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1. Introduction.

The flow of a gas or of a liquid in a closed cavity has long been of
interest in applied science (see, e.g., references [1, 2,4, 7-12, 14] and
the additional references contained therein). In this paper we will apply
the power of the high speed digital computer to study prototype, steady
state, two dimensional problems for such flows. The numerical methods
to be developed will be finite difference methods and will be described in
sufficient generality so as to be applicable to nonlinear coupled systems

similar in structure to the Navier-Stokes equations.

2. The Eddy Problem in a Rectangle.

The class of problems to be studied, called eddy problems in a rec-
tangle, can be formulated as follows. For d > 0, let the points (0, 0), (1, 0),
(l,d) and (0,d) be denoted by A, B, C and D, respectively (see Figure 2.1).
Let S be the rectangle whosevertices are A, B, C, D and denote its
interior by R . On R the equationsof motion to be satisfied are the Navier-

Stokes equations, that is

e

“Funds for the computations described in this paper were made avail~
able by the Research Committee of the Graduate School of the University of
Wisconsin.




(2.1) Ay = -w

,, Y L _ ¥ dw ) -
(2.2) Aw + @,(ax Sy Ny ax> 0,

where ¢ is the stream function, ® 1is the vorticity and R is the Reynolds

number. On S the boundary conditions to be satisfied are

(2.3) v =0, %ﬁ— = 0 , on AD
(2.4) y =0, %5;— = 0 , on AB
(2.5) p =0, %}% = 0 , on BC
(2.6) v =0, %—;{- =-1 , on CD.

The analytical problem is defined on R+ S by (2.1)-(2.6) and is
shown diagrammatically in Figure 2.1,

In general, boundary value problem (2.1)-(2.6) cannot be solved by
means of existing analytical techniques. Physical solutions have been pro-
duced in the laboratory by Pan and Acrivos [9], while numerical methods
which "converge", but only for small ® , have been developed by Burggraf [ 4]
and Runchal, Spalding and Wolfshtein [12]. A numerical method which con-
verges for all ® , but which has been run only for relatively large values of
the grid size, has been developed by the writer [7] .

We shall describe next a modified, somewhat faster form of the method

developed in [7] and apply it to a selection of difficult problems which are



of wide interest. Among our major objectives will be the construction of

secondary vortices and the study of vorticity for large Reynolds number,
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3. The General Numerical Method.

1
For a fixed positive integer n, set h = = . Assume, for simplicity,

n
that d is an integral multiple of h . (If d is not an integral multiple of
h, the method is easily modified as shown in [7].) Starting at (0, 0) with
grid size h, construct and number in the usual way [7] the set of interior
grid points Rh and the set of boundary grid points Sh .

For given tolerances £, and 82, we will show first how to con-

struct on Rh a sequence of discrete stream functions

1
(3.1) w(o), ll/( ), %U(Z).

and on Rh + Sh a sequence of discrete vorticity functions
(3.2) W, W, W, ey

such that for some integer k both the following are valid:

1 .
(3.3) \z//(k) —w(k"L )[ < g, on R,
(k) (k+1)
(3.4) | = w | < €E,» on Rh+Sh .
Initially, set
(3.5) z//(o) = Cl , on er1
(5.6) T

where C, and C2 are constants.

1



(1)

To produce the second iterate y of sequence (3.1) proceed as
follows. At each point of Rh of the form (h,ih), i=2,+-+,n -2,

approximate (2.3) by

(3.7) Wh,ih) = M——J———HZ Lh

At each point of Rh of the form (ih,h), i=1,2,--+,n-1, approximate
(2.4) by

(3.8) Wih,h) = dih.2h)

4
At each point of Rh of the form (l1-h,ih), 1i=2,3,+--,n~2, approximate
(2.5) by

(3.9)
At each point of Rh of the form (ih,1-h), 1=1,2,...,n-1, approximate
(2.6) by

