
Sequence analysis

A haplotype-aware de novo assembly of related

individuals using pedigree sequence graph

Shilpa Garg1,2,*, John Aach1, Heng Li 3, Isaac Sebenius4, Richard Durbin 5 and

George Church1,2,*

1Department of Genetics, Harvard Medical School, 2Wyss Institute for Biologically Inspired Engineering, Harvard University,
3Department of Biomedical Informatics, Harvard Medical School, Boston, 4Department of Molecular and Cellular Biology, Harvard

University, Cambridge, MA, USA and 5Department of Genetics, University of Cambridge, Cambridge, UK

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on June 19, 2019; revised on November 23, 2019; editorial decision on December 9, 2019; accepted on December 18, 2019

Abstract

Motivation: Reconstructing high-quality haplotype-resolved assemblies for related individuals has important appli-
cations in Mendelian diseases and population genomics. Through major genomics sequencing efforts such as the
Personal Genome Project, the Vertebrate Genome Project (VGP) and the Genome in a Bottle project (GIAB), a variety
of sequencing datasets from trios of diploid genomes are becoming available. Current trio assembly approaches are
not designed to incorporate long- and short-read data from mother–father–child trios, and therefore require relative-
ly high coverages of costly long-read data to produce high-quality assemblies. Thus, building a trio-aware assembler
capable of producing accurate and chromosomal-scale diploid genomes of all individuals in a pedigree, while being
cost-effective in terms of sequencing costs, is a pressing need of the genomics community.

Results: We present a novel pedigree sequence graph based approach to diploid assembly using accurate Illumina
data and long-read Pacific Biosciences (PacBio) data from all related individuals, thereby generalizing our previous
work on single individuals. We demonstrate the effectiveness of our pedigree approach on a simulated trio of
pseudo-diploid yeast genomes with different heterozygosity rates, and real data from human chromosome. We
show that we require as little as 30� coverage Illumina data and 15� PacBio data from each individual in a trio to
generate chromosomal-scale phased assemblies. Additionally, we show that we can detect and phase variants from
generated phased assemblies.
Availability and implementation: https://github.com/shilpagarg/WHdenovo.
Contact: shilpa_garg@hms.harvard.edu or gchurch@genetics.med.harvard.edu

1 Introduction

The ability to faithfully reconstruct genomes is a crucial step in bet-
ter understanding evolution and the nature of inherited disease
(Tewhey et al., 2011). Advances in a variety of sequencing technolo-
gies have created enormous opportunities to yield full assemblies of
every chromosome and its homologue (called as haplotypes). The re-
construction of both haplotype sequences of each chromosome from
a combination of high-throughput sequencing datasets is known as
diploid genome assembly. The main challenges are genome charac-
teristics such as genomic repeats and varied heterozygosity rates;
and datasets characteristics such as read length and sequencing
errors. One promising approach to diploid genome assembly is
incorporating sequencing information from a related set of individu-
als, particularly from mother–father–child trios, and using the
Mendelian information offered by the corresponding pedigree to
infer the layout of alleles along homologous sequences.

Some current short-read assemblers (Bankevich et al., 2012; Li,
2015; Simpson and Durbin, 2012) for single-individual assembly
produce accurate, but fragmented assembly at repetitive and highly
heterozygous regions. Other long-read assemblers (Berlin et al.,
2015; Chin et al., 2013; Kolmogorov et al., 2019; Koren et al.,
2017; Ruan and Li, 2019) resolve repeats to generate more contigu-
ous sequences. Yet, these require high coverage due to the high error
rate in long-read data, which is very costly. Hybrid assemblers util-
ize both short accurate reads and long reads to generate complete,
high-quality haploid assemblies (Antipov et al., 2016; Bashir et al.,
2012; Deshpande et al., 2013). However, these methods collapse
differences between homologous pairs into a single consensus se-
quence, without regards for the rich information given by the layout
of different alleles along two copies (Simpson and Pop, 2015). In
contrast, other assemblers by Chin et al. (2016), Garg et al. (2018)
and Weisenfeld et al. (2017) have been developed to generate haplo-
tigs, haplotype-resolved assemblies for single individuals.

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2385

Bioinformatics, 36(8), 2020, 2385–2392

doi: 10.1093/bioinformatics/btz942

Advance Access Publication Date: 20 December 2019

Original Paper

http://orcid.org/0000-0003-4874-2874
http://orcid.org/0000-0002-9130-1006
https://github.com/shilpagarg/WHdenovo
https://academic.oup.com/

Certain assemblers have been developed to employ pedigree infor-
mation into the process of assembly as well, specifically for the case
of mother–father–child trios. For example, trio-sga utilizes NGS data
to obtain haplotypes of the child based on parental Illumina data
(Malinsky et al., 2016), while TrioCanu uses such Illumina data to
partition child long-read data and subsequently assembles the parti-
tioned reads separately (Koren et al., 2018). Yet, these two methods
cannot phase variants which are heterozygous in all three individuals
in a trio, and by relying solely on parental Illumina data, may not cor-
rectly haplotype long reads which cover repetitive genomic regions.
Furthermore, TrioCanu is not designed for low coverages of long-
read data and to obtain diploid assembly of three individuals in a trio.

Another reference-genome-based approaches for the diploid as-
sembly involve aligning long-read data from all individuals in a
pedigree to a reference-genome, then finding the most likely parti-
tioning of reads as determined by the PedMEC problem (Garg et al.,
2016). Essentially, the PedMEC (Weighted Minimum Error
Correction on Pedigrees) problem finds the partitioning of reads
from related individuals that incurs the least cost, which is calcu-
lated based on the likelihood of errors occurring at various locations
along the reads as well as recombination costs between each site of
heterozygosity. This method, however, only concerns bi-allelic var-
iants, and contains reference bias, meaning that unique DNA
sequences to every genome may not be detected or phased correctly.

Thus, developing a haplotype-resolved de novo assembly ap-
proach for related individuals which is cost-effective, flexible with
regard to genomic complexity and heterozygosity rate, and which
does not contain reference bias, is a pressing need for the genomics
community.

