

Edinburgh Research Explorer

A Framework for Modelling Trojans and Computer Virus Infection

Citation for published version:
Thimbleby, H, Anderson, S & Cairns, P 1998, 'A Framework for Modelling Trojans and Computer Virus
Infection', The Computer Journal, vol. 41, no. 7, pp. 444-458. https://doi.org/10.1093/comjnl/41.7.444

Digital Object Identifier (DOI):
10.1093/comjnl/41.7.444

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Computer Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. May. 2024

https://doi.org/10.1093/comjnl/41.7.444
https://doi.org/10.1093/comjnl/41.7.444
https://www.research.ed.ac.uk/en/publications/538b9fbe-a690-41bc-a96d-b83366962d67

A Framework for Modelling Trojans
and Computer Virus Infection

HAROLD THIMBLEBY 1, STUART ANDERSON2 AND PAUL CAIRNS1

1School of Computing Science, Middlesex University, Bounds Green Road, London N11 2NQ, UK
2Department of Computer Science, Edinburgh University, King’s Road, Edinburgh EH9 3JZ, UK

Email: harold@mdx.ac.uk, soa@lfcs.ed.ac.uk & p.cairns@mdx.ac.uk

It is not possible to view a computer operating in the real world, including the possibility of
Trojan horse programs and computer viruses, as simply a finite realisation of a Turing machine.
We consider the actions of Trojan horses and viruses in real computer systems and suggest a
minimal framework for an adequate formal understanding of the phenomena. Some conventional
approaches, including biological metaphors, are shown to be inadequate; some suggestions are

made towards constructing virally-resistant systems.

Received November 12, 1997; revised October 22, 1998

1. INTRODUCTION

Computer viruses are not merely an irritating and destructive
feature of personal computing, they also mimic the
behaviour of biological pests. Computer viruses hijack the
facilities provided by the host computer, lie dormant, cross-
infect other hosts and when activated cause various forms
of damage, from obvious destruction of host data to more
subtle changes that are much harder to detect.

The predominantly human medical metaphors employed
when discussing computer viruses are misleading because
of ethical connotations. The word ‘virus’ itself is a
rich metaphor and terms like ‘infection’, ‘viral attack’,
‘disinfectant’ and ‘viral damage’ are frequently used of
computer viruses. While these terms lack any precise
meaning in relation to computers, we know roughly what
they mean. Furthermore, the debate about the computer
virus threat is predominantly experiential: awareness of
viruses is biased towards frequent infections caused by
successful viruses; debate centres around newly identified
virus cases.

In order to begin to tackle viruses effectively we should
define the essential, general features exhibited by viruses
without appealing to metaphor or limited experience to fill
in the gaps in our understanding. Computer viruses seem
to be a simple phenomenon (hackers manage to write them
in quantity and there are virus construction kits that anyone
can use to develop sophisticated viruses) yet they do pose
a real hazard. The science fiction anticipation of viruses
was thought to be obvious [1]. It is of interest, then, to
explore the fundamental limits of detection and prevention
and other issues. On the face of it, one would look to
standard models of computation, such as Turing machines,
as a starting point for this investigation. However, a closer
analysis requires concepts not usually considered in the
standard models of computation. We agree with Wegner

[2] that Turing equivalent formalisms are not sufficiently
expressive for systems that interact. A virus has toenter
a system to infect it and this is such an interaction. And
as we shall argue, the biological metaphor is inadequate
too (though it can still inspire computational ideas, both
good and bad). The computational process undertaken by
a virus does not terminate; moreover, when the (possibly)
Turing process of an infected program terminates, the virus
has already infected another program that will subsequently
execute—a virus that terminated would not be infective.

Viruses should not be dismissed as a trivial problem for
users of computers that do not run secure operating systems.
Together with Trojan horses, they are a major menace for
any sort of system and are a particular concern for computer
systems connected to networks [3]. As well as being a
practical problem, this paper will show that viruses also pose
theoretical problems. Indeed, this paper, by laying out some
of these problems, begs many questions that raise many
further research questions. Some of these research questions
will be pointed out explicitly throughout the paper.

In summary, this paper highlights the limitations
of applying the conventional computational models to
computer virus phenomena and it offers a new framework.
We motivate our paper by defining and naming the
phenomena under discussion. We then examine a variety
of related phenomena, such as: compiler viruses, Cohen’s
proof about virus detection, the possible structures of virally
resistant systems, and finally, Koch’s Postulates and other
biological issues. The reason why people write viruses
is beyond the scope of the present paper; see [4] for an
introduction and overview of the literature.

1.1. Orientation and terminology

Viruses and Trojan horses make computers do things that
their users do not want them to do. The term Trojan horse

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 445

is due to the Greeks’ use of a hollow wooden horse filled
with warriors to deceive the Trojans. The Trojans were
violently torn between accepting the horse or rejecting it;
indeed, they did start checking it, but were fatefully tricked
into tearing down their own city walls and pushed it in
themselves [5]. More recent discussions of viruses include
[6, 7, 8, 9, 10, 11]. The interested reader is referred to [12]
for up to date information onspecificviruses, which are not
the concern of the present paper.

For clarity and to avoid an air of pedantry we abbreviate
‘Trojan horse’ by the single word ‘trojan’ when referring
to computer programs. Trojan programs, sometimes with
names likesex , often seem so attractive that users are
sooner tempted to ‘bring them into their city’, like the
original Trojan horse, than to test or to reject them—so
bringing upon themselves the results intended by the trojans’
designers. The complication is that trojans do something
unwanted yet they offer to provide a wanted service. One
might start by considering four simple categories of trojan:

Direct masqueradespretend to be normal programs.

Example: a program calleddir that does not list a directory,
the normal use of the command of that name. Computer
systems often permit many programs of the same name to
co-exist, with consequent opportunities for masquerading
trojans.

Simple masquerades do not masquerade as existing
programs, but rather masquerade as possible programs that
are other than they are.

Example: programs with names likesex above.

Slip masqueradeshave names approximating legitimate
program names.

Example: a program calleddr that might be activated
if the user mis-typeddir . Since users want to install
programs (e.g., for maintenance or upgrade purposes) and
perhaps write their own programs, in practice few systems
provide restrictions on the names of programs; even if they
do, there must be fewer restrictions on the programmers
who design them. The consequence of this liberality is
undetectable/unidentifiable trojans.

Environmental masqueradesare not easily identifiable
programs invoked by the user, but are typically already-
running programs that provide an unwanted interpretation
of the user’s commands or other activities.

Example: an operating system whose login prompt to the
user is an otherwise clear screen and the prompt ‘login: ’
can be trojanized by constructing a program that intercepts
the user, by clearing the screen and issuing the login prompt
itself. It can then embark on any activity it pleases, typically
recording the user’s name and password; to avoid detection
by the user it would then transfer control to the authentic
login program. (If this is not feasible, it could misleadingly
report a password error, ask the user to try again and then
terminate so that the authentic login program takes over
completely.)

Example: when an entertainment CD is inserted, it may
start playing automatically—if it contains executable code,
it may be executed and do (or prepare to do) damage. The
MacintoshAutoStart 9805 is a trojan of this sort; it
commences execution as a side-effect of inserting removable
media.