+ SM i h: lj‘Zh!_
4

Rt~z

(3.10) Y(ih, 1-h) =

And at each remaining point of Rh write down the difference analogue

(3.11)  =4P(x, y) + P(x+h, v) + $0x, y+h) + p(x-h, v) + v(x, y-h) = -h° (O (x, v)

of (2.1). Solve the linear algebraic system generated by (3.7)-(3.11) by

the generalized Newton's method [ 7] with over-relaxation factor r, and

v
(1) (1)

is defined by the smoothing

denote this solution by ¥ Then, on Rh’ Y

formula




(1)

(3.12) vl =pyYy T (L-p)yt T, 0

A
0

IA

ot

(1)

To produce the second iterate w of sequence (3.2) proceed as

follows. At each point of S, of the form (ih,0), i=0,1,2,+-++,n, set

h
(L.
(3.13) s (in,0) = -2 ih,h) .
h?‘
at each point of Sh of the form (0,ih), i=12,..-,n-1, set
(1) .
(1) vy _ ey (hyih)
(3.14) a) (0,ih) = 2 ;
at each point of Sh of the form (l,ih), i=12,...,n-1, set
(1) .
— (1) . _ 2y " (1-h,ih) |
(3.15) w7 {l,ih) = - 12 ;
and at each point of Sh of the form (ih,1), i=0,1,2,...,n, set
1 ,,
— (1), _ 2 _ 2y "(ih,l-h)
(3.16) @ (ih,1) = n 2

Next, at each point (x,y) in Rh set

(1) (1)

Q
i

¥ (x+h,y) - ¥ 7 (x-h,¥y)

(1)

B = ! (%, yeny - ! (x, y-h)

and approximate (2.2), appropriately, by

(3.17) (-4 - 9-2-@ - _@g_) w(x, y) +o(x+h, y) + (1 + %ﬁ)m(x, v+h)
pR .
+(l+‘-f2—)a>(x-h,y)+w(x,y-—h):O; if a=0, BP=0,



v (o 1R ]
(3.18) (-4 - 9-2-“-” + % Yo(x, y) + (1 - %ﬁ)w(xm,y) £+ %@)m(x, y+h)

+w(x-h,y) +w(x,y-h) = 0; if a2 0, B<O ,

C 3R :
(3.19) (-4 + leﬁ - %‘ Yyw(x, yv) + w(x+h, y) + w(x, yt+h) + (1 + %@ Yy w(x-h, v)
ag . .
+(1-—7)w(x,y-h)=0; if a<0, B=0,
(3.20) (-4 + 95@ + %@) w{x,y) + (1 - %@) w(x+h, y) + w(x, yth)

+w(x-—h,y)+(l-%@)w(x,y—h)=0; if a< o0, B<O.

Solve the linear algebraic system generated by (3.17)-(3.20) by the

generalized Newton's method with over-relaxation factor r(JJ and denote the

m 1)

solution by © Finally, on all of Rh + Sh define w by the smoothing

formula

w :uw(0)+(l—u)E , 0= =1,

Proceed next to determine 1,0(2) on Rh from w(l) and z//(l) in the

M (0) (0)

Then construct

(1)

in the same fashion as was

was determined from o

(1) (2)

same fashion as ¥ and ¥

and o
M

w(z) on Rh +Sh from w
(0)

determined from w and ¥ In the indicated fashion, construct the

sequences (3.1) and (3.2). Terminate the computation when (3. 3) and (3.4)

are valid.

(k) (k)

Finally, when ¢ and W are verified to be solutions of the
difference analogues of (2.1) and (2.2), they are taken to be the numerical

approximations of P(x,y) and ®(x,y), respectively.




