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Abstract 
Motivation: Genetic barcodes have been established as an efficient method to trace clonal progeny of 
uniquely labeled cells by introducing artificial genetic sequences into the corresponding genomes. The 
assessment of those sequences, relies on next generation sequencing and the subsequent analysis 
aiming to identify sequences of interest and correctly quantifying their abundance.  
Results: We developed the genBaRcode package as a toolbox combining the flexibility of digesting 
next generation sequencing reads with or without a sophisticated barcode structure, with a variety of 
error correction approaches and the availability of several types of visualization routines. Furthermore, 
a graphical user interface was incorporated to allow also less experienced R users package-based 
analyses. Finally, the provided tool is intended to bridge the gap between generating and analyzing 
barcode data and thereby supporting the establishment of standardized and reproducible analysis strat-
egies. 
Availability: The genBaRcode package is available at CRAN (https://cran.r-project.org/pack-
age=genBaRcode). 
Contact: lars.thielecke@tu-dresden.de 

 
 

1 Introduction  
The ability to mark single cells and to follow their progeny is a key re-
quirement for many biological experiments. During the last decade, ge-
netic barcodes were introduced as a new tool to genetically label single 
cells and all their future descendants [1-4]. It quickly became the method 
of choice for the majority of cellular labeling studies. Consequently, re-
search groups developed their own barcode constructs, including the se-
lection of different viral vectors and amplification protocols [2, 3, 5-9]. 
Given the lack of standardization and available software solutions, specif-
ically tailored, in-house solutions were used in order to analyze the result-
ing data. Unfortunately, those different analysis strategies harbor the risk 
of generating results that, at the very least, are difficult to compare. This 
general short-coming of standardized reporting and analysis pipelines was 
recently outlined as a major limitation to further expand the application of 
barcoding and clonal tracking experiments [10].  
Encountering similar problems while developing our own barcode con-
structs [11, 12] and comparing our solutions to already published results, 
we decided to develop a comprehensive R-package combining basic func-
tionalities for data extraction and analysis with a collection of visualiza-
tions wrapped in a set of simple albeit adjustable R-functions. By adding 
an ancillary shiny-app we also provide a graphical user interface (GUI) to 
make the package accessible not only to experienced R-programmers but 
also to investigators lacking the necessary programming skills. 
We are convinced that such a “toolbox”-like software package will con-
tribute to standardization efforts in the field of barcode analysis [10]. 
Therefore, we deliberately chose R as a platform, as it is one of the most 
wide-spread tools for data analyses utilized by both bioinformaticians and 
biologists. Furthermore, R is a freely available software that has already a 

large community constantly developing and publishing a large variety of 
additional functionality (CRAN [13], Bioconductor [14]). In the following 
we present the “genBaRcode”-package, currently at version 1.2.2, and de-
scribing an exemplary work flow spreading from data extraction to data 
visualization. 

2 Implementation 
The package is available at CRAN and can be installed like every other 
CRAN R-package: 
 
> install.packages(“genBaRcode”) 
 
Unfortunately, while installing CRAN packages it is not always possible 
to automatically install also the necessary Bioconductor packages. There-
fore, if the installation process ends with an error message similar to 
“ERROR: dependencies ‘Biostrings’, ‘ShortRead’, ‘ggnetwork’, ‘S4Vec-
tors’, ‘ggtree’ are not available for package ‘genBaRcode’”, the user has 
to install those packages manually: 
 
> if (!requireNamespace("BiocManager", quietly = TRUE)) { 
       install.packages("BiocManager") 
   } 
> BiocManager::install(c("Biostrings", "ShortRead", "S4Vectors", 
   "ggtree")) 
 
After this installation process, the package can simply be loaded and used: 
 
> library(“genBaRcode”) 
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2.1 Data extraction and analysis 
The first part of the package is dedicated to the initial data processing. It 
provides the function processingRawData(), which conveniently com-
bines all necessary steps for the translation of raw next generation se-
quencing (NGS) data files into a sorted table of barcode (BC) sequences 
and its corresponding read counts.  
 