Contributions
Our pedigree-based assembly method (WHdenovo) performs assem-
bly in the space of a pedigree sequence graph, and is generalized to
assemble pedigree of genomes (not humans) of varying heterozygos-
ity rate and with multi-allelic variants, thus allowing for the creation
of accurate, complete haplotigs.

Our approach builds a pedigree sequence graph using combined
Illumina data from all individuals in a pedigree and the differences
between haplotypes from these individuals are represented as alleles
in bubbles, as shown in Figure 1. Given a pedigree sequence graph
containing a series of bubbles, long-read (PacBio) data from each in-
dividual are threaded through this graph; in essence, the diploid
assemblies are the most probable haplotype paths that the long reads
trace through the bubbles in the pedigree sequence graph, and which
obey the Mendelian constraints imposed by the pedigree. To solve
this pedigree-aware diploid assembly problem over pedigree se-
quence graph, we propose a novel dynamic programming-based
algorithm.

Our pedigree-based assembly approach poses several advantages
for accurate, continuous assemblies. We require relatively low
coverage of costly long-read data and produce diploid assemblies of
all individuals in cost-effective manner. We can detect and phase all

types of small and large variants. We can also phase variants that
are heterozygous in all individuals; for example, SNV1 from
Figure 2. Moreover, by incorporating hybrid data from all related
individuals, we can effectively phase reads in repetitive genomic
regions, and as shown by SV2 in Figure 2, if parental reads span a
variant but child reads do not, we can still correctly identify and
phase the variant in all three individuals.

To demonstrate the practical effectiveness of our approach, we
considered two sets of genomes. First, we haplotype the genomes of a
simulated trio of pseudo-diploid yeast, which allows us to compre-
hensively study assembly at varying read coverage and heterozygosity
rates. Then, we use real data to assemble the complete diploid gen-
ome of a trio of human chromosome. These results indicate that our
pedigree-aware assembly method is adaptable to genomes of varying
heterozygosity rates. We demonstrate that our method is cost-
effective, requiring only 30� short-read coverage and 15� long-read
coverage for every individual in a pedigree to generate near
chromosomal-scale assemblies for all individuals. Moreover, at these
coverages, we show that our assemblies for both real and simulated
data are more accurate and contiguous when compared to those pro-
duced by TrioCanu at 45� child long-read coverage. In a final ex-
periment, we also show that we can detect and phase variants.

2 Pedigree-aware phased assembly pipeline

In this section, we present the workflow of our pipeline, which takes
as input the raw Illumina and PacBio sequencing data from all
related individuals in a pedigree, and outputs final, polished haplo-
tigs. We represent this raw data information in the form of a pedi-
gree sequence graph. Our goal here is to find the walks through this
graph that correspond to the true haplotypes of all related individu-
als. Due to errors of sequencing data and other genomic characteris-
tics such as repeats, there are inevitably multiple paths through this
graph that do not correspond to true haplotype paths. Thus, to con-
struct the true haplotype paths, we seek the maximally likely paths
based on confidence scores of how the nodes are connected to each
other over long distances, which we determine using PacBio reads
aligned to the graph.

This pipeline generalizes our previous single-individual approach
(Garg et al., 2018) to related individuals to yield the chromosome-
scale haplotigs. Figure 3 represents a conceptual workflow of our
pedigree pipeline, detailed below.

2.1 Pedigree sequence graph
We use short, accurate Illumina reads from all related individuals to
construct a bi-directed graph known as pedigree sequence graph

Haplotype
assemblies

Illumina reads

Haplotype
assemblies

Illumina reads

Haplotype
assemblies

Illumina reads

Mother

Father

Child

Pedigree sequence graph
from Illumina data

Fig. 1. The Illumina data (middle) from the trio of genomes can be represented as a

pedigree sequence graph (de Bruijn-based).The bubbles in the graph (bottom) show

alleles from individuals, representing SNVs (SNPs) or SVs

Pedigree Graph

SNV1

0
1

0
1
1

0
0
1

0
1
1

0

0
1

0
1
1

0
0
1

0
01

1

0
1

0
1
1

0
0
1 01

0 1

0
1

0
1
1

0
0
1

0
1
1

0

0
1

0
1
1

0
0
1

0
01

1

00
1

1
0

0
1
0 1

Reads

Mother

Father

Child

Haplotigs
Mother

Father

Child

1 0

SNV2 SNV3 SNV4SV1 SV2

Fig. 2. Input: This figure shows the pedigree sequence graph (top) (consisting of four

SNVs and two SVs) and the PacBio reads (gray) with respective alleles (white digits).

Output: the final haplotigs (crimson) for each individual in a trio. Our method can

phase variants, including SNVs and SVs, that are heterozygous (SNV1) in all indi-

viduals and any variant covered by at least one read from any individual (SV2 in

child), resulting in continuous and complete haplotigs. (Color version of this figure

is available at Bioinformatics online.)

2386 S.Garg et al.

denoted as Gp, which contains a set of nodes Np and a set of edges
Ep. Conceptually, each node ni 2 Np represents a genomic sequence
or errors from the Illumina data of individuals in a pedigree, and the
node n0i represents its reverse complement. Every edge eij 2 Ep repre-
sents an adjacency between the sequences represented by node
ni and nj.

Moreover, the pedigree sequence graph Gp contains a set of bub-
bles L that represents true alleles from individuals (or sequencing
errors). The terminology bubble follows from the ultrabubble coined
by Paten et al. (2018). Graphically speaking, bubbles are directed
and acyclic, biconnected and minimal. We define each bubble lk to
be the set of allele paths with the common start and end nodes.
Figure 1 demonstrates the bubbles representing alleles using
Illumina data.

2.2 PacBio alignments
Next, we align PacBio long reads from all individuals to produce
paths through the pedigree sequence graph Gp. For a given PacBio
read, we define a read alignment ri to be a path through Gp, defined
by the oriented nodes n1 . . . nk. Given a set of individuals I , we align
the PacBio reads from every individual i 2 I to Gp, resulting in a set
of read alignments Ri ¼ fr1; r2; . . . ; rjg for every individual. As an in-
tuitive checkpoint, note that as PacBio reads from different individu-
als trace different paths through nodes and bubbles in Gp, we gain
information about not only the correct ordering of nodes to form
the genome in question, but also the alleles and phasing present in
each individuals.