4. Examples.

Consider first the boundary value problem defined by (2.1)~(2.6) with
d=1. This problem was solved by the method of Section 3 for ® = 200
with h= -—, € =1, e, = 1o, p=0.1, w=0.7, rw= 1.8, rw=l.0,

C. =C. =0, andalso for = 500, 2000 and 15000 with the same parameter

values except for g, = 10 ~. Convergence was achieved for f = 200 in
14 minutes with 341 outer iterations, for ® = 500 in 11 minutes with 96 outer
iterations, for ® = 2000 in 4 minutes with 80 outer iterations, and for ® = 15000
in 3—;' minutes with 40 outer iterations. The resulting stream curves exhibited
only primary vortices and are shown in Figure 4.1. The resulting equivorticity
curves exhibited the double spiral development shown in [7] and are given in
Figure 4.2.

With an aim toward producing secondary vortices and toward studying
vorticity for large Reynolds numbers, boundary value problems (2. 1)-(2.6) was

considered again with d = 1. The problem was solved for £ = 50, 10000,

1
and 100000 with h=-——. For ® = 50 the remaining input parameters were

40
h tobe & =10 % g =102, p=.03 =.90, r =1.8,r = 1.8
chosen to be 1= » &, % .P—~,u--,w—-:w“ -+ Oy
C = C. =0. Convergence was achieved in 60 minutes with 100 outer

t 2
iterations. The resulting flow with the secondary vortices is shown in Figure
4.3, For ® = 10000 the remaining input parameters were chosen to be
El: .004, EZ =.,03, p=.03, L = .95 rw = 1.8, rao =1, Cl = C2 = 0. After

183 outer iterations, W was changed to .85. Convergence was achievad in

260 minutes with a total of 226 outer iterations. The resulting flow with a



single secondary vortex is shown in Figure 4.4. For ® = 100000, the

4
remaining input parameters were chosen tobe € =10 , ez = ,005 p=.03,

L
(0) (0)

th
L= .95 r =1.8, r, = 1, but y and were taken to be the 57 outer

(4

iterates of the run for ® = 10000. Convergence was achieved in 135 minutes

with 386 outer iterationé. The flow is shown in Figure 4.5 and contains no

secondary vortices. The equivorticity curve o = 1.630, with its double-

spiral, space filling characteristics is shown in Figure 4.6. Numerical

e vidence of Batchelor's result that the vorticity in a large subregion of R

converges to a constant as R-+ « is exhibited in Figure 4.6 by setting

crosses on those points atwhich the vorticity is between 1.6 and 1.7 .
Finally, consider boundary value problem (2.1)-(2.6) with d = 2 and

R = 10, This problem was solved with h = ;i%’ el= lO—4 , 82 =10 7, p= .05,

M =.85r =1.8, T, = 1.25, Cl = C2 = 0, Convergence was achieved in 32
minutes with 102 outer iterations. The resulting flow, with its two primary

and two secondary vortices, is shown in Figure 4.,7.

5. Remarks.

From the many examples run in addition to those described in Section
4, the following observations and heuristic conclusions resulted. Divergence
or exceptionally slow convergence usually followed if any one of the following
choices were made: 4= p=1, 0= = ,6, rw <, T, <<1. The choice

p = =0 yields convergence only for large grid sizes and small Reynolds num -



10

bers. The choice rq/ = 1.8 was consistently good. For grid sizes larger

1
than or equal to 2-6' , sequence (3.1) converged so much faster than (3.2)

that very little attention had to be directed toward the choice of €

, 1
but for grids smaller than 20 this was not the case and attention

had to be directed to the choices of both &, and g, - Deletion of all or

even of some of the special formulas (3.7)-(3.10) and substitution with (3,11)
always led to divergence for large Reynolds numbers (R ~ 10000}, but often

did yield secondary vortices for h = = for small Reynolds numbers (R ~ 50).

20
(k) (k) were always satisfied to much

The difference eqguations for ¥ and o
smaller tolerances than those imposed in (3.3) and (3.4), respectively.
Several possible modifications of the method of this paper which should
be explored if one wishes to speed up the convergence include allowing some
or all of P, W, r, and r, to be variable [6], using line over relaxation

Y
(0) (0)

[15], and choosing ¥ in a more judicious manner than that

and w
prescribed in (3.5)-(3.6).