Beyond these basic categories, it is fruitless providing
precise definitions of the categories or types of unwanted
behaviour of trojans (or, indeed, viruses) since their (i.e.
their programmers’) intention is to be devious. An actual
trojan may exhibit mixtures of these behaviours and random
effects to confuse and mislead the user. There is one trojan
which, itself doing no direct damage, instructs the user
to switch off the computer (pretending to have detected a
serious hardware fault); if the user responds to this advice,
they are liable to lose any data that has not been saved to disc.
If we admit these programs that merelysay things, what
should we make of programs constructed by experimenters
that say what theywoulddo had they been actual viruses or
trojans?

Given the wide range of behaviour, both intended and
accidental, not surprisingly the terms trojan and virus are
the subject of lively debate [13], based on a number of
architectural and other distinctions. Most work in the area
has concentrated on purely representational concerns, where
every ‘variant’ of a virus technique (such as the Vienna virus
represents) are considered different. (This has resulted in
particular interest in ‘polymorphic’ viruses, which modify
their representation on each infection.) Our approach is
more semantical. Whatever its behaviour, a viral infection
has three core components:

A trojan component. An infected program does something
unwanted in certain circumstances. The trojan component is
sometimes called thepayload.

A dormancy component. The viral infection may conceal
itself indefinitely. Trojans, too, may use dormancy to
conceal their presence, but with a virus dormancy (or,
equivalently, unnoticed trojan damage) is essential for the
effectiveness of their third component.

An infective component. Infected programs infect further
programs, which then behave in a similar way. (Viruses
may wish to avoid re-infection, because re-infection takes
time or space and may therefore make an infection more
obvious. Viruses often include a heuristic for self-detection,
a procedure which, if identified, might be directed against
them.)

Even this abstract list has problems! A virus that only
replicates consumes computer resources (it uses disc space,
it wastes time. . .) even though it may not have an explicit
trojan component. Or a virus that is never dormant might
still be able to infect, provided it uses some other means of
avoiding detection.

If we allow programs to run on various machines, across
platforms, why stop at digital computers? Are viruses
with no infective component, but which trick humans into

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

446 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

spreading them, rather than spreading themselves, really
viruses? Are chain-mail, spam [14] and email panic
scares, which are replicated as people email the panic
to people they wish to warn, really viruses [15, 16]?
Certainly, these are serious problems. As communications
systems become more sophisticated, performing actions
(such as forwarding email) on behalf of users, the traditional
distinctions between trojans and viruses become harder to
maintain.

In particular, the trojan component may be ‘harmless’
(viewed inside a computer) but precipitate a chain of
behaviouroutside any computer, ending with a harmful
conclusion. Although the trojan component may run at a
definite time, the user may in principle be unaware of the
consequences until much later. A particularly pernicious
program,ADTrojan , sends rude email to other users. The
only action a computer could detect would be the (not
necessarily) unauthorised mailing. The recipients of the
email, however, can complain, leading to repercussions for
the original user. Other sorts of delayed trojan activity
include programs that steal passwords: the noticeable
damage occurs much later when the passwords are used to
enable third parties to do other work—which of course may
be part of a larger chain of activities, only the end of which
is blatant damage. The legal consequences of this sort of
indirect behaviour involving innocent parties have not yet
been worked through satisfactorily.

We might also add that a virus has asurvival component.
Crucial to the long-term practical success of a virus is
that it can infect in some sense faster than it can be
eliminated; to do so, it may infect other computers—these
other computers are often the responsibility of other people
or organizations, and so the elimination of a virus requires
human co-operation, which is typically slower to recruit
than the spread of the virus. Clearly, virus survival is
of practical significance, and the organizational structures
anti-virus manufacturers use to distribute their products is
of commercial interest. However, survival is an emergent
property, that follows from dormancy and infection, so we
do not formalize it here. We consider it an epidemiological
issue (see, e.g., [17]).

Because we use words like virus and trojan, and often
give them names (e.g.,theVienna virus), it is easy to think
the problem is just one of identification.1 However, bugs,
viruses and worms can, under appropriate assumptions, be
benign. Bugs are used constructively in certain forms of
AI programming; viruses can be used to spread information
[19]; worms can be used to distribute processing [20].
Moreover, the people who write destructive programs may
think their programs are benign, even if others disagree.
Clearly identifying ‘the’ problem is a human issue, related
to what one wishes to define as a problem. From the
formal point of view, the question is, if one wished to
classify something as a problem, whether that thing could

1This is what most virus detection programs do: they look for viruses
whose signature they recognize. If a user (or a program they are running)
knows what virus to look for, there is a partial oracle for (what we will show
to be) the non-computable function that identifies the virus. See [18].

be distinguished to be so identified. Of two programs, before
one can say one is a trojan, it has to be established that they
are different.

Thus to develop our framework, we wish to be able to
model the essential issues, but perhaps not make all of
the distinctions some authors have made. An adequate
framework must involve notions of behaviour, invisibility,
infection—what is the ‘same’ virus? These questions have
practical implications: How should viruses be named? Are
all strains of the Vienna virus the same virus, or are they
different?2

A framework must address, or relate to, the confusion
that can exist over the interpretation of ‘damage.’ If a
user, being malicious,intends damage, are we then to
consider the activities wrought by a trojan on his or her
behalf as ‘constructive’? The notion of damage clearly
assumes particular value systems and intentions on the
behalf of particular classes of user. Indeed, the behaviour
of a user developing a compiler system, who in the course
of their legitimate work, compiles code, replaces system
resources and recompiles various programs and so forth, is
hard to distinguish on purely technical grounds from a user
who replaces programs with malicious intent. (A tongue-
in-cheek article argues that research ideas behave like
viruses [22]: which explains the proliferation of research
publications and journals.)

Although both trojans and viruses may be difficult to
isolate after damage has been detected, the additional
components of viruses ensure they are not so easily
eliminated. As a result of dormancy and infection, a
virus normally makes many copies of itself (not necessarily
identical) before the damage is detected. The virus may
make copies of itself essentially outside the computer it
is running on: it may make copies of itself on removable
media (such as a floppy disc) so that the user, on putting the
disc in another computer, infects a remote computer; or it
may use networks to do the infection more directly itself.
When—if—the virus is detected it will already have spread
somewhere else, where its management is someone else’s
responsibility.3

We assert that a virus can only be defined semantically,
that is in terms of the meaning of programs, rather than
in syntactic patterns appearing in code. This belief is
strongly at variance with most of the literature on the
topic [23, 24]. All viruses to date have been trivial, and
this gives the impression that viruses might be classified
as syntactical, with various identifiable structures—for
example, fragments of code that correspond with the three
conceptual components listed above. With the prevalence
of so-called polymorphic viruses (ones that have different
syntactical forms [25]), this view is of course questionable,
but there is a lingering (and incorrect) view, perhaps partly

2The Vienna virus has many variants, partly due to the publication of
source code for one variation of it in [21].

3It follows that successful elimination of viruses requires a distribution
mechanism for the antidotes: this is usually done by conventional marketing
channels (that do not use the same vectors as the virus), rather than by virus-
like computer-based replication.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 447

inspired by the relatively concrete notion of biological
chromosomes or genes, that there ‘really’ is a syntactic basis.
If any biological metaphor is required, computer viruses
are more like Dawkins’ ‘memes’, viruses of the mind, than
biological genes [26], a point we return to later (Section 5).
In our view, what is important about a virus is not how it
works, but what it accomplishes.