2.3 Bubble chains
From PacBio alignments, we obtain the ordered bubble chains
denoted as C, which represent the layout of heterozygous sites
across the genome. On input R, the set of all read alignments Ri for
individuals i 2 I , we project all partial alignments to bubble
space—that is, for every instance where a read traverses a bubble,
we replace the corresponding set of nodes by the appropriate bubble
ID. We now perform our filtration steps; for every node or bubble
from every alignment path in R, denoted as x 2 R, we compute the
coverage cðxÞ, and if cðxÞ < 5, we remove the node or bubble. Next,
we calculate the degree of every remaining node x, and if
degðxÞ � 3, we remove all connections containing x. Using the
resulting filtered graph, we then perform DFS to find U, an initial
set of unambiguous bubble chains termed unitigs. Finally, if there is

at least one read connecting two unitigs in U, we can gain informa-
tion about the ordering between these initial unitigs. We record this
ordering information to generate the final ordering of bubbles
denoted as C.

2.4 Graph-based phasing on pedigrees
Next, we introduce the Graph version of Weighted Minimum Error
Correction on Pedigrees Problem, or gPedMEC, as our central phas-
ing algorithm. gPedMEC relates to the PedMEC formulation set
forth by Garg et al. (2016), which performs reference-genome based
phasing and applies only to bi-allelic variants. In gPedMEC, the
main observation is that phasing bubble chains in the graph is simi-
lar to phasing multi-allelic variants, but with an additional insight
that the child haplotype paths in bubbles can differ from parental
ones under the condition that the variant encoded by the bubble is
long, and a new allele were created as a result of recombination
within the bubble itself.

Ultimately, the goal of solving gPedMEC is to recreate the haplo-
type paths of every individuals through the bubble chains C. The
haplotype paths for a given individual are determined by deducing
the two paths through the bubble chains which incur the least cost
(i.e. are most likely), where cost is determined by confidence in
alignment paths and recombination costs. Doing so will inherently
also compute long-read partitionings.

In order to represent the paths taken through our bubble chains
for each set of alignments Ri, we create bubble matrices F i 2
f0;1; . . . e;�gRi�M for each individual i. Here, e is the maximum
number of alleles contained in any bubble, and M is the number of
bubbles in a chain. Below we consider an example having 3-bubble
chain with PacBio reads from each individual aligned to it; the corre-
sponding bubble matrices are shown below:

F 1 ¼

r1

r2

r3

r4

1 0 0
0 0 0
1 0 1
1 0

0
BB@

1
CCA

l1 l2 l3

F 2 ¼

r5

r6

r7

r8

2 1 1
2 1 1
2 0 0
2 0 0

0
BB@

1
CCA

l1 l2 l3

F 3 ¼

r9

r10

r11

r12

0 0 0
2 1 1
0 1 0

1 1

0
BB@

1
CCA

l1 l2 l3
(1)

We define a bubble matrix to be conflict-free if the set of rows in
that matrix F i can be put to two partitions (bipartition) such that
each of the two partitions is conflict free. Here, two rows are defined
to be conflicting if they exhibit different non-dash values in the same
column; that is, one entry is 0 and the other one is 1. If such a bipar-
tition exists, the matrix is called feasible and the two haplotype-
paths become self-evident. For example, F 2 is conflict–free, and the
corresponding haplotype paths are self-evident. However, due to
long-read sequencing errors, conflicts within bubble matrices are in-
evitable. Thus, our goal is to find the optimal set of matrix entries
which can be flipped in order to create conflict free matrices con-
taining a bipartition of reads which follow the two haplotype paths
of each individual (and which obey the Mendelian constraints of the
pedigree). So, for every individual, we also need to introduce a
weight matrix W i 2 N

Ri�M�e, where each entry Wiðj;k;xÞ repre-
sents the cost of flipping read j, at bubble lk, to allele x, where k 2
f0;1; . . . Mg and x 2 f0; 1 . . .; jlkjg. An example weight matrix, cor-
responding to F 1, is shown below:

W1 ¼

r1

r2

r3

r4

½2;0;10� ½0; 1� ½0; 10�
½0;10;10� ½0; 2� ½0; 5�
½12; 0; 5� ½0; 1� ½4; 10�
½7; 0;8� ½0;10�

0
BB@

1
CCA

l1 l2 l3

(2)

Other weight matrices can be written similarly.
We need to account for the Mendelian constraints imposed by

the pedigree as well. Thus, we introduce the transmission vectors

Pedigree sequence graph

Align long reads of every

Haplotype partitioned

Mom

Dad

Child

individual (styles)

readsets and assemble them

Phase long reads of every
individual

Fig. 3. Overview of the pedigree-aware phased assembly pipeline. The steps include

generating pedigree sequence graph from Illumina data, then aligning long reads

from every individual through alleles of bubbles in the graph, and then finally parti-

tioning these reads for every individual and assembling them separately

A haplotype-aware de novo assembly of related individuals 2387

t
!

m; t
!

f 2 f0;1; nagM for each triple ðm; f ; cÞ 2 T to denote the
alleles passed from each parent to child at every location in a bubble
chain, where t

!
m ¼ 1 if the mother passes on an allele from h1

m, and
so on. Under the circumstance that recombination occurs within a
bubble, in which case the value of na is passed on, no haplotype of
any parent is directly transmitted to the child. Thus, the recombined
sequences will form allele-paths in the bubble.

Additionally, we introduce recombination costs X 2 N
M, where

XðkÞ denotes the cost between bubbles of indices k – 1 and k. For
example, if a transmission vector t

!
f passes on an allele from h1

f at
location k – 1 and an allele from h0

f at k, this would incur a recom-
bination cost of XðkÞ. Yet, when transmission vector t

!
m passes on

na at location k – 1 and an allele from h0
f at bubble k, this would not

incur any recombination cost.
Having defined all necessary terms, we are now ready to define

the gPedMEC problem. Consider a pedigree sequence graph Gp con-
taining bubble chains C and recombination costs X , from a pedigree
with individuals I and relationships T ; each individual has corre-
sponding PacBio read alignments Ri, and matrices F i and W i. The
crux of gPedMEC is then to determine the set of all bubble matrix
entries to be flipped which accrues the minimal cost, based on (i) the
weight of flipping these entries coupled with (ii) the recombination
cost incurred by the transmission vectors implied by the resulting
child haplotype paths. Once these matrix entries are determined, the
haplotypes h0

i and h1
i for all individuals become self-evident.