Observe also that the method of Section 3 applies directly to biharmonic
problems (i.e., to the case ® =0) and initial computations verify that it
extends in a natural way to free convection problems [1].

Finally, note that theoretical support for the method of this paper is

now beginning to appear for very special cases [ 3, 5,13].
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FIGURE le1 Typical streamlines for h=1/20.
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R = 2000 R =15000

FIGURE le2 Selected equivorticity curves for h=1/20,
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FIGURE ;.3 Streamlines for Reynolds number 50 with h =1/40,
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FIGURE l,); Streamlines for Reynelds number 10000 with h=1/40,
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FIGURE l.o5 Streamlines for Reynolds number 100000 with h =1/40,
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FIGURE |;,7 Streamlines for Reynolds number 10
o with h=1/40 for a 2 by 1 rectangular
cavitye. :
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APPENDIX

o , CDC 3600 FORTRAN PROGRAM FOR CAVITY FLOW PROBLEMS

Ne SCHULTZ

DFFINITIONS OF PROGRAM VARIABLFS

OMA

i

VORTICITY VALUES
el = STREAM VALUFS

M = NUMRER (F VERTICAL SPACFS IN THE 6RID

Z
i

NUMBER OF HORTZOGNTAL SPACES IN THE GRID

R o= REYNOLND'S NUMRER

TTERTE TR

FPs = TOLERANCHE FOR INNER—=-AND OUTER-ITERATIONS

€1 = WEIGHTING FACTOR FOR OMA
T U ET 2 WEIGHTING FACTOR FOR PSI

Ry = RELAXATION FACTOR FOR OMA EQUATIONS

B MM = NUMRER OF OUTER=ITFRATIONS

T T UNCOUNT = NUMREP OF INNER-ITERATIONS
WOsW1sW2sW3gWs = COEFFICIENTS FUR The vORTICITY £WUATLON
ISTOP = SWITCH TO INDICATF CONVERGENCF
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Py . PANIC T

ol e L S (B e ) A A (S g a SLER L [ LN SN ) e ML (B0 0 ) g SO

O] Mg NT LIS ] oM e MDLTIGT] o NS o MD
R AT AU 9N o M
O MAT | :[?)
MDY Q] =M+ ]
MME Qpim e ]
A=
MEL IS =N+
NME €z N -]
=] o /N
fi7 =3
Trl=z=ea 0]

- IMiTi 120 VOO TORS

NSNS
;'._L:‘

‘
el I
I

n

NPT U=1e80

N7 =i
MP =&
faeTmnp=0C
D=6y
Buw=1,
C1i=0
F1=0
CONTINUF
PRINT 22322,
FORMAT(1HL 9FR 42 )
NOT I=1e50
VT (T ed) =0
CVBESI(14J)=0
SVOMA( ] 4 )=
TET(led)="
OMa(leJ)=U
I
FPp=1=-r1
Cr2=1=-C1

SR GIN LOOP 1 OR OUTeR [TERATIONS
SaVi VORTLCLTY ~UNCTIiON FROM PReVIOUS OUTER ITERATION

D{‘) /.LQ [ '-']LS_NDLJ IQ;L

L0 40 J=1.pLnel

SVOIT ([ o) ="MA(T 5 J)
Ni :N"A-&]
MCOHINT =0

FEGIN [NMER [THRATION vOR STREAM SUMIT LUN

COMPUTL STREAM FUNCTION FORINNGR REGION

DO 7 123 4NMFSH

DO 2 =R MMF G
SVOST{T ¢ Jy=PRT(14J)
DCI{L s d)=m{=eBAPS[ (1 oJ) ) +e45* (PSS ([oJ=1)+FSI{lad+l)1+PSI{i=1sd)+

1P T T+1 e JI+HP¥OMA (T 4 J) )

I

LY

COMPUTE STREAM FUNCTION ON TOD aNU oOTTO4 NN=R =OUNLARY LINTS
NO 2 1=7 4N

OSI(152)=(ePR*¥DS] ([52))