A virus is best defined by saying what it is to be infected.
An infected version of a programp is a programp′ that
behaves indistinguishably fromp on ‘most’ inputs, behaves
distinguishably fromp on some inputs and sometimes when
p′ is executed it infects other programs in the ‘same’
way. This preliminary definition begs a lot of questions
and uses terms without definition. The remainder of this
paper, then, is directed to making these notions precise.
However, one thing is clear from this definition, the notion
of viral infection is not linked to any particular syntactic
representation as code.

Our paper will necessarily introduce a new definition
of virus, which we will provide after justifying a new
framework within which to express the definition. In
particular, so-called worms, which some authors distinguish
from viruses as autonomous programs rather than programs
physically carried by users, are not distinguished in our
framework. We will find it convenient to use the general
term infection to indicate the presence of a trojan or a
virus: an infection is, from the hacker’s point of view, an
intentional bug. In keeping with our abstract approach (and
indeed the medical usage) this does not imply a particular
manner of acquiring the infection, nor that the infection is
transmissible to other programs or computer systems.

1.2. Previous work

We are aware of previous work on the theoretical limits
to the detectability of trojans (e.g., [27, 23, 28]). Our
own first undetectability proof for masquerades [29], based
on this work, was questioned for not explicitly addressing
security issues [24] (a criticism that also applies to the
other methods). We have also attempted to identify
and distinguish the causes of co-operative behaviour
and destructive behaviour [30], but this was informal;
and we have found problems in a proposed detection
mechanism [31], but our findings did not constitute a general
theory.

2. INADEQUACY OF TURING MACHINE MODELS

It might seem obvious that personal computers are Turing
machine equivalent and, as personal computers get viruses,
so Turing machine models are an appropriate basis for
studying issues of infection. However, this view is false.

First, we will put forward a plausible argument, then
we shall provide a proof. Turing machines are infinite
machines, whereas personal computers are finite. Clearly,
Turing machines are an idealization. Personal computers
have properties not shared with Turing machines. Some
real-world properties of personal computers—plausibly

including the issues of trojans and viruses—are not modelled
by the idealization.

Now, more formally, suppose we define ‘infected’ as a
predicate on Turing machine programs and we do not try to
formalize what can be observed as a result of the execution
of the program. What can this mean? It can only mean
that the result of running the program is either unchanged
(the infection has no observable effect) or that the result is
incorrect (the infection is not ‘hidden’). In neither case do
we have a non-trivial problem. All previous work is based
on abstract models of computation together with concrete
notions of replication. Such approaches cannot capture
various subtle notions of, for example,

• masquerading, where a user knows names of
programs and anticipates their likely behaviour;

• infection, where viruses may encrypt themselves and
be different each time they infect.

Our comments will apply equally to any Turing equivalent
model of computation, such asλ-calculus. Note that it
is important to distinguish between a representation of
viruses (clearly, any computable theory of viruses is directly
representable on Turing machines) and a definition of an
effective model.

There is a tension that, on the one hand, the conventional
undetectability results are too pessimistic; on the other
hand, na¨ıve notions of infection may lead to excessive
optimism—in that specific remedies may be attempted that
rely on these notions of infection. Questions remain whether
virus activity, replication and infection, can be usefully
constrained in suitable computational models where such
activity is explicitly but generally modelled. We will explore
some of these issues in Section 4.

2.1. ‘Other’ programs

The notion of a virus infecting other programs has to be
modelled: such a notion is essential to any discussion of
viruses. However, ‘other’ programs cannot be modelled by
a conventional Turing machine model since there is no other
program—even if the Turing machine tape contains several
interleaved programs whose execution is multiplexed.

2.2. Self-awareness of infection

In principle, a program could be infected by a virus in such a
way that it could not tell it was infected (the malicious code
could interfere with any infection testing): thus, the reliable
judgement whether a program is infected depends on an
external mechanism that is not affected by that infection. In
fact, so-called armoured viruses [32] exist for the Intel 80486
processor, which detect attempts to single-step (and hence
understand their behaviour) them by rewriting already-
pipelined instructions so that they can distinguish whether
they are being run directly by hardware or being interpreted.

We will avoid this problem by introducing the concept of
trojan and viral methods, which areoutside the system—they
are outside the standard Turing model—whose infection is
being considered.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

448 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

2.3. Self-replication as a special case

If infected programs were empty, computer viruses would
involve self-replication. Self-replication of programs has
attracted a great deal of attention, particularly because of
the apparently paradoxical problem of encoding concrete
representations of programsinsidethemselves: that is, when
a self-replicating program is run, its output is its own source
code. From this point of view of self-replication, a program
that merely accesses its representation (e.g., from a source
code file) would be cheating!

Turing completeness (sufficiency for implementing a
universal Turing machine) is neither necessary nor sufficient
for self-replication.

It is not necessary since self-replicating programs can
be constructed as non-recursive straight-line programs. A
programming language could therefore be constructed that
was not Turing complete, but which was sufficient to
implement non-cheating self-replicating programs.

It is not sufficient, since Turing completeness is up to
representation. We can construct a programming language
that is Turing complete, but where the language uses
symbols that running programs cannot output. We then have
Turing completeness where self-replication is impossible.
A proof of insufficiency where the domain and range of a
Turing complete language are identical is given in [33].

Fokkinga [34] gives a construction for self-replicating
programs and adds a variation: a program that recognizes its
own source code—which is a prerequisite for a virus not to
repeatedly re-infect a file (see Section 2.2). Kanada gives an
example of a self-replicating program that runs on the World
Wide Web [35].

2.4. Time and space

Turing machines are infinite machines and their speed
of operation is immaterial. The real world of practical
computers is finite; space is finite and time is significant.
Since, for smalln, every program on ann word (RAM +
backing store) computer can be enumerated and classified
as acceptable or infected by inspection, it follows that an
adequate framework should allow for the complexity of
classification.

Also, some viruses do their damage ‘merely’ by
consuming resources. This reduces the effective speed of
the computer or loses free space. Neither of these effects are
of any consequence in a computational model that admits an
infinitely fast, infinite memory machine.

3. A NEW FRAMEWORK

In any rigorous framework for the study of viruses there
must be a mechanism to create and distinguish between
various programs. Without loss of generality, the necessary
extension is an environment, a mapping of names to
programs, equipped with the appropriate operators to make
enquiries of it and to manipulate it.

The object of our study is computer programs together
with their inputs and outputs.

We could imagine a real computer to be an array of bits,
including its RAM, screens, backing store and the state
of its CPU. Parts of this array correspond to programs,
parts to data files and various parts to such components as
boot sequences and directory structures. The meaning of
certain sequences of bits may depend on where they reside
in the computer. A bit pattern may be a graphic image,
but somewhere else it might be a program that can be run.
After an error, such as stack overflow and obtaining a bad
return address, the computer might be directed to interpret a
graphic as a program.