Dynamic programming to solve gPedMEC
In this section, we discuss our dynamic programming (DP) algo-
rithm to solve gPedMEC.

DP cell initialization
We proceed by first computing the initial DP cell cost DCðk;B; tÞ
accrued by flipping entries in column k of each bubble matrix,
where k is the index of bubble lk, B is a bipartition of reads and t 2
f0;1; nag2 is a transmission tuple (at k column index) indicating
which haplotype from mother and father is respectively inherited, if
applicable.

Intuitively, there is a relationship between a bipartition B, a
transmission tuple t and the resulting set of readsets induced at loca-
tion k, termed Sðk;B; tÞ. For example, if the transmission tuple does
not contain any na values, then the child’s haplotype path must be a
combination of parental haplotypes—correspondingly, the reads in
the child’s bubble matrix can be merged with bipartitions in the par-
ental bubble matrices due to the identity by descent (IBD) condition.
In the case of a trio, this would lead to two resulting bipartition
readsets. In the presence of na values, the child’s reads would not be
merged with parental reads, leading to three bipartition readsets in
the case of a trio.

For a given bubble lk, each bipartition can be assigned any pair

of alleles (x, y), of which there are ð jlkj
2

� �
þ jlkjÞ (the added jlkj

accounts for the possibility of assigning the same allele). To notate

this, we let Wd
k;R represent the cost of flipping reads for a specific

bipartition readset R 2 Sðk;B; tÞ to an allele-pair ðd1; d2Þ 2 A,
where A is the set of allele-pairs fðx; yÞ 2 lk � lkjx � yg:

Wd
k;R ¼ minfwx

k;X þwy
k;Y ;w

x
k;Y þwy

k;Xg

where X and Y are the readsets of a bipartition readset R. The cost
of flipping to a given allele can be computed as:

wd
k;C ¼

X
ði;jÞ2C

½½F iðj; kÞ 6¼ d�� � W iðj;k; dÞ;

Thus, to initialize the cost DCðk;B; tÞ, we need to find the assign-
ment of allele pairs to all bipartition readsets which incurs the min-
imal flipping cost. This can be formalized in the following way:

DCðk;B; tÞ ¼ min
a2ASðk;B;tÞ

X
R2Sðk;B;tÞ

W
aðRÞ
k;R

()
(3)

The inner sum computes the minimum allele-pair assignment

cost from all bipartitions in Sðk;B; tÞ. The calculations in Figure 4
provide a more concrete example for calculating DP cell initializa-

tion cost. In this example, we assume a sample partition of reads
and child partition as per transmission vector shown in Figure 4(c)
where the mother passes on the green allele and the father passes on

the blue. To calculate the DP cell initialization cost in (d), we find
the assignment of allele-pairs to each of the bipartition readsets

which incurs the lowest cost. For example, the cost associated with
the allele-pair assignment (0, 2) and (0, 1) to bipartitions (green,
purple) and (orange, blue), respectively, is (2) þ (5þ8) þ (4þ1) þ
(3þ4þ4) ¼ 29 because the minimum cost of flipping all reads in
the green partition to allele 0 is 2, that of flipping the purple parti-
tion to allele 2 is (5þ8) ¼ 13, and so on. In this way, we can com-

pute costs for other allele-pair assignments and store the minimum
in the DP cell.

DP column initialization
Every entry Cð1;B; tÞ in the first column of the DP table is filled

with the corresponding cell initialization cost DCðk;B; tÞ for all
bipartitions B and transmissions t. Thus, on input the set of

reads covering l1, each Cð1;B; tÞ is calculated according to
Equation 3.

1 0 0

0 0 0

1 0 1

1 0 -

[2,0,10]

[0,10,10]

[12,0,5]

[7,0,8] [0,10]

[0,1]

[0,2]

[0,1] [0,10]

[0,5]

[4,0]

2

2

2

2

[3,4,0]

[4,5,0]

[6,7,0]

[1,2,0]

1 1

1 1

0 0

0
[0,7]

[0,6]

[4,0]

[3,0] [3,0]

[5,0]

[0,4]
0

[0,10]

0

2

0

-

[0,4,5]

[4,5,0]

[0,7,6]

0 0

1 1

1 0

1
[5,0]

[6,0]

[4,0]

[3,0] [0,4]

[5,0]

[0,4]
1

[0,10]

1 0 0

0 0 0

1 0 1

1 0 -

[2,0,10]

[0,10,10]

[12,0,5]

[7,0,8] [0,10]

[0,1]

[0,2]

[0,1] [0,10]

[0,5]

[4,0]

2

2

2

2

[3,4,0]

[4,5,0]

[6,7,0]

[1,2,0]

1 1

1 1

0 0

0
[0,7]

[0,6]

[4,0]

[3,0] [3,0]

[5,0]

[0,4]
0

[0,10]

0

2

0

-

[0,4,5]

[4,5,0]

[0,7,6]

0 0

1 1

1 0

1
[5,0]

[6,0]

[4,0]

[3,0] [0,4]

[5,0]

[0,4]
1

[0,10]

0 0 0
1 0 1 2 1 1

2 0 0

0 0 0
2 1 1

tm->c

mother father child

tf->c

mother haplotypes father haplotypes

child haplotypes

tm->c tf->ccolumn 1 for bipartition in colors and transmissions: DP cell initialization cost:
min{min{w2 + w0 , w2 + w0} +
min{w1 + w0 , w1 + w0},

other allele-pairs}
= min{((2) + (5+8)) +
((4+1) + (3+4+4)),
... other allele-pairs,}

We repeat this process for different bipartitions and transmissions

1 0 0

0 0 0

1 0 1

1 0 -

[2,0,10]

[0,10,10]

[12,0,5]

[7,0,8] [0,10]

[0,1]

[0,2]

[0,1] [0,10]

[0,5]

[4,0]

2

2

2

2

[3,4,0]

[4,5,0]

[6,7,0]

