Batched Interpolation Search

Y.P. MANOLOPOULOSY, J. (Y.) G. KOLLIAS*f anND F. WARREN BURTON§

+ University of Thessaloniki, Department of Electrical Engineering, Division of Electronics and Computers, 54006 Thessaloniki, Greece
t National Technical University of Athens, Department of Electrical Engineering, Division of Computer Science, 15773 Athens, Greece
§ University of Colorado at Denver, Department of Electrical Engineering and Computer Science, Denver, Colorado 80202, U.S.A.

In a previous study an ordered array of N keys was considered and the problem of locating a batch of M requested keys
was investigated by assuming both batched sequential and batched binary searching. This paper introduces the idea of
batched interpolation search, and two variations of the method are presented. Comparisons with the two previously

defined methods are also made.

Received December 1985

1. INTRODUCTION

The most common techniques for searching an ordered
array residing in main memory are the ones described in
detail in Ref. 8, pp. 393-422: sequential, binary and
Fibonacci search. Some other techniques are also
proposed for searching, for example jump search,'?
polynomial search,'® as well as interpolation
Search.Z, 4-6, 8, 10, 12-15

For uniformly distributed values interpolation search
seems the most promising, based on the average number
of probes for the search of one element in an array. On
the other hand, if we compare the running times, the
performance of interpolation search decreases because
the calculation of the array index is time-consuming.

In this paper we consider the problem posed in Ref. 11,
that is, to find out efficiently which element of a set of M
sorted distinct keys exists in an array of length N, where
N > M. Let us describe the method. Suppose we have a
dense array in main memory consisting of N sorted keys
(say ascendingly), uniformly distributed and we want to
detect which of the keys of a set of size M, which may
or may not be uniformly distributed, exist in the array.
If the keys are sorted in the same order as the keys of the
array, the successful search of the first key of the set
enables us to search for the second key in the remaining
sub-array, i.e. the interval between the already-found key
and the beginning of the array is exempted. Thus the
original array shrinks continuously and the search
becomes more efficient. In Ref. 11 an algorithm based on
binary search was proposed. This technique named
‘Batched Binary Search’ (‘BBS’) was compared to
‘Batched Sequential Search’ (‘ BSS’) (for the implemen-
tation of BSS in the environment of secondary storage
see also Refs. 1 and 9), and was shown to outperform it
up to a certain threshold value of M, which is a function
of the variable N, beyond which BSS is preferable to
BBS. Consider also that in Ref. 7 a similar problem was
investigated, that of detecting whether a k-vector belongs
to a set of n distinct k-vectors. An algorithm compro-
mising binary and sequential search was proposed to
speed the search process.

* To whom correspondence should be addressed.

t+ This material is based upon work supported by the National
Science Foundation under Grant no. ECS-8312748. Now at:
Department of Computer Science, University of Utah, Salt Lake City,
Utah 84112, US.A.

Intuitively, it seems that binary search is not optimal,
since it does not benefit from the knowledge that the keys
may be distributed all over the array. In this paper we
investigate the performance of two techniques (forming
a family called ‘Batched Interpolation Search’ or ‘BIS”)
under the following assumptions: (@) the cost metric is
the number of probes and not the running time; (b) the
keys of the array are uniformly distributed; (c) the M keys
being searched for are uniformly distributed; and (d) the
M keys are distinct and all of them exist in the array. The
first (second) technique is based on interpolation and
sequential (binary) search.

Interpolation search and BIS specifically may be used
in a wide spectrum of applications. As reported in Ref. 12,
in computers with fast floating-point arithmetic handling,
interpolation search is superior to binary search in all
cases and should be preferred for both internal and
external searching operations. In the case of external
searching the cost metric should be the number of block
accesses. In distributed systems communication cost
dominates computation cost. Thus interpolation and BIS
would be useful in this environment if applied by a pro-
cessor with fast local memory which can also access
information in a central memory and/or another
processor more slowly. Interpolation and BIS could also
be used for searching in optical discs, where the span
capability provides access to adjacent tracks without
moving the access mechanism. Since interpolation tends
very fast to the required record, it would be fair to say
that in the environment of optical discs the last access
would be performed within one span and thus the search
cost is minimised.

The paper is organised as follows. In Section 2 the two
variations are described and estimates are derived for the
expected number of probes performed when the two
techniques are applied. In Section 3 comparison of BBS
and BSS is made and a breakpoint between BIS and BSS
is defined, beyond which BSS is preferable to BIS. In
Section 4 the effects of other assumptions are discussed.