We call all these things together (the full state of a
machine, program texts, graphic images and so forth) the
representation. The collection of all possible representations
we denote R. Any given representation,r ∈ R, is
finite. Note thatR includes all fault conditions, such as the
computer ‘locking up’.

The user is not concerned with representations. Indeed
much of the memory of a computer is hidden from the user,
in boot sectors and other places. The user is concerned
with names of programs and the computer uses those
names, following various rules, to obtain the representations
of the corresponding programs. We therefore introduce
the environment map, E , which is a fixed map from a
representation (typically the current configuration of the
computer) to an environment, a name-to-representation map,
which takes names (chosen from a countable set of labels
L) and, if they are defined, obtains their corresponding
programs or other data:E: R → (L 7→ R). The domain
of E(r), names r = domE(r), is finite and computable
and (as is made clear later) will normally include some fixed
names independent ofr .

Note that ‘names’ are a very general concept and include,
for instance, locations on a graphical user interface screen,
or textual names in a conventional file store. In practice,
the environment will have a structure that may have security
implications, but this is not required for our framework.

Programs may be run and running programs usually
changes the state of the computer. We say that the
meaningof a program is what it does when it is run. If
r ∈ R is a representation that includes a programp,
then [[p]] is its meaning: [[·]] : R → (R → R). The
meaning of a program is that, when run, it transforms
representations into representations. Note that our approach
admits everyday complexities such as operating systems,
virtual machines, spreadsheet macro programs, dynamically
loaded Java applets and so forth—but it is not necessary
to model communication, non-determinism or concurrency
to capture what viruses do. A more thorough definition of
programs and representations could certainly be developed
(and would be a useful research project), but for our
purposes we do not think it would provide any additional
clarity to do so—as more structure is introduced, it is
very hard to avoid implementation bias and the associated
obscurities of ‘real’ machines.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 449

Where no ambiguity arises, we abbreviate the structure
� = [R; E; [[·]]] by R.

Our framework does not require a virus to reside in ‘a’
program; conceivably it could reside in two or more co-
operating fragments, none of which alone behaves like a
virus. A trivial way to do this is by threading the virus
code around the representation, but more subtle techniques
are possible: see Section 4.4.

Crucial to a framework for examining infection is that
programs appear, perhaps for long periods of time, to be
other than what they really are. A user may find two
programs to be indistinguishable even though they are not
equal. We define these terms precisely as follows:

Two programsp and p′ areequalwhen

∀r ∈ R : [[p]]r = [[p′]]r.
However, unlike identity, equality is not a computable

relation,4 and even to check equality of program outputs for
a small collection of inputs would require the exhaustive
examination of the entire state of the computer. More
practically, in an attempt to take account of the amount of
time one is prepared to devote to checking an output is what
is required, we definesimilarity to be a poly log computable
relation onR (see below), denoted∼.

We do not assume similarity is an equivalence relation. In
particular, similarity is not transitive: we may knowa ∼ b
and b ∼ c but also thata � c, given the poly log time
restriction. Since∼ is computable it must be that either
a ∼ c or thata � c, and that this result is known in finite
time: the computation of similarity may make ‘mistakes’.
There then arises the possibility that unequal programs are
similar: although two programs are different, we may not be
able to decide that in the time available. The key point is that
similarity (∼) of programs is not equality (=) of programs,
for if it was there would be no serious problem in detecting
different programs.

We definepoly log, and a related quantifier,for most.

Poly log computable. Poly log computable is a restriction
that a function can be computed in less than linear time on
the total size of its arguments. Poly log is a requirement
that a function of representations can be evaluated without
examining the entire computer representation (which can be
done in linear time). If the entire computer representation
could be examined at every step in a process a number
of detection questions become trivial; furthermore, it
would implausibly suggest the user is aware of the entire
configuration of the computer, including boot sectors,
operating systems and so forth.5

M (for most). We need to introduce a new quantifier,for
most, written M. A technical definition of this notion is
not required in what follows; a definition that captures the
intuition and the relation with poly log computable (or some
other measure) is a research project.

4The program fragments 1+ 1 and 2, suitably interpreted, are equal but
not identical.

5For small computers, say hand held calculators, the poly log restriction
may make it feasible to examine the entire representation space.

Two programs are indistinguishable when they produce
similar results for most inputs. Ifp and p′ are two program
representations they areindistinguishable, written p ≈ p′,
if and only if

Mr ∈ R : [[p]]r ∼ [[p′]]r.
We need some convenient notation.

• p̂. A representation or program̂p is an attempt to trojan
p; p̂ is to be taken as a metaname, and may, in fact, have
no relation top.

• r
l−→ r ′. We write r

l−→ r ′, iff l ∈ names r
and r ′ = [[E(r)l]]r ; this extends naturally to finite
sequences of program namesl1l2 . . . ln ∈ L∗.

• s/c. Let s/c be the object code corresponding tos
when compiled by a compilerc. This seems intuitive
enough, but it assumes that out of the entire machine
representation it is possible both to choose the source
code and the object code resulting from compiling the
source. In fact, just before a compiler (or any other
program) is run some other program (e.g., the operating
system) places the parameter of the compiler in a
known part of the representation; some convention in
the program (no doubt enforced when it was compiled!)
then specifies the location in the representation of its
parameter. If we label these locations31,32, . . . then
we have (allows/c to be empty in the case thats is not
well formed with respect toc):

∃31,32 ∈ L : ∀r ∈ R :
s/c = E[[c]]r32

where s = E(r)31

If cs is a compilerc in source form,c = cs/c.
The notation extends naturally to finite sequences of
applications of a compiler:sn/sn−1/ . . . s0/c.

With these preliminaries, we may now define trojan and
virus. In attempting to do this we find that we cannot
eliminate the environment from the definition. The notions
of trojan and virus can only be understood relative to their
binding environment. Hence, rather than define trojan and
virus as such, we will define a recursively enumerable
relation to capture themethod(‘infection’) employed by the
trojan or virus, respectively.

3.1. Trojans

Trojans may corrupt something unnamed (say, a boot sector)
which when run at a later time results in an ‘obvious’ trojan
effect—but even that ‘obvious’ trojan effect cannot usually
be determined except by running a program, for example to
check that certain files are still present.

As a first approximation, we might say that programs
p, p̂ would stand in the relationtrojan when there is
some representationr that distinguishes their behaviour;
informally, p trojan p̂ ⇔ ∃r ∈ R : [[p]]r � [[p̂]]r .

Notice that thetrojan relation is symmetric: without
assuming whatp or p̂ is supposed to do, we cannot know

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

450 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

which program is intended as a trojan of which. We could
imagine a hacker making the ironic comment that a real login
program trojanized their subversive login program. Since it
is not obvious that one can sufficiently easily make a formal
distinction between what some humans mean and others
mean, we will leave the relation as symmetric—and see how
far we get!

It is crucial that the trojan programs exist ‘as such’ in
the particular computer as programs that the user can run:
they must have names in an environment. We therefore
introduce the concept of a trojan method that characterizes
the appropriate constraints. For each type of trojan there will
be a different trojan method; but by using the abstraction
of a method, we do not consider different representations
(i.e. different implementations) of trojans as essentially
different. Each trojan method specifies a particular program
and a computer configuration supporting an environment in
which it can be trojaned. (This pedantry—which is implicit
because� is ‘hidden’ in the use ofR, E and [[·]]—is not
only a useful clarification, but reminds one that a trojan of a
Unix programsh, say, will not necessarily be a trojan for a
different user with a different name space.)