[1,2,0]

1 1

1 1

0 0

0
[0,7]

[0,6]

[4,0]

[3,0] [3,0]

[5,0]

[0,4]
0

[0,10]

0

2

0

-

[0,4,5]

[4,5,0]

[0,7,6]

0 0

1 1

1 0

1
[5,0]

[6,0]

[4,0]

[3,0] [0,4]

[5,0]

[0,4]
1

[0,10]

tm->c tf->ccolumn 2 for bipartition in colors and transmissions: DP cell cost at column 2:

Initialization cost + cost from previous column

= (6+4+6) + min{x+ 0*rc, y + 1*rc, ...other

recombination possibilities..}

where x,y are costs from previous column and

rc are recombination costs.

process continued until last column and store in DP Table

1 0 0

0 0 0

1 0 1

1 0 -

[2,0,10]

[0,10,10]

[12,0,5]

[7,0,8] [0,10]

[0,1]

[0,2]

[0,1] [0,10]

[0,5]

[4,0]

2

2

2

2

[3,4,0]

[4,5,0]

[6,7,0]

[1,2,0]

1 1

1 1

0 0

0
[0,7]

[0,6]

[4,0]

[3,0] [3,0]

[5,0]

[0,4]
0

[0,10]

0

2

0

-

[0,4,5]

[4,5,0]

[0,7,6]

0 0

1 1

1 0

1
[5,0]

[6,0]

[4,0]

[3,0] [0,4]

[5,0]

[0,4]
1

[0,10]

Total cost =
flipping cost + recombination cost
= (2+6) + 0 = 8

Output From algorithm, alleles to be flipped are shown in red

(a) (b)

(c) (d)

(e) (f)

Fig. 4. This figure shows the process of our DP algorithm. The top row shows the

three input bubble matrices from mother, father and child, with their weights (a). In

block (b), the expected output haplotypes are given. The following rows show sam-

ple processes for DP column initialization and recurrence. In block (c), sample

bipartitions and transmission vectors (encoded in colors) are shown with the re-

spective calculations in block (d). The cost calculation finds the best assignment of

allele-pairs (encoded in colors and alleles as superscripts) to the example set of parti-

tions which accrues the minimum cost. For example, for computing the allele assign-

ment cost of allele 0 to the green partition, we pay a cost of 2. The other costs can

be computed similarly. In block (e) and (f), the recurrence step for sample partition

and transmission at second column is shown that minimizes the value of the sample

partition at current column, conditioned on the previous column and allowing vari-

ous possibilities of recombinations. This process will be repeated for all possible

transmission vectors and compatible partitions until last column. Figure adapted

from Garg (2018). (Color version of this figure is available at Bioinformatics

online.)

2388 S.Garg et al.

As described in Patterson et al. (2014) and Garg et al. (2016), we
enumerate over bipartitions in Gray code order, thus ensuring a run-

time of Oðð jlkj
2

� �
þ jlkjÞjIj�jT j � 2jFðkÞjþ2�jT jÞ.

DP recurrence
In the recurrence step, we compute Cðk;B; tÞ at column k, which in-
tuitively represents the optimal allele-pair assignment cost to biparti-

tions B until column k. In general, the cell Cðk;B; tÞ can be
computed as the optimal accumulated cost of the bipartitions B until

k – 1 columns plus DCðk;B; tÞ under various possibilities of recom-

bination. Thus we add DCðk;B; tÞ to values from column k – 1,

where possible recombination costs are incurred according to the
various values of t. The additional constraint is that only entries in

column k – 1 whose bipartitions are compatible with DCðk;B; tÞ are
considered, where two bipartitions are deemed compatible if they
share the same readsets. By only considering compatible readsets,

we are ensuring that we maintain the reality that a single PacBio
read cannot come from more than one haplotype. For two biparti-

tions B and B0, compatibility is denoted as B ’ B0.
In more formal terms, the value of Cðk;B; tÞ can be written as

following:

Cðk;B; tÞ ¼ DCðk;B; tÞ
þ min

B0 2 BðFðk� 1ÞÞ : B0 ’ B

t0 2 f0;1;nag2jT j

fCðk� 1;B0; t0Þ þ dHðt; t0Þ � XðkÞg; (4)

In this equation, the term dHðt; t0Þ refers to the distance, or num-

ber of changes, between two transmission vectors and thereby repre-
sents the number of recombination costs which need to be

considered. In the case where any entry is na we assume no recom-
bination cost.

For a sample walkthrough calculation of DP recurrence, we
again turn to Figure 4. The initialization cost of the sample cell
DCð2;B; tÞ is (6þ4þ6) ¼ 16, as determined according to Equation

(3). In order to find the minimal value for the DP cell cost in column
2, we need to consider the costs from column 1. In the calculations

shown in part (f), we only consider partitions which agree on the
readsets involved, but want to consider the possibilities of recombi-
nations between the first and second bubbles. Minimizing over all

possible previous transmission vectors and compatible bipartitions
gives us our DP cell value Cð2;B; tÞ.

We continue this process for all DP cells at column 2. In a similar
manner, we repeat the DP algorithm until the last column.

Time complexity

The total running time of this algorithm is O

m
2

� �
� 2ðcþ2�tÞ � jLj

!

for L bubbles, where m is the maximum number of alleles in any

bubble from L, c is the maximum coverage from all individuals and
t is the number of trio relationships. Running time is independent of
read-length and, therefore, the algorithm is suitable for the increased

read lengths available from upcoming sequencing technologies.

Backtracing
At the end of our DP algorithm, the minimal value stored in the final
column represents the lowest possible cost incurred. We can back-

trace through the DP table to find the transmission vectors, biparti-
tions of readsets and final haplotype paths that led to this value.

2.5 Generation of final assemblies
Once we obtain the partitions of long-read data for each individual,
we can perform haplotype-aware error-correction on the reads.

Subsequently, we can use an external assembler to assemble these
partitions separately create final haplotype-resolved assemblies for
all individuals in a pedigree.

Special cases
Solving for single individuals or parent–child can be seen as special
cases of gPedMEC when F i from any parent or both are empty.