2. ANALYSIS OF BATCHED
INTERPOLATION SEARCH

First, we will describe briefly the simple interpolation
search algorithm. For more information see Ref. 6.

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 565

€102 ‘92 AN U0 IMINOTVSSIHL 40 ALISHAAINN FTOLSIHY ® /Bi0's[euinolpiosxojufwody/:dny woiy pspeojumod


http://comjnl.oxfordjournals.org/

Y.P. MANOLOPOULOS, J.G. KOLLIAS AND F. W.BURTON

Suppose we have an ascendingly ordered array of
length N with keys k;, where 1 < i < N. These keys are
drawn from a uniform distribution over the range (k,,
k n+1)- Suppose that we are given a key value kK and want
to know whether k exists in the array or not. The array
index to be probed is given by the equation:

k—k
AI=|-N————0 ] 1
kN+1_ko ( )

Where [x] is the least integer greater than or equal to the
real number x. If the key value &k’ of this array index is
equal to k, then the search terminates successfully. If the
key value k’ is greater (less) than k, then the search
continues in the left (right) sub-array by interpolating to
a new array index which is:

Al = [(AI- 1) ]’:—_’;‘; ] (a)
(AI = [(N— Al %D (2b)

The procedure goes recursively until the key is found or
the sub-array becomes zero. It has been proved that the
mean value of probes for a successful interpolation search

is:1
log log N(3) 3)

where log is the base 2 logarithm.

We come now to our problem. In the two next sections
the two variations of BIS are described and analysed.
Note that we assume that the cost of sorting the M keys
of the requested set is negligible.

2.1. First algorithm

The procedure begins as described above, but at the time
when the first element of the set is found in the array we
have additional information about the position of the
successive elements: it is certain that they will lie to the
right of the array index where the search stopped.
Therefore the left sub-array may be exempted, and we
continue searching for the rest of the elements in the right
sub-array taken one by one in a sequential way.

In the following analysis we will use the fact that if a
function fis concave downwards and S is a set of values,
then

Saverage (x)) < average (f{x)) @)
xeS xeS§

The relation (4) is proved in the appendix. To derive
estimates for the expected value of the required probes
to complete the search, we note that the expected width
of the successively exempted array subintervals and the
expected length of the shrinking array are given by
equation:!!

(N—M)/(M+1) ©)
N, = N—(i—l)f;—:ll (6)

where i is in the range (1, M). By combining formulae (3)
and (4) it is derived that the expected value of probes to
perform a BIS of this kind is

M

Y loglogN; @)

=1
Since log is concave downwards the simplification is
pessimistic, and the resulting formula is a close upper
bound on the number of probes.

2.2, Second algorithm

Unlike the previous algorithm we do not start searching
for the first element of the set, but we start choosing the
middle element of the set. After the search of this element
has terminated, the array has been divided into two
sub-arrays (left and right). After the exclusion of the
already-searched element the set has also been divided
into two subsets (left and right), which contain equal
numbers of elements or differ at most by one. Now the
procedure continues recursively, for example the left
(right) subset is searched in the left (right) sub-array, by
choosing the middle element of each subset in a binary
way.

Suppose that M = 2+«*m—1+ A, where A and m are
not negative integers and 0 < A4 < 2*+m. The first middle
element has to be searched in the initial array of length
N. Then the two new middle elements are drawn, and they
have to be searched in the two sub-arrays of expected
length (N —1)/2. The next four middle elements have to
be searched in the four subarrays of expected length
(N—-1)/2—-1)/2 = (N—3)/4. It is easy to derive that the
expected number of probes required to perform the
search is:

m N 1_ i—1
Y 2i1log log—-'-ziTz+A loglog
=1

N+1-2m
= ®
With a reasoning based on expression (4) it is evident that
formula (8) is a close upper bound on the number of
probes.