DEFINITION. A trojan method is a non-empty recursively
enumerable relationT ⊆ R×R×L, such that if〈r, r̂ , l〉 ∈ T
then:6

∧ r ∼ r̂

∧ E(r)l ≈ E(r̂)l

∧ Mt ∈ L∗ :
∧ [[E(r)l]]r t−→ r ′

∧ [[E(r̂)l]]̂r t−→ r̂ ′

∧ r ′
� r̂ ′.

The idea of this is that if〈r, r̂ , l〉 ∈ T for some trojan
methodT , then r̂ has an environment which is similar to
r , but in which the program namedl, although looking the
same in the two environments if it is executed for most
potential inputs, eventually a difference can emerge.

The second line of this definition (i.e. that a trojan does
not immediately reveal itself) is optional. The formalism
helps make explicit the choices available in the definition
of the terms. We feel, however, that it is appropriate, for it
is saying a trojan isinitially indistinguishable from another
program but eventually obviously different.

A central contribution of our definition is the notion of
a trojan as a relation; however, details in the definition
could easily be debated. For example, we could replace the
uncertainty ofM by requiring that∀s ∈ L∗ (i.e. using a
for all quantifier, rather than thefor mostquantifier) there is
an extensiont of s with similar properties; the uncertainty
has then been pushed into the uncertainty of the length of
t . Since trojans generally intend to appear at some point in
the future, the majority if not all of them would satisfy this
variant definition.

6We use Lamport’s method of writing long formulae [36].

Detection of trojans is built into this definition. A trojan
is defined in terms of not being distinguishable from the
original (using∼). If a trojan was detectable because it was
different it would not be a trojan—it would just be a ‘wrong
program’.

3.2. Viruses

There are, of course, good viruses and other variations, but
we define a virus to be a trojan that additionally infects
other named programs, infection being the modification or
creation of some program to be a virus. In our framework,
then, we do not distinguish a program thatis a virus and
a program thatcontainsa virus: to do so would presume
an identification of the virus ‘code’. (Of course most virus
writers write such simple viruses that the distinction has
practical use even if no general semantic basis.)7

Two representationsr, r̂ are virally related on namel
if they are part of a trojan method and if the capacity to
trojanize and infect is transmitted to other programs. Thus
a viral method is a trojan method with added conditions
requiring that the method is infectious.

DEFINITION. A viral method is a trojan methodV ⊆
R × R × L satisfying the additional condition, such that if
〈r, r̂ , l〉 ∈ V then:

∧ Mr1, r2 ∈ R : r1 ∼ r2

∧ ∃l ′ ∈ (names r1 ∩ names r2) :
〈[[E(r)l]]r1, [[E(r̂)l]]r2, l ′〉 ∈ V .

This additional clause is a closure property, saying
that evolving two similar representations by virally related
programs results in virally related representations. Given a
viral methodV and a ‘normal’ representationr , then r̂ is
infected byV at l if 〈r, r̂ , l〉 ∈ V .

It is useful to distinguish an infected system from an
infected program, since the cost of establishing whether a
system is infection-free is much higher than to establish
whether a program is infected.

The definitions do not require a virus to infect with a copy
of itself and in particular they allow a virus to encrypt itself
in different ways when it infects. Thus we do not require
infection to be transitive, since the definition of a virus does
not require it to infect with itself (a typical encrypting virus
would choose to infect with a differently encrypted variant
of itself).

There is nothing in the above definition which requires
some syntactic relation to hold between the ‘normal’ and
‘infected’ program. This is appropriate, since one could
easily imagine a virus incorporating a simple, semantics-
preserving re-write system that could be used to transform
the combination of the viral code and the new host into some
equivalent but syntactically quite different form.

7Some authors would distinguish avirus that only modifies existing
programs from aworm that can also create programs, typically on another
node in a distributed system.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 451

3.3. Summary

An important difference between virus and trojan is now
clear: a virus requires the modification of the name space
of the representation, thus suitable precautions on naming
could inhibit viral spread (under suitable assumptions),
whereas a trojan in some sense makes the user do its work
and therefore cannot be identified or inhibited if the user
is anyway permitted to perform such operations. Trojan
compilers form an interesting case where a user may be
tricked into performing an evaluation step that can then
behave as a virus (Section 4.1.1).

The definitions clearly do not require� to be Turing
complete in order to support trojan or viral methods. It
would be possible for a machine to support programs of viral
methods only. Such an apparently limited machine might be
of interest for investigations in artificial life [37].

In considering any formal framework of artificial systems,
there is always a balance between formalizing whatis and
formalizing what should be. Our framework does not
handle certain concrete aspects of viruses explicitly: is this
a shortcoming in our framework or is it an indication that
the complex physical systems that support them should not
exist? We think, while it would be a significant achievement
to handle more virus behaviour within an elegant framework,
it would be a greater achievement to eliminate the possibility
of certain sorts of behaviour by better system design.

4. APPLICATIONS OF THE FRAMEWORK

In this framework, where the notion of trojan and virus is
inextricably bound up with the environment and the realistic
time complexities of testing, the questions one can ask about
these phenomena differ from the usual questions. We might
consider the following.

• Given a representationr and a viral methodV ,
it is semi-decidable to check whether some other
representation̂r is virally related tor in V .

• Given some finite number of infected/non-infected
pairs of environments in some unknown viral method
V it is impossible to ‘infer’V from the data.

• The question, assuming we have to hand a putative
virus, ‘is p a virus?’ makes no sense. For many
reasonable notions of∼, even decidingp ≈ p̂ is
undecidable. For very restricted notions of infection
(e.g., syntactic modification) limited decidability
results are obtainable.

• Is it possible, by elaborating the model of the
computing system, to provide a system which resists,
detects or is tolerant to viral spread? The affirmative
answer changes our attitude to third-party anti-
virus products and suggests a requirement, anti-
trust notwithstanding, that anti-virus components be
integrated into operating systems.

• Following from the previous point: if a (particular)
viral method can be recognized, can the representation
including it be disinfected, where we take ‘disinfected’

to mean some more conservative operation than
deletion of all programs overlapping the virus?

• Many programs are constructed out of modules. Our
framework does not address this since any collection
of modules is just part of the representation. However,
in practical terms, there is a difference in convenience
or efficiency if we can reliably check modules
individually. Most anti-virus products do just this: they
normally only check the parts of the representation
that are known to change through interaction with
the rest of the world—such as when a floppy disc is
inserted. The problem does not arise in our framework,
but any framework that did model modules (or access
rights) would have to be aware of the problem that
trojan methods need not be in the modules where they
‘should’ be—see Section 4.1.1.

• Because anti-virus products are commercial, there
are industry tests and league tables. League tables
encourage simplistic comparisons, such as ‘percentage
of wild viruses recognized’. However, hit rates assume
a classification of viruses, typically a syntactic one—
which arguably inflates the apparent scale of the
problem and the efficacy of the anti-virus programs.
How should anti-virus products be compared?