3 Datasets and experimental setup

To demonstrate gPedMEC, we considered simulated trios which
present different genomic heterozygosity rates, for the comprehen-
sive study. Subsequently, we applied our method to real data of the
human chromosome 22 in the Ashkenazim trio from the Genome in
a Bottle Project (Zook et al., 2016).

To generate our simulated data, we created a series of diploid
genomes by adding mutations at varying rates to the haploid yeast
strain DBVPG6765 (Yue et al., 2017). The four parental haplotypes
were generated in this way; subsequently, one haplotype from each
parent was selected to form the child diploid genome.

We generated trios of pseudo-diploid yeast genomes with hetero-
zygosity rates of 0.5, 1.0 and 1.5%. For each genome in each trio,
we simulated Illumina data using Art with average read length of
150 bp at 30� coverage and HiSeqX PCR free profile. Furthermore,
we simulated PacBio data using pbsim for each individual in each
trio at 5�; 10� and 15� coverage and sample PacBio CLR profile.
For the three trios of heterozygosity rates 0.5, 1.0 and 1.5%, the
average PacBio read lengths, respectively, were: 6202, 6220 and
6212, at 5� coverage, 6202, 6157 and 6256 at 10� coverage and
6231, 6190 and 6220 at 15� coverage. Additionally, we simulated
child PacBio data at 15;�; 30�; 45� and 80� coverage required for
TrioCanu (Koren et al., 2018).

Additionally, we considered real pacbio data (ftp://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_
mother—HG002_NA24385_son—HG003_NA24149_father/PacBio_
MtSinai_NIST/PacBio_minimap2_bam/, ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother—HG00
2_NA24385_son—HG003_NA24149_father/NIST_Illumina_2x250b
ps/novoalign_bams/) and nanopore data (ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/) of human chromosome 22 in Ashkenazim trio. For
every individual, we extracted Illumina and PacBio/nanopore data
aligned to this chromosome. We downsampled the long-read data for
each individual to 15� coverage. For ground truth, we considered dip-
loid assemblies that were previously produced by TrioCanu (Koren
et al., 2018) and by DnaNexus (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/analysis/JasonChin_Peregrine_TrioBinned_
PacBioCCS_assembly_06042019/). The DnaNexus assemblies are
generated using PacBio CCS (Wenger et al., 2019) and trio informa-
tion and therefore, are the best available diploid assemblies.

3.1 Pipeline implementation
We used a modified version of SPAdes v3.10.1 (Bankevich et al.,
2012) to construct our pedigree sequence graph based on Illumina
data from all related individuals. In order to maintain heterozygosity
information in our graph, we ignored the bubble removal step, run-
ning it with default parameters along with the—only-assembler flag,
thereby producing our pedigree sequence graph, without any error
correction and bubble popping. Then, with VG (Garrison et al.,
2018), we converted the assembly graph to a bluntified sequence
graph—that is, with redundant node sequences removed.
Subsequently, we detected regions of heterozygosity, (i.e. snarls)
with the snarl decomposition algorithm from VG (Paten et al.,
2018). Using GraphAligner (Rautiainen et al., 2019), we aligned
long reads from all individuals to the generated graph. Using our
own implementation, we obtain bubble chains from the combined
PacBio alignments according to the algorithm described in Section
2. Taking the resulting ordered bubble chains and long-read align-
ments, we solved the gPedMEC problem. In our calculations, we
assumed constant recombination costs X and weights in the weight
matrices Wi for all individuals. We determined the optimal parti-
tions for each individual via backtracing, as detailed in our descrip-
tion of the algorithm. The final haplotigs were generated by
assembling these computed partitions separately using Flye
(Kolmogorov et al., 2019) or Shasta (https://github.com/chanzucker

A haplotype-aware de novo assembly of related individuals 2389

http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/JasonChin_Peregrine_TrioBinned_PacBioCCS_assembly_06042019/
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/JasonChin_Peregrine_TrioBinned_PacBioCCS_assembly_06042019/
http://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/JasonChin_Peregrine_TrioBinned_PacBioCCS_assembly_06042019/
https://github.com/chanzuckerberg/shasta

berg/shasta). These steps have been implemented as a new feature in
tool, WHdenovo.

3.2 Assembly performance assessment
We evaluate the child’s haplotype-resolved assemblies from our ap-
proach by aligning them to the true simulated genome in our yeast-
based experiments, and to TrioCanu’s published assemblies. Below
we describe our evaluation metrics:

Partitioning accuracy rate. We computed partitioning accuracy
rate by comparing our predicted read partitions to the truth parti-
tions, and divided by the total reads.

Average percent identity. We consider the best assignment of
each haplotig to either of the two true references, obtained by align-
ing the haplotigs to references. For diploid assembly, we compute
the average of the best-alignment percent identities over both
haplotigs.

Assembly contiguity. We assess the contiguity of the assemblies
by computing the N50 of haplotig size.

Assembly completeness. We assess the completeness using the
total length of haplotigs assembled by each method.

4 Results

We now present the results of our analysis of the child diploid
assemblies based on the datasets described above, as assembled by
our method and by the only available trio-based assembler,
TrioCanu, based on long reads.

Coverage and heterozygosity analysis
To explore a cost-effective method of assembling the child diploid
genome when trio information is available, we consider PacBio data-
sets of varying coverage for each individual in a trio—specifically,
5�, 10� and 15� coverages. Table 1 reports the assembly perform-
ance statistics of our method applied to genomes of varying hetero-
zygosity rates. We observe that as we increase the long read
coverage from 5� to 15�, the average identity of the haplotigs from
our approach increases from 99.3 to 99.9%. This behavior is con-
sistent across genomes of different heterozygosity rates. In contrast,
TrioCanu produced haplotigs with average identity of 88–90% at

coverages of 15�, 30� and 45� for child data, indicating that
TrioCanu require 80� to attain success comparable to our method.
On real data from human chromosome 22 in GIAB trio, we pro-
duced haplotigs with >99.6% (or 0.2% discordance) average iden-
tity to high-coverage TrioCanu assemblies in both experiments. We
believe that the Illumina-based graph used in our approach and opti-
mally solving the gPedMEC formulation contributes to generating
accurate haplotigs. Overall, our analysis suggests that our approach
delivers accurate haplotype sequences even at a long read coverage
as low as 15� for each individual in a trio.