> bb <- getBackboneSelection(1)  
> s_dir <- system.file("extdata", package = "genBaRcode") 
> res_dir <- "/my/results/directory/" 
 
> BC_dat <- processingRawData(file_name = "test_data.fastq.gz", 
   source_dir = s_dir, results_dir = res_dir, mismatch = 1, label = "test", 
   bc_backbone = bb, min_score = 30, min_reads = 2, save_it = FALSE, 
   seqLogo = FALSE, cpus = 4, wobble_extraction = TRUE, 
  dist_measure = "hamming") 
 
Technically, the user has to supply one or multiple NGS data files 
(file_name) and the path to the corresponding directory (source_dir). 
Within the current version FASTA as well as FASTQ file formats will be 
accepted. Furthermore, the user can provide none, one or multiple BC de-
sign pattern(s), so-called BC-backbones (bc_backbone), which, if sup-
plied, are then used as identifier for the actual BCs within the individual 
NGS reads. A BC-backbone needs to be encoded as a character string con-
taining ‘N’s at the actual BC positions (also called wobble positions) and 
nucleotides (A, T, G, C) at the accompanying fixed positions. Those fixed 
positions are essential in order to identify individual BC sequences by 
matching them against the actual read. An exemplary backbone could look 
like this: “ATCNNTAGNNTCCNNAAGNN”. The matching procedure 
also allows to specify a number of acceptable sequence mismatches (mis-
match). Moreover, if the parameter wobble_extraction was set to TRUE, 
the identified sequences will be stripped from their fixed backbone posi-
tions and only the actual BC sequences (wobble positions) will be sus-
tained. Otherwise only the flanking regions of the read will be stripped 
and the identified BC including the wobble positions will be returned. In 
case no BC backbone was chosen, all NGS reads will be treated as BCs 
and clustered based on the declared number of accepted dissimilarities 
(mismatch) and the elected distance measure (dist_measure).  
 
Furthermore, there are additional possibilities to customize the analysis 
procedure. In case a FASTQ data file is available, the min_score parame-
ter restricts the analysis to reads with a certain minimum sequence quality 
(calculated as the Phred-score average over the entire read length). 

Optionally, the quantified BC sequences can automatically be filtered for 
a minimum number of reads (min_reads) to exclude contaminations or 
untrustworthy reads. A sequence logo of the entire NGS data file can be 
created (seqLogo) and a csv-file of all detected BCs including their corre-
sponding read counts can be saved (save_it). Both will be stored within 
the specified results directory (results_dir) for all the subsequent analyses.  
 
In case of only one specified BC-backbone, only one csv-file will be cre-
ated while the function returns a specifically designed S4 data object 
(called BCdat data type) containing not only the detected BCs but also 
important parameters such as the used backbone pattern, a unique label 
used as name tag e.g. for all saved csv-files and the path to the results 
directory. If multiple backbones and/or NGS files are provided, also mul-
tiple csv-files will be created while the returned object will be a list con-
taining several similar S4 data objects in the same order as the provided 
NGS files and BC-backbones.  
The user can also decide, if available, how many CPUs (cpus) should be 
utilized. The algorithm will then automatically start the analyses in a par-
allelized fashion, distributing not only the BC extraction but also the par-
allel analysis of multiple NGS data files onto multiple cores. Providing 
several BC-backbones at once will shorten the computational time com-
pared to individual function calls with only one given BC-backbone each. 
Admittedly, the algorithm sequentially searches for a given BC-backbone 
but since the read length typically only allows for just one BC construct 
per NGS read, it will automatically dismiss reads with an already identi-
fied BC and therefore significantly reduce the search space for the next 
BC-backbone(s). Furthermore, since the parallelization is based on the fu-
ture R-package, it is also possible to choose a future-specific strategy in 
order to utilize the capacity of different resources in the best way possible. 
 
The entire package is suitable for any kind of BC designs as long as they 
adhere to the aforementioned backbone structure. The BC extraction func-
tion is based on the “Biostrings”-package, meaning that the BC design 
pattern will not only allow for the wildcard letter ‘N’ but also for all letters 
which are part of the nucleic acid notation of the International Union of 
Pure and Applied Chemistry (IUPAC notation), making it highly custom-
izable and capable of searching for almost every kind of BC design. Ad-
ditionally, utilizing the getBackboneSelection() function, the user can se-
lect from eight predefined and already published BC designs [11, 12]. 
 
After the BC identification, the newly created BCdat object(s) can then be 
subjected to the following function to initiate the error-correction (EC) of 
the detected BCs. 

