distance of >1).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

genBaRcode

“plotly”-package, allowing not only an inspection but also an interaction
with the produced figures via clicking, hovering and/or dragging. The user
can freely zoom in and out, scroll through the image and extract additional
information by hovering over certain elements of interest, thereby provid-
ing the functionality to intuitively explore the results and customize the
respective visualizations.
In order to augment the support for less experienced users, an additional
tab provides all the corresponding R-code, necessary to reproduce the pre-
sented results and figures within the command-line interpreter and without
the assistance of the shown GUI. Furthermore, there is a detailed help-
page available, designed to guide the user step-by-step through the app
and also to make the basic R help accessible in order to further familiarize
the user with the underlying R-functions.

Additionally, for a more in-depth tutorial and a step-by-step description
the package is also equipped with so-called vignettes. Two separate doc-
uments demonstrating and describing the package functions and the
graphical user-interface. They can either be found directly on CRAN [16]
or can conveniently be generated directly within R after installing the
package. The following command will reveal both available vignettes.

> browseVignettes(package = "genBaRcode")

Furthermore, the source code of the entire package is available to the
user on CRAN via GitHub [17] and all implemented unit tests can also
be inspected directly within GitHub [18].

3 Discussion
The establishment of genetic barcoding and the availability of NGS
boosted clonal studies in many areas of biology. This ultimately leads to
an increasing demand for the analysis of the resulting BC data and calls
for standardization efforts including BC calling, quantification, error-cor-
rection and visualization. Our R-package comprises currently available
analysis routines and combines them with a user-friendly GUI. It is com-
patible with a variety of different BC constructs, published or newly de-
veloped, and it provides the necessary means to quantitatively analysis and
visualize the resulting data obtained by NGS.
Furthermore, the GUI makes the analysis software accessible for investi-
gators with only basic or no R-knowledge. Thereby our package bridges

the gap between data generation and analysis, and supports interactions
between investigators and data scientists, not only with respect to experi-
ment-specific analysis pipelines, but also concerning the establishment of
a consensual, standardized data processing and analysis strategy.

Acknowledgements
The authors would like to thank Andreas Dahl, Sebastian Gerdes and
Christoph Baldow for fruitful discussions concerning methods develop-
ment and Ingo Roeder for providing the necessary infrastructure to per-
form this work. The authors also thank Sebastian Wagner for testing the
software and suggesting improvements.

Funding
This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
[CO 1692/1-1 to KC and GL 721/1-1 to IG] and the German Federal Min-
istry of Research and Education (BMBF) [grant number 031A315 "Mes-
sAge" to IG].

Conflict	of	Interest:	none	declared.

References

1. Bystrykh LV, de Haan G, Verovskaya E: Barcoded
vector libraries and retroviral or lentiviral barcoding
of hematopoietic stem cells. Methods Mol Biol 2014,
1185:345-360.

2. Nguyen LV, Makarem M, Carles A, Moksa M, Kannan
N, Pandoh P, Eirew P, Osako T, Kardel M, Cheung AM
et al: Clonal analysis via barcoding reveals diverse
growth and differentiation of transplanted mouse
and human mammary stem cells. Cell Stem Cell
2014, 14(2):253-263.

3. Gerrits A. DB, Kalmykowa O. J., Klauke K., Verovskaya
E., Broekhuis M. J. C., de Haan G., and Bystrykh L. V.:
Cellular barcoding tool for clonal analysis in the

Figure 4. The included app allows for (a) a selection of one or multiple NGS or csv files for subsequent analyses and also for the specification of
 further essential analysis parameters. After finishing the necessary calculations, (b) a list of selectable plots and supplementing tabs
 containing meta-information will be available.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thielecke et al.

hematopoietic system. Blood 2010, 115(13):2610-
2618.

4. Perie L, Hodgkin PD, Naik SH, Schumacher TN, de
Boer RJ, Duffy KR: Determining lineage pathways
from cellular barcoding experiments. Cell Rep 2014,
6(4):617-624.

5. Peikon ID, Gizatullina DI, Zador AM: In vivo
generation of DNA sequence diversity for cellular
barcoding. Nucleic Acids Res 2014, 42(16):e127.

6. Lu R, Neff NF, Quake SR, Weissman IL: Tracking
single hematopoietic stem cells in vivo using high-
throughput sequencing in conjunction with viral
genetic barcoding. Nat Biotechnol 2011, 29(10):928-
933.

7. Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T,
Makarem M, Cox CL, Kennedy W, Beer P, Carles A et
al: Barcoding reveals complex clonal dynamics of
de novo transformed human mammary cells. Nature
2015, 528(7581):267-271.

8. Cheung AM, Nguyen LV, Carles A, Beer P, Miller PH,
Knapp DJ, Dhillon K, Hirst M, Eaves CJ: Analysis of
the clonal growth and differentiation dynamics of
primitive barcoded human cord blood cells in NSG
mice. Blood 2013, 122(18):3129-3137.

9. Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, Krouse
AE, Metzger M, Liang F, Lore K et al: Clonal tracking
of rhesus macaque hematopoiesis highlights a
distinct lineage origin for natural killer cells. Cell
Stem Cell 2014, 14(4):486-499.

10. Lyne AM, Kent DG, Laurenti E, Cornils K, Glauche I,
Perie L: A track of the clones: new developments in
cellular barcoding. Exp Hematol 2018, 68:15-20.

11. Thielecke L, Aranyossy T, Dahl A, Tiwari R, Roeder I,
Geiger H, Fehse B, Glauche I, Cornils K: Limitations
and challenges of genetic barcode quantification.
Sci Rep 2017, 7:43249.

12. Cornils K, Thielecke L, Huser S, Forgber M,
Thomaschewski M, Kleist N, Hussein K, Riecken K,
Volz T, Gerdes S et al: Multiplexing clonality:
combining RGB marking and genetic barcoding.
Nucleic Acids Res 2014, 42(7):e56.

13. The Comprehensive R Archive Network.
https://cran.r-project.org. Accessed 08 Nov 2017

14. Bioconductor - Open Source Software for
Bioinformatics. http://bioconductor.org. Accessed
08 Nov 2017

15. Bastian M, Heymann S, Jacomy M: Gephi: An Open
Source Software for Exploring and Manipulating
Networks; 2009.

16. genBaRcode - Vignettes,
https://cran.rstudio.com/web/packages/genBaRcod
e/vignettes/, Accessed 25. Oct 2019

17. genBaRcode - Source Code,
https://github.com/cran/genBaRcode/tree/master/R,
Accessed 25. Oct 2019.

18. genBaRcode - Unit Tests,
https://github.com/cran/genBaRcode/tree/master/te
sts/testthat, Accessed 25. Oct 2019.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/696229doi: bioRxiv preprint

https://doi.org/10.1101/696229
http://creativecommons.org/licenses/by-nc-nd/4.0/