To further investigate the 0.2% discordance of diploid assemblies
between WHdenovo and TrioCanu in the real pacbio data, we add-
itionally considered high-quality diploid assemblies from DnaNexus
generated using PacBio CCS and trio information. Figure 5 shows
three bars representing diploid assemblies from TrioCanu,
WHdenovo and DnaNexus. The colors in the bars show the agree-
ment status between these assemblies. The gray region represents the
agreement of WHdenovo and TrioCanu assemblies with DnaNexus
with an average identity of 99.36 and 99.29%, respectively. There are
0.2% cases where WHdenovo and TrioCanu disagree with each
other. Out of these cases, the blue and red regions represent the agree-
ment of WHdenovo and TrioCanu with DnaNexus by 83.20 and
61.29%, respectively. Thus, this three-way comparison analysis sug-
gests that, WHdenovo is doing less mistakes compared to TrioCanu
in missing SNPs. In other cases, either of the assemblies can be wrong.

Table 1. Phased assembly performance of child averaged over both haplotypes from our approach (WHdenovo) and TrioCanu

Approach Het PacBio #phased %partition Identity N50 Total

rate cov. bubbles accuracy [%] length (m)

Child phased assemblies

Simulated data

WHdenovo 0.5 3*5� 55 561 94.2 99.3 21k 7.6

WHdenovo 0.5 3*10� 56 233 94.7 99.4 220k 11.5

WHdenovo 0.5 3*15� 56 563 94.9 99.9 720k 11.9

TrioCanu 0.5 1*45� – – 89.1 8.5k 51.1

TrioCanu 0.5 1*80� – – 99.9 730k 11.9

WHdenovo 1.0 3*5� 45 418 95.1 97.8 21k 7.6

WHdenovo 1.0 3*10� 46 228 96.3 99.4 210k 11.5

WHdenovo 1.0 3*15� 47 528 96.4 99.8 540k 11.9

TrioCanu 1.0 1*45� – – 88.8 8.6k 51.9

TrioCanu 1.0 1*80� – – 99.9 542k 11.9

WHdenovo 1.5 3*5� 35 027 97.4 97.5 20k 7.5

WHdenovo 1.5 3*10� 39 021 98.3 99.4 210k 11.5

WHdenovo 1.5 3*15� 41 126 98.6 99.8 520k 11.9

TrioCanu 1.5 1*45� – – 88.8 8.8k 51.5

TrioCanu 1.5 1*80� – – 99.9 540k 11.9

Real data (Human chromosome 22)

WHdenovo 0.1 3*15� 21 235 – 99.8 699k 34.5

WHdenovo 0.1 3*15� (n) 21 235 – 99.7 26m 38

Note: Please note that the PacBio coverage is for every individual in a trio for WHdenovo, whereas the coverage is for only child in TrioCanu. In real data,

WHdenovo assemblies are compared to high-coverage TrioCanu assemblies. The last row experiment is performed using nanopore data.

Fig. 5. This figure shows the bars on the comparison between TrioCanu,

WHdenovo and DnaNexus assemblies. The gray region represents the agreement of

WHdenovo and TrioCanu assemblies with DnaNexus. Outside of gray is the region

(0.2% cases) where TrioCanu and WHdenovo disagree. Out of these 0.2% cases,

the blue and red regions represent the agreement of WHdenovo and TrioCanu

assemblies with DnaNexus, respectively. (Color version of this figure is available at

Bioinformatics online.)

2390 S.Garg et al.

https://github.com/chanzuckerberg/shasta

In measuring partitioning accuracy of long reads, we considered
reads to be classified only if covering a fixed threshold of bubbles.

We observe that the partitioning accuracy improves with the hetero-
zygosity rate. For example, for genomes with heterozygosity rate of
1.5%, our calculated partitioning accuracy rate is 98.6% for 15�-

fold child data. In contrast, if the heterozygosity rate is low, at
0.5%, our partitioning accuracy is 94.9% at 15�-fold data of child.

With an increase in average PacBio coverage from 5� to 15�,
the haplotype contiguity achievable using our approach dramatically

improves from 21 to 720 kbp for trios with heterozygosity rate of
0.5%, approaching the contiguity of chromosomal-scale assemblies.
When heterozygosity rate is high (�1.0), our assemblies are some-

what fragmented (e.g. 540 kb) even at 15� coverage. This fragmen-
tation is a result of repetitive and highly diverging regions, which

cause assemblers to break contigs. For human chromosome 22, we
produced haplotigs with 699 kb and 26 Mb N50 length by using
15� pacbio and nanopore coverage respectively of each individual.

In comparison, TrioCanu produced N50 of length 621 kb at high-
coverage PacBio data in child. This continuity analysis suggests that

our approach can produce continuous diploid assemblies at 15�
coverage of each individual in a trio.

Regarding haplotype completeness, our approach yields average

child diploid assemblies of length �11.5 Mbp at 10� and 15� cov-
erages. For real data from human chromosome 22, we can produce

complete assemblies of 34.5 and 38 Mb at 15� pacbio and nano-
pore coverage, respectively, for each individual in a trio.

In summary, our approach delivered higher quality haplotypes
from 15� long-read coverage of all individuals in a trio than
TrioCanu at 45� coverage of the child. The results from these

experiments indicate that our approach is generalized to produce
phased assemblies for genomes with different heterozygosity rates.

Further, our pedigree-based approach is also generalized to produce
assemblies for both parents (in addition to that for the child), and
can help find recombination maps.

4.2 Variant detection
As a second goal, we aimed to study haplotype-resolved variant de-

tection. To pursue this, we aligned our predicted haplotype-resolved
assemblies to each other and detected the variants, such as SNVs.
From Figure 6, we observe that the number of predicted SNVs or

short indels rises in response to increasing heterozygosity rate; for
example, 58 541 and 178 743 for genomes with heterozygosity rates

of 0.5 and 1.5%, respectively. This result is expected because the
number of variations between two haplotypes directly depends on
heterozygosity rate. Additionally, the plot indicates that the number

of variants we can detect with our approach (red) is very close to the
true number of variants (blue). In summary, this plot indicates that

our haplotype-resolved assembly approach helps to detect variants.