Figure 1.  The quality of NGS data files can be visualized by plotting (a) the frequency of the mean quality scores over all reads, (b) the mean and 
median quality scores per sequencing cycle and/or (c) the sequence logo of the whole NGS file over the entire read length. 
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> BC_dat_EC <- errorCorrection(BC_dat, maxDist = 8, save_it =  
   FALSE, m = "hamming", type = "standard", EC_analysis = FALSE) 
 
This default EC-procedure (type = “standard”) is an implementation of 
the method described in Thielecke et al. [11] that merges highly similar 
BC sequences in order to reduce erroneous/diverging BC sequences, 
which regularly occur as a result of polymerase chain reactions (PCR) dur-
ing sample preparation and NGS. Sequence similarity calculations are 
based on a given distance measure m. For equally sized BCs we would 
recommend using the Hamming distance, but the package is also able to 
calculate a broad variety of additional measures, e.g. the Levenstein dis-
tance (m = “lv”), the longest common substring distance (m = “lcs”) or 
the Jaro-Winker distance (m = “jw”). The following command will show 
the user all available distance measures, provided by the stringdist() func-
tion of the stringdist package. 
 
> ?'stringdist-metrics' 
 
All of those sequence similarity calculations are further accompanied by 
an adjustable similarity threshold maxDist. BCs with a distance <
𝑚𝑎𝑥𝐷𝑖𝑠𝑡 will be clustered together, starting with the least frequent BC. 
In case there is more than one BC with the same distance, per default, only 
the two BCs with the lowest read count will be clustered together (the 
method is inspired by the idea that during PCR successive point mutations 
occur and, in a perfect world, one would find a chain of BCs successively 
increasing the number of diverging nucleotides while decreasing the num-
ber of read counts).  
Although the “standard” method is recommended by us, the parameter 
start_small, if set to FALSE, offers the possibility to invert the procedure 
and therefore to always cluster the BC of interest starting with the most 
frequent one.  
There is also the EC-type "connectivity based" available, which follows 
the “standard” procedure but instead of ordering the available BCs by 
read counts and starting the clustering with the least frequent one, it now 
will be ordered by the amount of highly similar analogues (depending on 
the maxDist value) and consequently the clustering will start with the BC 
possessing the lowest number of highly similar counterparts. 

The "graph based" EC-type is based on the idea of graph-theoretic (con-
nected) components. Firstly, for each and every BC the distances to all the 
other BCs will be calculated and all distances > 	𝑚𝑎𝑥𝐷𝑖𝑠𝑡  will then be set 
to zero. Secondly, the resulting matrix will serve as an adjacency matrix 
for which existing components can be identified. Finally, all of the “mem-
ber-BCs” of those components will be clustered together, with the most 
abundant BC as the respective “cluster-label”. 
The EC-type called "clustering" just starts with the most frequent BC, 
identifies all highly similar counterparts (again based on the method m and 
the threshold maxDist), adds up all of the corresponding reads and lastly 
all of those added up BC sequences will be dismissed. Then, the procedure 
continues with the second most abundant BC until all BCs are processed. 
Since the actual EC-algorithms are hardly parallelizable, parallel compu-
tations are only feasible if a list of BCdat-objects is supplied. The error-
Correction() routine will automatically initiate a parallel execution de-
pending on the number of data objects and the cpus parameter. The result-
ing data object will again be one or a list of BCdat objects. Optionally, the 
final list of corrected BC sequences can also be saved as a common csv-
file (save_it) in the specified directory (results_dir).  
 
2.2 Data visualization 
The second part of the package covers the data visualization. The imple-
mented routines also include illustrations to check the quality of the sup-
plied NGS data. As such, it is possible to visualize the frequency of mean 
quality scores over all reads (Fig. 1a) and an overview plot which displays 
the quality score distribution per sequencing cycle (Fig. 1b). Additionally, 
the function plotSeqLogo() creates a sequence logo either from all NGS 
reads (see processingRawData()), the entire barcode construct or only the 
wobble positions.  
Such plots offer the possibility to visually check for prominent mismatch 
positions within the backbone or general irregularities regarding the nu-
cleotide distribution (Fig. 1c). 
 
To examine the actual BC data, the plot function generateKirchenplot() 
depicts the sorted read counts of all detected BCs (before or after error-
correction) as a simple barplot (Fig. 2a).  
 