DST(IsM)=e28%F L ([ yMMFSH) + ¢ 53%H

TOAMEUTE STREAM FUNCTION ON LFEFT ANMD RIGHT INMER GOUNDARY LINES
DO & [ =73 ¢ MMFE QY
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e = (@ 27D (740
('-r'l<ut!l): (.,\L‘HP‘I{.N"lQl))
PV T AN e TN R CONY - R

B T R g NI Qe

TR = g MME QY
FTFF=ALCFR(SVPSI (s J)=PSI(Tyd))

[F{DIFF o(GT4 FRC) S0 TO A

COMTINUE o oo o .
RECALCUHLATE STREFAM  FUNCTION USING WFIGHTING
RO 227 1=34NMEQ}H

NO 2272 J=3 4dMMEFCH

222 PEI(T o J)=FI*QVUPSTI(T o J)+F2H*¥PST (19U}

DO 114 =2 VMFQH

LE(PSI(I M) )28 1144114

Ao
{

114 CONTINUE
O TO 200
A NECOLINT =NCOUNT+1
[FINCOUNT «GTe 100) GO TO 8
GO T0 11
Lo TEST STREAM FUNCTION FOR DIVERGENCE
A IF(NIFF «GTe 10) GO TO 28
PRINT 93
93 FORMAT(1H1 .11+ PSI VALUES)
o CAL L PRNTLST(PST)
1n FORPMAT(10F1146)
- NCOUNT=0Q
GO TO 11
28, , PRINT 81
81 FORMAT(13H PST LIVERGED)

CALL PRMTLST(PSI)

CALL PRNTLST(OMA)

2 G0OLTOE99 N

C REGIN INNgR JTERATION FOR VORTICLITY

200 NCOUNT=0

30 HOONST=C2% (=26 /H2)

C COMPHT e VORTICITY ON HOUNDARY LINES USING WETGHT ING
C TOR AN HOTTOM GOUNDARY LINES

DO 12 I=1svpPLUS] . .
MMA (L1 )=Cl# MA (91 )+HCONSTHPST ([42)

12 OM2 (] o411 )=Cl*¥OMA(T oM+ 1) +HTONST# (RSL (] ¢M)—H)
< LEFT AN RIGHT ROUNDARY LINFS
NOC1R (=0 4M

OMALT s I ) =HCONSTHPST {2y [)+CI#OMALT41)
JL3 M AINEL e T ) =HCONST*PST (N L) +CL¥OMA(N+1s 1)
Gl CONTIMUF
C COMPUTL COEFFICLENTS FOR VORTICITY cGQUATIUNS
C COMDLETE NONF CWEED OF INTERINR

NO 14 1=2,N

NOY 14 Jz=D oM

CAL=RPSI(I+1ed)=PSI(]~]

L1EPS (e JH+l 1 =PSI(1eJ

A=BRSF(AL)

R=ABSF(R1)

WOSL+(A+B)*(R/2)
IF(AleGFs N})15916

e Jlo . . L -
-1



Z3

15 P RN AV
W= !
-~ =17
16 e
G b (7/2)
l/ I':(DLOGFI ) RIS
18 b=

SR (R
TN TN

L = AR R0
e
o SVOMG(L 4 d)OMA L g J

L= (TSTOR Fne, 1)G0O TO 305
ﬂ”h(1-J)=((”]/W“)*0Mw(;+loJ)r(WZ/WO)*ﬁMA(i9J+l)+(w3/WO)*UMA(I“19J)
L4 (we /W) *OMA (T 9 J=1) ) ¥RW+{1=RW ) ¥OMA ([ sJ)
0T 14
C ChEck TO S50 [0 2 1RFRENCe FQUATIONS ARy SATISHICL TO 4001
305 nD1FF ={{WI/WOIHFOMA(T+1 e J )+ ( W/ WOIHROMA ([ o J+1 )+ (WI/WOIHROMA ([ -1 J)
1+ {(Wa/WO)#OMA (T s J—1))=OMA(T o+ J)
DIF=ABSF (DIFF)