3. COMPARISON BETWEEN BIS AND BBS
(BSS)

From Ref. 11 it is known that, when searching for a
set of M elements in an array of length N, the expected
value of probes, when BBS or BSS are applied, is:

M
L |log Ny|+ 1 +(llog Ny|+2—2U8 Ny /N, (9)
=1

(N.H)ML-H (10)

Therefore formulae (7) and (8) should be compared with
formulae (9) and (10). Table 1 gives such a comparison
by listing the cost per search for various values of N and
M. It can easily be seen that: (a) for small values of M
BIS improves interpolation search a little, (b) for all cases
BISs outperform BBS, and (c) after a certain breakpoint
BSS is preferable to BISs. These breakpoints may be
calculated by solving the equations:

M
¥ loglog Ny—(N+1)

——=0 11

-1 M+1 (b
m N41-21 N+1-2m
i§1 2i-1 lOg lOg __zi——l—-*_A lOg log 2—m
M

=N+1)— (12

W+ 5 (12)

These equations cannot be transformed to a closed-
form formula for a given M. By applying the regression
method to a sample of 20 equally distanced points in the

566 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

€102 ‘92 AN UO IMINOTVSSIHL 40 ALISHAAINN FTOLSIHY B /Bi0's[euinolpiosxojufwody/:dny wouy pspeojumod


http://comjnl.oxfordjournals.org/

BATCHED INTERPOLATION SEARCH

Table 1. Comparison between BSS, BBS and BISs

M
Search
N method 2 5 10 20 50
100 BSS 33.66 16.83 9.18 4.81 1.98
BBS 5.49 5.13 4.91 4.75 4.61
BISa 2.66 2.57 2.49 2.43 2.36
BISb 2.61 243 2.21 1.92 1.46
1000 BSS 336.67 166.83 91.0 47.67 19.63
BBS 8.73 8.35 8.11 7.93 7.78
BISa 3.27 321 3.17 3.14 31
BISb 3.24 3.13 3.0 2.84 2.58
10,000 BSS 33333 1666.83 909.18 476.24 196.1
BBS 12.07 11.66 11.41 11.23 11.07
BISa 3.7 3.65 3.62 3.6 3.58
BISb 3.68 3.59 3.5 34 3.23

range (500, 10,000) the curves may be approximated by
lines with equations:

M = 64.07+0.28 N (13)
M =562+0.75N (14)

The fact that the correlation coefficient - for both
cases — is 0.999 demonstrates that the approximation is
very accurate in this range. Fig. 1 presents the two lines
described by equations (13) and (14).

0-M-~9000

0-N-10,000

Fig. 1. Breakpoints between BISs and BSS.

4. DISCUSSION

Nowadays there is a trend towards bigger and cheaper
main memory. Performance evaluation when searching
in main memory becomes more interesting. We proposed
and analysed two techniques - called Batched Interpola-
tion Search or BIS - based on interpolation search, which
answer the problem of searching efficiently for a set of M
sorted elements in an array of length N, which is also
sorted in the same order. It is assumed that the elements
of the array and the set are drawn randomly from a

uniform distribution. It is shown that interpolation
search and BISs are efficient techniques for searching in
main memory provided the cost metric is the number of
probes to the array. BISs outperform Batched Binary
Search (BBS) for all cases and Batched Sequential Search
(BSS) up to two certain breakpoints, which are approxi-
mated by equations (13) and (14).

However, running time was not considered in the
evaluation of the technique. It can be easily understood
that the computation of the array index in the second
algorithm of BIS is more expensive than that of the first
algorithm of BIS, which in turn is more expensive than
BBS and BSS, from the point of view of running time.
Therefore, when we discuss main memory searching the
computation required for BIS decreases the efficiency of
the algorithm and therefore BBS becomes competitive to
BIS.

The assumption of uniformity of attribute values in a
file, as well as the assumption of uniformity of queries,
have been proved to result in predicting only upper
bounds of the expected cost.> Therefore, provided the
keys of the array are uniformly distributed, if the M keys
being searched for are not uniformly distributed, the
binary form of BIS becomes more efficient. For example,
suppose the middle key divides the array very unevenly.
Then we search for half the keys in a short sub-array and
half in a long sub-array. As an extreme case, with simple
algebra, it can be proved that it takes much less time to
search an array of length 1 and an array of length N than
to search two arrays of length N/2. The worst case of this
form of BIS is O(N log M), while without batching the
worst case is O(MN). In the case of not quite uniform
distribution an approach like the ones in Refs 2 and 10,
or simply combined binary and interpolation steps as in
Ref. 15, could extend BIS.