4.3 Run time
Over human chromosome 22 experiment, running the whole pipe-
line took 2 h 38 min and up to 80 gb RAM. TrioCanu took 1 h 20
min on 96 cores, indicating comparable runtimes.

5 Discussion

Advances in sequencing technologies such as PacBio, ONT and
others, which can span multiple heterozygous variants, have enabled
the reconstruction of accurate phased assemblies for related individ-
uals. The TrioCanu method (Koren et al., 2018) is a hybrid ap-
proach that takes advantage of parental Illumina data and long
reads from the child in a trio; yet, it requires high coverage of long-
read child data. We have developed a novel pedigree sequence graph
based approach to the problem of diploid genome assembly for pedi-
grees that combines short- and long-read sequencing technologies.
By combining the accuracy of short reads with the contiguity offered
by long reads, along with pedigree information, our approach pro-
duces accurate, complete and contiguous haplotypes. By requiring
relatively low long-read coverage, our method is also a cost-effective
way of generating high quality diploid assemblies of all individuals.
Furthermore, by performing phasing directly in the space of a pedi-
gree sequence graph, we can detect and phase all variants (SVs or
SNVs), including those that are heterozygous in all individuals.

One restriction in our model is the use of constant recombination
rates; we aim to fine tune this parameter in the future according to
genomic distances, and properly incorporate recombination hot-
spots. Other limitations are that the Illumina-based graphs are com-
plex for human genomes and GraphAligner doesn’t scale well for
long-read alignments through these graphs. To overcome these limi-
tations, the next steps involve building an initial simplified graph
from PacBio Hifi data and then applying the downstream principles
from this work. Nevertheless, our framework, in principle, sets up a
foundation to incorporate a variety of combination of datasets avail-
able from individuals in pedigree; in the future, we hope to provide
relevant experiments on these combinations for various use cases.
Finally, we will apply our approach to study the implication of
haplotype-resolved variants to Mendelian diseases.

Acknowledgements

We acknowledge Yichen Wang and Isaac Sebenius for learning and minor

help during their short internship period.

Funding

This study was supported by US National Institutes of Health (grant

R01HG010040 and U01HG010971 to H.L., K99HG010906 to S.G. and

RM1HG008525 to G.M.C. and J.A.).

Conflict of Interest: G.M.C. is a co-founder of Editas Medicine and has other

financial interests listed at arep.med.harvard.edu/gmc/tech.html.

References

Antipov,D. et al. (2016) hybridSPAdes: an algorithm for hybrid assembly of

short and long reads. Bioinformatics, 32, 1009–1015.

Bankevich,A. et al. (2012) Spades: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bashir,A. et al. (2012) A hybrid approach for the automated finishing of bac-

terial genomes. Nat. Biotechnol., 30, 701–707.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Chin,C.-S. et al. (2013) Nonhybrid, finished microbial genome assemblies

from long-read SMRT sequencing data. Nat. Methods, 10, 563–569.

Chin,C.-S. et al. (2016) Phased diploid genome assembly with single molecule

real-time sequencing. Nat. Methods, 13, 1050–1054.

Deshpande,V. et al. (2013) Cerulean: a hybrid assembly using high throughput

short and long reads. In: Algorithms in Bioinformatics, Vol. 8126. Springer

Berlin, Heidelberg, pp. 349–363.

50k

100k

150k

200k

59139 58541

118203 117995

179018 178743

het0.5 het1.0 het1.5

Fig. 6. This figure shows the true and predicted variants from the phased assemblies

generated using our method at various heterozygosity rates

A haplotype-aware de novo assembly of related individuals 2391

arep.med.harvard.edu/gmc/tech.html

Garg,S. (2018) Computational haplotyping: theory and practice. PhD Thesis,

Saarland University, Saarbrücken.

Garg,S. et al. (2016) Read-based phasing of related individuals.

Bioinformatics, 32, i234–i242.

Garg,S. et al. (2018) A graph-based approach to diploid genome assembly.

Bioinformatics, 34, i105–i114.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Kolmogorov,M. et al. (2019) Assembly of long, error-prone reads using repeat

graphs. Nat. Biotechnol., 37, 540–546.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res., 27,

722–736.

Koren,S. et al. (2018) De novo assembly of haplotype-resolved genomes with

trio binning. Nat. Biotechnol., 36, 1174–1182.

Li,H. (2015) Fermikit: assembly-based variant calling for illumina resequenc-

ing data. Bioinformatics, 31, 3694–3696.

Malinsky,M. et al. (2016) trio-sga: facilitating de novo assembly of highly

heterozygous genomes with parent-child trios. bioRxiv, page 051516.

Paten,B. et al. (2018) Superbubbles, ultrabubbles, and cacti. J. Comput. Biol.,

2018, 25, 649–663.

Patterson,M. et al. (2014) WhatsHap: haplotype assembly for future-genera-

tion sequencing reads. In: Roded,S. (ed.) RECOMB, Vol. 8394 of LNCS,

Springer International Publishing, pp. 237–249.

Rautiainen,M. et al. (2019) Bit-parallel sequence-to-graph alignment.

Bioinformatics, 35, 3599–3607.

Ruan,J. and Li,H. (2019) Fast and accurate long-read assembly with wtdbg2.

Nat. Methods, doi: 10.1038/s41592-019-0669-3.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large

genomes using compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. and Pop,M. (2015) The theory and practice of genome sequence

assembly. Annu. Rev. Genomics Hum. Genet., 16, 153–172.

Tewhey,R. et al. (2011) The importance of phase information for human gen-

omics. Nat. Rev. Genet., 12, 215–223.

Weisenfeld,N.I. et al. (2017) Direct determination of diploid genome sequen-

ces. Genome Res., 27, 757–767.

Wenger,A.M. et al. (2019) Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome. Nat.

Biotechnol., 37, 1155–1162.

Yue,J.-X. et al. (2017) Contrasting evolutionary genome dynamics between

domesticated and wild yeasts. Nat. Genet., 49, 913–924.

Zook,J.M. et al. (2016) Extensive sequencing of seven human genomes to

characterize benchmark reference materials. Sci. Data, 3, 160025.

2392 S.Garg et al.

	btz942-TF1