TTE(NTF W GTe EPRL1)2824.14

282 PRINT 183 414J

) GO TO 700

14 CONTINUF

: IF (1STOP oFQe 1) GO TO 700

S TEsT  VORTICITY . FOR _CONVERGHNCE. - 3

DO 21 [=2eN

DO 21 J=2sm o )

DIFr=AASF(SYOMa{leJ)—=OMA(TsJ))

TF(NIFF oGFE. FPS)Y GO TO 22

21 COANT MU

Lo RoGnbeULAT VORTLICITY USING WEIGHTING
NC 144 I=26N

DO 144 J=2 oM

144 OMA(T s J)=C1%*SVOMA(T sJ)+ C2%0OMA( I 4J)
M= M+
C DRINT OUT EVFRY 4 OUTER [TERATES
e TF{JIM o50s 4189559 )
89 IM=0
PRINT 79 sNM ,
79 FORM:  T(1mls.seliy OUTER 1TeRaTIONS)

DRINT 91
CALL PRNTLST(PRL)
PRINT 92 .
CALL PRNTLST(NMA)
¢ TEST ONTZR [TeRATIONS FOR CONVERGENCE
59 CONTINGF
DO 45 I=1.NPLUIS]
N 4R J=1eMPLLIG]
DIFF=ARSFSVYONT (T J)=NMA(T 9 J))
T T IR(RIFF G GTe FPS) GO TO T
w5 CONT N
N7 =0
MDD -Q

PRINT 99 4NM




[ 4

ay POVMAT ORI e P O ORVE R G D N e ] )
ORTAT
O FT T X e e DS, Ve

!
CALL PRENTL.T(DE])
T sMT 90
e e MAT Chit e iy o e VALLL S)
CALL VRHTLST(OMA)
Fpal=e0N1

RMAY =0

[eTnp=1
c CHECY TN S o (b k- RBeNGy NUATIONS  0OR STR: aM ¢ NG TION aRF SAT LSk [+
C A TRLERAMCE OF 4001

O 1HRL (=3 ONM S
N0 181 JJU=3 4 MME Spy

REC=ARSE(PS] (119JJ)=SVPSI(11sdJ))
[F(PES oGTe PMAX )31 ,3002

i PAMAX=RE Q
Aup CONT INUF
Az=lH*PST (I T e IV+PSI(TIT+1 e JU)+PSI(IT o JIJ+T)+PSTI(TII=10JJ)+PSI(I] s JI~
SR 1 B .
RzeHIH*OMA(I T s JJ)
N=na=R
IFID «GTe FPS1)Y GO TO 182
181l CONTINUE
a0 TN 9N
2182 . PRINT 1R3s11, U , .
1813 FORMAT (U IHL saiH wirFl RENOE Mle NOT SeTiS1H IrD AT POINT (el Z2slHesel
LelH))

GOCTN e
C TFST OUTFR ITFRATINNG FOR DIVFRGENCE
7 IFIDIFF «GTe 1001199423
4 MCAUNT =HCOUIMT + 1 S
[FIMCOUNT oaGTe 200) O TO 24

i N TA 9N
C TeeT VORTICLITY FOR DI VERGENCE
24 TF(0IER oGTe 10) G TO 29
FRINT 94
Y FORMAT(IHLs14H OMAEGA VALUES)

CALL PRNTLST (OMA)
PRINT 91
CALL PRNTLST(PS])

32 . O FORMAT(10F1]l e6)
NCOTINT ="y
—— . GO TH 9N
7?9 PRINT 82
82 FORMAT (13 OMA DIVERGED)

CALL PRNTLST(PSL)
CALL PRMTLST (OMA)
0 TN £0Q

S99 . PRINT 183 N -
180 FOFPMATIOAM NUITER JTFRATIONMS |IVIRGEI))
717G CONTINUFE
PRIMT 303 4RMAX
301 FORMAT (1T o1 7H PS1L CONVERGri TOsEL12e4)

699 CONTINUF