> generateKirchenplot (BC_dat, ori_BCs = NULL, ori_BCs2 = NULL, 
loga = TRUE, col_type = NULL, m = "hamming") 

Figure 2. A simple barplot of sorted read counts of all detected BCs (a) will be generated by the function generateKirchenplot(). If the user also provides  
                a list of known reference BCs (b) there will be a color-coding of each detected BC according to its sequence similarity value of the most similar 
                reference BC. (c) If, at the same time, two distinct subsets of known BCs are provided there will be three panels containing the respective BC 
                subsets. 
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If the user is interested in a subset of known BCs, a corresponding list of 
those reference BCs can be provided (ori_BCs), thereby enabling a color-
coding of each measured BC according to its minimal sequence similari-
ties to the entire subset of reference BCs (Fig. 2b). It is also possible to 
provide two distinct subsets of known BCs (ori_BCs, ori_BCs2), e.g. BCs 
of the designed BC library and known contaminations (Fig. 2c). To make 
a visual discrimination of those two subsets easier, the resulting plot con-
sists of three panels containing all BCs of the respective subset. By default, 
the function calculates the Hamming distances (HD, number of nucleotide 
differences) between the reference set and all other BCs and uses the min-
imum HD as color-coding basis. The information about sequence similar-
ities (before EC) can be used to either approximate the extend of generated 
sequence errors (assuming that highly similar sequences are caused by one 
or few single nucleotide exchanges) or to visually check the unique-
ness/discriminability of the used BCs in terms of total sequence variations 
(after EC).  
 
The sequence similarities can also be conveniently visualized in a net-
work-like structure. Figure 3 shows one instance of a possible variety of 
different network plots utilizing different third-party R-packages (ggnet-
work: ggplotDistanceGraph(), igraph: plotDistanceIgraph(), visNetwork: 
plotDistanceVisNetwork()) available. This kind of visualization represents 
every BC sequence as a node and every edge indicates a minimal similar-
ity value between adjacent nodes or BC sequences (by default a minimal 
Hamming distance of 𝑚 = 1 will be visualized). It is also possible to con-
nect each node with its most similar neighbor (complete), assuring at least 
one edge per node and therefore allowing for Hamming distances > 1. 
While these plots are 2D representations, utilization of the “rgl”-package 
allows for the creation of an interactive 3D graph (encoded by the threeD 
parameter of the plotDistanceIgraph() function). As further options, the 
user can also create a gdf-file (createGDF()), which was defined and is 
used by GUESS (Graph Exploration System) but can also be imported into 
the open source graphic software Gephi [15]. Both programs are special-
ized in visualizing networks and allow for an even broader variety of de-
sign options. 
Besides a network-based representation it is also possible to visualize se-
quence similarities as a tree-like structure utilizing the plotClus-
terGgTree() function. In those plots, each forked branch and its respective 
distance to the previous branch represents the estimated sequence relation-
ship. 
Additionally, it is also possible to visualize the EC-procedure in order to 
develop an understanding of the amount and specificity of the corrected 
errors or/and to decide which EC-approach best suits the specific data set. 
In order to generate the needed data, the errorCorrection() function pro-
vides the parameter EC_analysis which, if set to TRUE, will document 
the entire EC-process (since a lot of additional data will be calculated and 
stored, it will slow down the execution time noticeable, therefore it is rec-
ommended to activate it only when needed). The returned BCdat object 
will then be composed not only of the usual BC list but will also include 
EC-specific cluster information (i.e. cluster sizes, added read counts, clus-
ter specific BC lists) necessary for the aforementioned EC-plots. 
 
Depending on the EC-method the composition of single clusters is not al-
ways foreseeable therefore the function error_correction_clustered_ 
HDs() will create a scatter plot displaying the maximal distances within 
each of the barcode sequence clusters. Furthermore, the two functions er-
ror_correction_circlePlot() and error_correction_treePlot() will both 
create a specialized plot visualizing the size of the emerged barcode clus-
ters including the abundance of the involved BCs. Both functions visualize 
the same kind of data but one in a circular and the other in a tree-like 
representation style. 
 
The “genBaRcode”-package also offers the possibility to analyze and vis-
ualize time series data. As already mentioned, the processingRawData() 
function also accepts a list of NGS files which if 𝑐𝑝𝑢𝑠	 > 	1 will be ana-
lyzed in parallel and will result in a list of BCdat objects. In order to ana-
lyze repetitive measurements, generateTimeSeriesData() takes such a list 
of BCdat objects and calculates a matrix containing all unique BC se-
quences over all single BCdat objects as rows and their respective number 
of read counts over all time points (data objects) as columns. The 

plotTimeSeries() function utilizes such a matrix to depict the time depend-
ent development of each and every BC detected at least once. Furthermore, 
it is also possible to provide a vector containing the time information of 
each measurement which will then be factored in the final plot to achieve 
the appropriate time scale. 
 