4.1. Detectability of trojans

The problem of detecting trojans is at least as hard
as determining whether functions are equal, which is
undecidable.

There is, of course, a difference between detecting a trojan
and resisting the installation of a trojan: security measures
are aimed at the latter problem. However, as regards security
assumptions precluding an arbitrary program̂p from, in
some sense, being related to a programp, by assumption
the program̂p is explicitly constructed to trojanizep.

Trojans are not effectively detectable. In fact most trojan
and virus detection programs attempt to detect classes of
program: the importance of the following result is that
many detectors search program representations for patterns
(equivalent in biological terms to antigenic epitopes) and
attempt to detect any program in the class with that
characteristic pattern.

Assuming the classification process is computable and
that detection is undecidable, the decidability of detecting
classes of trojan would be a contradiction; if the
classification process is not computable, then there are
trojans that cannot be classified and hence cannot be
detected. This has implications for trojan detector programs
that attempt to identify specific trojans by their known
structure, such as by using a signature.

In many computer environments it is also possible for
trojans to dynamically change their code (‘mutate’): this
would mean that a recently acquired trojan could have a
different form to the standard recognized by the trojan
detector. By considering the equivalence classes of the
behaviours of trojans, we immediately conclude that trojans
are not detectable by inspecting their behaviour: this result

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

452 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

is of consequence for so-called gatekeeper detectors that
hope to detect trojans or viruses by their (presumably
forestalled) actions. They cannot work in general. In
practice a useful but insufficient measure of protection
is achieved by interpreting primitive operations (such as
operating system calls) and intercepting certain computable
classes of operation (such as low-level formats); there may
be options to enable an operation to proceed if the user
deems it to be safe. Inevitably, such methods presuppose
a human is capable of making decisions that we have proven
undecidable. Inevitably, human mistakes will be made.

Recall that Cassandra, the Trojan prophetess, though
correctly warning what the Trojan horse was, was doomed
not to be believed!

4.1.1. Thompson’s trojan
The intention of Thompson’s construction [38] is to use
the trapdoor effect of compiling to conceal a trojan from
effective detection:r/c ↔ r is not bijective andr cannot
be recovered fromr/c (unlessc is specially constructed to
make this possible). In fact, it may be much worse, there
may be nos derivable from{c, r/c} such thatr/c = s/c.
This is the well known ‘disappearance’ of semantics in meta-
interpreters (virtual machines) [39]; in Thompson’s trojan
the semantics that disappear are trojan methods.

Normal compiler bootstrapping is expressed ascs/c = c,
where the subscripts conveniently denotes the appropriate
source code. Bootstrapping is typically achieved by
constructing, by hand or by some other means, an executable
programp such thatcs/p = cs/ . . . cs/p (it is not necessary
thatcs/p = p); oncep has been successfully applied tocs ,
p can be discarded—-although this is risky, as is made clear
below. The source codecs , too, may be discarded or made
unavailable (perhaps for commercial reasons). Yet it is still
possible to compile all programs. The languagec compiles
will be complete in some sense (the properties described are
not sufficient for Turing completeness).

To follow Thompson’s argument it is necessary to
introduce conditionals, notatedx ⇒ y : z; we assume that
the language processed byc can implement the intended

semantics,x ⇒ y : z
def= if x then y elsez. It will

be sufficient to consider only top-level conditionals and
(computable) tests based on identity.

Thompson’s discussion is based in C, C compilers, Unix
and Unix’s login program. We will assume: a non-trivial
security-critical programu (say, a login program) and its
compilerc, also capable of compiling itself (cs). We wish
to construct a trojan̂u that is undetectable,evengiven the
assumption of the presence of source codeus of u, which
would have provided oracles.

The intention is to leavecs and us unchanged but to
have replacedc andu by ĉ and û such thatcs /̂c = ĉ and
us /̂c = û, and for ĉ otherwise to behave asc. Once this
has been achieved, the trojans will be self-preserving: the
trojan method cannot be eliminated easily since everything
apart from the behaviour of̂u will be indistinguishable from
normal and it will probably be indistinguishable for ‘long
enough’ from its expected behaviour.

First note that a trojan̂u of u is easy to detect givenus ,
sinceû 6= us/c and we know whatu is by applyingus/c.
In other words, with the sourceus we can determine that̂u
is a trojan. In practice one must check all (or only suspect)
u ∈ names r ; however,names r is finite and each test is
linear.

Suppose now that a compilerc′ is constructed, where

s/c′ def= s = us ⇒ û : s/c. When applied tous , c′ trojanizes
it to û. Note that the tests = us is an unproblematic test of
identity of representations. Since in all other respectsc′ = c,
c can be surreptitiously replaced.

At this stage, there is an undetectable trojan, but the
tampering with the compiler is still readily detected since
cs 6= c′

s andc′ 6= c. The final stage of Thompson’s argument
removes this loophole.

A further compilerc′′ is constructed, wheres/c′′ def= s =
u ⇒ û : (s = cs ⇒ c′′ : s/c). This compiler has the
remarkable property that it compiles the originalcs to itself,
c′′, and compiles the target programus to a trojan̂u. Since
cs andus are original, the new trojan is undetectable. The
compilerc′′ is bootstrapped as follows.

(1) c′′
s is constructed. This is easy, givencs and the

definition ofc′′ (above).
(2) c′′

s is compiled using the original compiler:c′′
s /c 7→ c′′.

(3) The original compiler’s object codec is discarded and
replaced bŷc = c′′.

(4) The source programc′
s is discarded.

Then the following ensues:

s/̂c =

ĉ, s = cs

û, s = us

s/c, otherwise.

The source programus can now be compiled byus /̂c giving
û as required.

We now have a trojan̂c and a trojan̂u and no source
code other than what is expected,us andcs which have been
restored to their originals. All programs compile correctly,
exceptcs and us themselves, but these two cases compile
consistently, since the compiler has been trojanized toĉ =
c′′. The only way to show that̂u is not in factu is to find
somer : [[û]]r 6= [[u]]r—but there is nou available to do
this, and even if there was, findingr would be exponentially
hard. Login programs such as we have supposedu to
be often have features in them specifically to make such
operations difficult, since trying to find representations with
particular properties has security implications. This trojan
will be as difficult to detect as desired by its author.8

One can construct a system resistant to the Thompson
attack by requirings/c ↔ s to be bijective; indeed,

8Anyone who has bootstrapped compilers will know that discarding
independent compilers (the initialp and the subsequent version history
of compilers) is foolish: once bugs are introduced—not just deliberate
trojans—they can remain even though subsequent compilations remove all
signs of them in the source code.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 453

this is readily achieved in a system where representations
are directly interpreted and/or there is no direct access to
compiledforms. Alternatively, denial of access to the source
of the compiler is sufficient, with the (awkward) proviso that
the source is still required to determine whether the compiler
is ever trojaned.

To show that Thompson’s construction is sufficient to
implement a trojan method, we need to consider his criteria
for distinguishability. Having defined this, we must prove
that the subverted representation is indistinguishable from
the original representation. Thompson’s trojan can then be
a singleton trojan method provided it guarantees to manifest
itself. As Thompson has not specified that it will manifest
itself, we come to something of an impasse solved only
in that trojans that do not manifest themselves are not a
problem!