Another possible extension could investigate the case
that some of the M keys do not exist in the array. Then
algorithm and analysis should be modified to cover this
case. Also, when secondary storage is used the cost metric
is the number of block accesses, while the required com-
putation is negligible compared with the time needed
to perform an access. An interesting exercise is to
investigate the effect of having bigger or smaller blocks
in the performance of interpolation search generally,
and of BIS specifically. Intuitively, it seems that the

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 567

€102 ‘92 AN U0 IMINOTVSSIHL 40 ALISHAAINN FTOLSIHY B /Bi0's[euinolpiosxo|ufwody/:dny woiy pspeojumod


http://comjnl.oxfordjournals.org/

Y.P. MANOLOPOULOS, J. G.KOLLIAS AND F. W.BURTON

probability that the next access will demand the same
block is higher by applying BIS than BBS. In this way
block accesses are saved and additional gain is achieved.

APPENDIX
Definition

A function f is concave downwards in the interval
J = [a, b] when:

fOx+( =)y < )+ =D V¥x,yel, x
#y,Vie(0,1) (15

Lemma

If a function f is concave downwards in the interval
J =[a, b] then:

f<x1+ n +x,,> <f(xl)+...

n

+fxn)

Proof

The proof follows by induction.
The equality holds for » = i. We accept that relation
(16) holds for n = k:

f<% (x,+ ..+xk)>
s%(ﬂxl)+...+ﬂxk)> Xyy ooy X €J

REFERENCES

1. F. W. Burton and J. G. Kollias, Optimising disc head
movements in secondary key retrievals. The Computer
Journal 22 (3), 206-208 (1979).

2. F. W. Burton and G. N. Lewis, A robust variation of
interpolation search. Information Processing Letters 10 (4),
198-201 (1980).

3. S. Christodoulakis, Implications of certain assumptions in
database performance evaluation. ACM Transactions on
Database Systems 9 (2), 163-186 (1984).

4. S. P. Ghosh and M. E. Senko, File organization: on the
selection of random access index points for sequential files.
Journal of ACM 16 (4), 569-579 (1969).

5. G. H. Gonnetand L. D. Rogers, The interpolation-sequen-
tial search algorithm. Information Processing Letters 6 (4),
136-139 (1977).

6. G. H. Gonnet and L. D. Rogers and J. A. George, An
algorithmic and complexity analysis of interpolation
search. Acta Informatica 13 (1), 39-52 (1980).

7. D. S. Hirschberg, On the complexity of search a set of
vectors. SIAM Journal on Computing 9(1), 126-129 (1980).

8. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Sorting and Searching, pp. 406-419. Addison-Wesley,
Reading, Massachusetts (1973).

We will prove that for n = k41 the following relation
holds:

Ay ot +x)

< k_-:—l (j(xl)-}- e +f(xk+1)>

Let
x=x1+.l.(.+xk
_ (Gt xR D) (Gt X/ K+ 1))
(k/(k+1)) 1—(1/(k+1))
Therefore
X+ Xy,
F(Ete )
_f Xt X Xy
_f( K+ +k+l>
1 1
=f("("m>+xk+lm)
<(1= 7)o o o)
<(1—L)‘(ﬂx)+ D+ Sk
~ k+1 1 k k+1
= g S+ )+ M)
S+ )
= P + Q.E.D.

9. J. G. Kollias, An estimate of seek time for batched
searching of random or index sequential structured files.
The Computer Journal 21 (2), 132-133 (1978).

10. G.N. Lewis, N. J. Boynton and F. W. Burton, Expected
complexity of fast search with uniformly distributed data.
Information Processing Letters 13 (1), 4-8 (1981).

11. Y. Manolopoulos, J. G. Kollias and M. Hatzopoulos,
Sequential vs. Binary Batched Searching. The Computer
Journal, 29 (4), 368-372 (1986).

12. M. V. D. Nat, On interpolation search. Communications of
ACM 22 (12), 681 (1979).

13. Y. Perl and E. Reingold, Understanding the complexity of
interpolation search. Information Processing Letters 6 (7),
219-222 (1977).

14. Y.Pearl, A.Itai and H. Avni, Interpolation search-a
loglog N search. Communications of ACM 21 (7), 550-553
(1978).

15. N. Santoro and J. Sidney, Interpolation — binary search.
Information Processing Letters 20 (5), 179-181 (1985).

16. B. Shneiderman, Polynomial search. Software — Practice
and Experience 3 (1), 5-8 (1973).

17. B. Shneiderman, Jump searching: a fast sequential search
technique. Communications of ACM 21 (10), 831-835
(1978).

568 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

£T0Z ‘92 A I U0 IMINOTVSSIHL H0 ALISHAAINN FTOLS MY B /Bi0's[euinolpioxo jufwody/:dny woiy papeojumoq


http://comjnl.oxfordjournals.org/