Finally, the package also offers the option to visualize multiple measure-
ments as Venn diagrams. The function plotVennDiagramm() also accepts 
a list of BCdat objects from which the corresponding Venn diagram will 
be generated. Almost all of the mentioned plotting functions return a 
ggplot2 object which can be plotted directly or customized further. 
 
2.3 Graphical User Interface 
In addition to the described functionality of the R-package, we developed 
an easy-to-use interface mainly for investigators with little or no program-
ming experience. Therefore, the third and final piece of the package con-
sists of a shiny-app making the majority of the aforementioned functions 
available within a graphical user interface (GUI). The GUI enables the 
unexperienced user to perform the majority of the available analyses es-
sentially without typing any line of R-code. The app not only allows for 
the BC extraction from raw NGS data files, the error-correction and the 
storage of those BC sequences within external csv-files but also for a vis-
ual inspection of the corresponding results directly within the app and to 
further manipulate and save the generated figures. Furthermore, for the 
more skilled user the app doubles as a convenient possibility to familiarize 
oneself with the package’s functionality and its intended usage. It can eas-
ily be started utilizing the genBaRcode_app() function, immediately 
prompting the user to specify a path to the NGS files of interest. If no 
specific path is provided, the included template will be made available for 
example analyses. 
 
Within the app, the user can specify one or multiple NGS files for a quan-
titative analyze and adjust further essential parameters (Fig. 4a). It is also 
possible to just read one or multiple existing csv-file(s) containing already 
extracted and counted BC sequences in order to generate new plots or to 
reanalyze certain data sets. If multiple files have been chosen, the app au-
tomatically initiates a time series analysis. BC extraction and error-correc-
tion will be performed according to the user specifications. After finishing 
the necessary calculations, a list of selectable plots and supplementing tabs 
containing meta-information as well as lists of the detected barcodes in 
combination with their respective read-counts before and after error-cor-
rection will become available (Fig. 4b). 
 
Selecting a particular plot style prompts the app to display the correspond-
ing figure utilizing the shiny specific output und render function of the 

Figure 3. The sequence similarities can also be visualized in a network- 
or tree-like structure. Within a network-based visualization, every BC 
sequence will be represented as a node and every edge indicates a mini-
mal similarity value between adjacent nodes (BC sequences). By default, 
a minimal Hamming distance of 1 will be visualized but it is also possible 
to always connect each node with its most similar neighbor, therefore 
assuring that each node will be connected to at least one other node (al-
lowing for a possible hamming distance of >1). 
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“plotly”-package, allowing not only an inspection but also an interaction 
with the produced figures via clicking, hovering and/or dragging. The user 
can freely zoom in and out, scroll through the image and extract additional 
information by hovering over certain elements of interest, thereby provid-
ing the functionality to intuitively explore the results and customize the 
respective visualizations. 
In order to augment the support for less experienced users, an additional 
tab provides all the corresponding R-code, necessary to reproduce the pre-
sented results and figures within the command-line interpreter and without 
the assistance of the shown GUI. Furthermore, there is a detailed help-
page available, designed to guide the user step-by-step through the app 
and also to make the basic R help accessible in order to further familiarize 
the user with the underlying R-functions. 
 
Additionally, for a more in-depth tutorial and a step-by-step description 
the package is also equipped with so-called vignettes. Two separate doc-
uments demonstrating and describing the package functions and the 
graphical user-interface. They can either be found directly on CRAN [16] 
or can conveniently be generated directly within R after installing the 
package. The following command will reveal both available vignettes. 
 
> browseVignettes(package = "genBaRcode") 
 
Furthermore, the source code of the entire package is available to the 
user on CRAN via GitHub [17] and all implemented unit tests can also 
be inspected directly within GitHub [18]. 

3 Discussion 
The establishment of genetic barcoding and the availability of NGS 
boosted clonal studies in many areas of biology. This ultimately leads to 
an increasing demand for the analysis of the resulting BC data and calls 
for standardization efforts including BC calling, quantification, error-cor-
rection and visualization. Our R-package comprises currently available 
analysis routines and combines them with a user-friendly GUI. It is com-
patible with a variety of different BC constructs, published or newly de-
veloped, and it provides the necessary means to quantitatively analysis and 
visualize the resulting data obtained by NGS.  
Furthermore, the GUI makes the analysis software accessible for investi-
gators with only basic or no R-knowledge. Thereby our package bridges 

the gap between data generation and analysis, and supports interactions 
between investigators and data scientists, not only with respect to experi-
ment-specific analysis pipelines, but also concerning the establishment of 
a consensual, standardized data processing and analysis strategy. 
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