Thompson distinguishes programs by saying that two
programs are indistinguishable if their source code is
identical. This sounds constructive, but it is not quite in
our framework. So we define two representations to be
identical provided the source code of the program under
the name ofu is identical for both representations. This
is poly log computable as the source foru is constant for
all representations (given sensible definitions of representa-
tions). Unfortunately, this idea fails immediately—the trojan
attacks the compiler and you can have identical source code
on both representations but different object code. So two
representations can be indistinguishable but have different
object code foru and therefore be a trojan.

So we add another criterion: the source code for the code
for u is the same on both representations and the source code
for the compiler is the same for both representations. (This
is still poly log.) However, this scheme fails with a trojan
that attacks the compiler in a more sophisticated way.

In our terminology, Thompson gave two definitions of
∼ and both admitted trojans. The conclusion is not that
Thompson trojans are not detectable but that reasonable-
sounding definitions of distinguishability do not prevent
there being trojans.

The theorem to prove is, given any poly log distinguishing
relation, there is a trojan method for that relation. (There
has to be some condition like poly log because comparing
memory representations without restriction will clearly
always show up trojans.) We will take up this challenge in a
subsequent paper.

4.2. Detectability of viruses

Is virus detection decidable? If we were to define a relation
p virus p̂ just whenp̂ is virally related top for some name
l in some viral relationV , we cannot decide the relation
because it is at least as hard as function equivalence.

Is virus activity detection decidable? This depends
on the computational model assumed, but we can show
the infection process can be inhibited under reasonable
assumptions. If the environment is fixed, detection is trivial,
there being no viruses to detect.

4.2.1. Cohen’s proof of virus undetectability
The Cohen proof [23] of the non-computability of detection
of viruses is a direct variant of the Halting problem of
Turing machines and is therefore subject to the limitations
of Turing computability frameworks, as outlined above. The
Cohen proof relates to the detection of viruses (i.e. assumed
as defined objects), not their methods or behaviour, and
it implicitly assumes a fixed�. Here we show that this
standard proof (widely repeated, for instance in [21, 40]
and elsewhere) about the detectability of virus infection is
inadequate for a more interesting reason. (In criticizing a
proof the intention is to determine exactly what was proved
and whether advancements may be made by tightening
the proof itself, its assumptions or the theory in which it
is expressed.) We quote Cohen’s central argument, then
discuss a shortcoming:

In order to determine that a given programP
is a virus, it must be determined thatP infects
other programs. This is undecidable sinceP could
invoke any proposed decision procedureD and
infect other programs if and only ifD determines
thatP is not a virus. We conclude that a program
that precisely discerns a virus from any other
program by examining its appearance is infeasible.
In the following [programCV, shown below],
we use the hypothetical decision procedureD
which returns ‘true’ iff its argument is a virus, to
exemplify the undecidability of virus detection.

contradictory-virus :=
{ . . .

main-program :=
{ if ¬ D(contradictory-virus) then

{ infect-executable;
if trigger-pulled then

do-damage;
}
go next;

}
}
[. . .] we have assured that, if the decision
procedureD determinesCV to be a virus,CVwill
not infect other programs and thus will not act like
a virus. If D determines thatCV is not a virus,
CVwill infect other programs and thus be a virus.
Therefore, the hypothetical decision procedureD
is self-contradictory, and precise determination of
a virus by its appearance is undecidable.

We infer thatDdoes not necessarily evaluate its argument
when it attempts to determine whether it is a virus:
clearly, to do so would run the risk of activating the
virus itself. Cohen implicitly assumes this, since a
conventional eager evaluation of his code would abort:9

9In a programming language like Pascal, the parameters of a function
call are evaluated before the function can be called. In Cohen’s example,
this would normally require invokingcontradictory-virus .

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

454 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

evaluatingcontradictory-virus would not terminate
and indeed would never progress beyond the conditional
expression! Instead,D must examine its argument in some
safe way which is not specified—the proof is assuming a
syntactical representation of a virus. Cohen would like to
prove thatDcannot work however it is specified.

However, the codes infect-executable or
do-damage are not actually used in the proof and
therefore have only rhetorical value in making the program
fragment look like a virus. Since, without affecting the
proof scheme, any program code (say,x:=0) can be
substituted (with the corresponding trivial changes to the
specification ofD) the putative proof is seen to be about the
undecidability of program equality—not, more specifically,
about virus detection.

We have here, then, an informal proof of a standard result,
plus the unjustified assumption that viruses aremodelledin
the formalism of that proof, whereas here they have only
beennamed. We agree that to prove that there is no decision
procedure one only needs to exhibit a counter example,
but we do not agree thatcontradictory-virus is in
fact an actual example of a virus. What has happened is
that the namesinfect-executable anddo-damage
appeal implicitly to a virus method that may—or may not—
be bound to these namesin the computer’s representation.
The viral and trojan methodsV , T such that

〈·, ·, infect-executable 〉 ⊆ V

〈·, ·, do-damage 〉 ⊆ T

are not specified.

4.2.2. Restricted environments
Viruses require to be able to re-bind identifiers in the
environment in order to propagate and cause damage. The
obvious solution to this problem is to construct a system
which never re-binds names. Though this might seem like
a radical proposal it is common in many practical systems.

It is worth making a small technical point here. In
most operating systems, a file is bound not to its data
(which is what we are modelling), but to where data may
be located. In this case, a binding need not change even
though the data is changed—for example, text editing a
file still leaves it the same file, but with different content.
We are deliberately not modelling where data is held and
therefore restricting an environment (in our model) to be
non-rebinding is an effective restriction on changing the
contents of a particularly-named file.

Non-rebinding would require that ifr
l−→ r ′, where

obviously l ∈ names r , then E(r) ⊆ E(r ′). From this
restriction it is immediate that viruses can only infect ‘new’
name bindings introduced by their execution.

Many task-specific systems such as calculators, dedicated
word processors and personal organizers have fixed
environments. Even for general purpose computers, many
users might be happy to lock the environment so that no
names can be rebound; this solution is implemented in
a rather crude way in a number of proprietary hardware

devices that write protect all of, or parts of discs, though the
idea can be generalized [41]. As our framework indicates,
though disc locking stops subsequent virus infection, it does
nothing to help detect existing infections.

On many computers, the address space of a computer
acts as an environment: it maps numbers (very easily
generated names!) into representations. Hardware memory
protection schemes are practical ways of restricting the
address environment so that programs cannot generate
names that are mapped into representations in other address
spaces. This is quite conventional, but it is a useful
example of a restricted environment whose use does not
restrict higher-level operations—indeed, the reliability and
additional confidence about the behaviour of programs that
it confers are highly desirable.

If a system includes a version number in the file names,
then no name is ever re-bound, therefore it is impossible for
a virus to ‘infect’ a system unobserved. The user should
be able to tidy up the environment from time to time, but
this could be a restricted facility requiring direct interaction
with the user. The standard advice to users to make backups
is no more than a manual (hence unreliable!) procedure to
maintain such a non-rebinding environment.

Such a naming proposal seems to go a long way to
protecting against viral damage provided the file system
functions10 are effectively virus-proofed. However, this
neglects a major component of our framework, namely
observation (formalized by the∼ notion that captures
the idea that two representations cannot be distinguished
by an observer). In many file systems using version
numbers, the human interface to the unique names in the
file system is constructed to make differences in version
number unobservable, for example typically the most recent
version of a file will be used by default. In order for the
naming scheme to be effective the reverse must be the case—
the user must see name changes when they are potentially
damaging. This clearly requires major changes in the way
user interfaces are constructed.

Turing complete operations on environments (e.g. being
able to compute names in an infinite domain) ensure that
detection of infection is again undecidable. However,
remaining within computability, we can arrange the
environment so that certain computations are infeasible
without passwords: for example, by using trapdoor
functions. The relevance of trapdoors is that (under the
appropriate security conditions) the observer and the virus
stand on opposite sides of the trapdoor.

Suggested by the framework is the creation and use of
names within a system: one can restrict the free use of
names usually allowed in current systems. The names in the
domain of the environment mapping can be encrypted, but
accessed at the observer level via their unencrypted form,
thereby making it arbitrarily harder for the virus to find
bindings which could be changed unobserved. For example,
a programmer writing a program to access a file server
demands a key from the environment by supplying a name

10More precisely,. . . functions onR.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 455

and password. This key accesses the binding of that name.
Such a scheme would permit programs to compute names
(in the encrypted domain of keys), but the probability of
computing an unauthorized, but valid, name in the domain
of the environment can be limited.

A variety of possible naming schemes might help: indeed
it is possible to have an unbounded number of schemes,
dynamically created. Various kinds of name servers which
impose a management discipline on the creation and use
of names could contain the spread of viruses to within any
particular set of naming schemes. An obvious application of
this is to ensure security when a system changes owner (e.g.
when it is first or subsequently sold). A special case is when
the naming schemes each contain precisely one binding.

It is often suggested that write-protected executables
are immune from infection [42] (who claim that they are
immune but impractical). This forgets the environment.
If an executable program is unmodifiable that does not
imply its access to the environment is unmodifiable: for
example, a fixed program may compute names as arguments
to the environment. A virus could therefore change the
behaviour of a program by affecting this computation (e.g.
by initializing it with different data). A realistic case of this
situation is that of a program that runs some background
server or other process: it computes a name to access the
environment (e.g., in the simplest case by reading a data file
of server names) to load the background program, but a virus
might simply cause it to load the wrong program.

The what-might-be-called ‘the write-protected executable
fallacy’, that one is supposedly safe when executable
programs are write protected, confuses the security of the
program for the security of the environment.

4.2.3. Viral resistance
In the practical use of a computer, the user only observes
some of the outputs of a computation and only provides
some of its inputs. The problem of viruses is that they
are primarily concerned with inputs and outputs that the
user normally ignores at the time of the computation. For
example, the program code itself is not normally considered
one of its own inputs, but this is precisely where most viruses
reside and how they directly affect the input of the program;
a virus’s output may alter files containing other programs, of
which the user is unaware.

A virally resistant system can be constructed by
introducing observationsO, which are to be communicated
to the user. We extendE : R → (L 7→ R × O) and
[[·]] : R → (R → R) × (R → O). Names are now bound to
pairs〈p, o〉 and the meaning of the pair is a pair of functions,
one of which computes the result of doing the command and
the other ‘observes’ the result to see it passes some checks.
Observes, in the sense we are using it, means ‘prepared in
some way that can be tested by a user’.

In running a program〈p, o〉 the system runsp as before
to obtain the results and the new environment and runs
o to observe the result, presenting the observation to the
user. Programs have lots of inputs and results over the

representation space, but a user’s tests do not explore the
domain uniformly, being only interested in conventional
inputs—likewise, they only examine conventional outputs,
say on the screen, not outputs that change files. The
componento makes it clear that all the output must be
observed.

By definition, a virus changes a binding of some name
from 〈p, o〉 in the environment to some new〈 p̂, ô 〉. In
general, it is clearly not possible to computeô from 〈p, o〉
to ensure that in an arbitrary environmentô computes the
same value after a run of̂p as o does after a run ofp.
The value ofo must be interpreted by the observer; it is
insufficient for o to yield a specific token (saytrue) for
any authenticated binding, since any predetermined token
can easily be computed bŷo. Thus given some notion of
an external observer (e.g. the user) eventually any virus can
be detected. Astute choices ofo and observer make the
likelihood of prompt detection much higher—the observer
can be hardware (the range ofo can be digital signatures).

A more intriguing idea is for the result ofo to be a pattern
(e.g. a video bitmap) and to rely on the human skill of
recognizing patterns and changes in patterns [43]—maybe
a virus would show up as, say, an irritating line across
the screen. This is an attempt at distribution free testing
[44], aided by human sense perception. Distribution free
testing is a more mechanical process that systematically
samples the input/outputs so thato gives a ‘fair’ (distribution
free) sample of the program’s complete effect, though doing
this depends on some properties of the program, but does
not depend on knowing what the correct output should
be. (Good cryptographic detection techniques are to some
extent attempts to find suitable distribution free sampling
functions.) Finally, so that it cannot be compromised,o may
be implemented by hardware.

Implementations of such schemes must be undertaken
very carefully and some obvious implementations are
suspect, simply because an implementation that (say)
provides programs as pairs(E → R × E) × (E → O) may
accidentally provide operations that compromise the system.
Thus, an unadorned Turing machine can readily implement
this scheme, but does not ensure that access functions for the
pairs 〈 p̂, ô 〉 are excluded: which, of course, would defeat
the whole object of the distinction—it would be possible
to construct an̂o that simply replayed the output ofo. See
Section 4.3 for further discussion.

The invention of asymmetric (public key) cryptography
challenged a central assumption, that security could
be achieved through secrecy and obscurity. (Equally,
the secrecy could conceal incompetence.) Now, new
cryptographic algorithms have been widely published
and widely scrutinized [45], and this scrutiny increases
confidence in their effectiveness. It is interesting, then, to
note that many discussions of viruses (e.g. [46]) do not wish
to reveal anti-virus methods. Perhaps we need a similar
breakthrough in viral resistance?

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

456 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

4.3. Virtual machines

Many programs (such as spreadsheets, language interpreters
like TEX and commercial word processors)11 introduce
virtual machine environments. These virtual machines
may be ‘vectors’ for infecting with viruses even though
they run on otherwise secure operating systems. Virtual
machine environments overcome attempts at protecting the
implementation machine.

Since some programs written in a systemL (BASIC, Java,
Microsoft Word macros,. . .) need to (say) delete files or
have other permissions, thenL needs those capabilities. An
L system runs on a system which may itself be protected
from virus activity, but theL system creates an environment
for runningL programs. This not only enables rebindings
but changes the observed behaviour of the computer—of
course, it must, since one wants to run the systemL! Thus
L creates a virtual machine: anL-machine simulated by the
PC-machine. Clearly, our framework applies at each level
of virtual machine and this has significant repercussions for
the sort of virtual machine one would like to support in a
secure system. In particular, the user interface must make
an observabledistinction between each virtual machine
(otherwise they could alias each other). Even in Java,
which is designed with networked programming in mind,
this distinction is made by libraries, not intrinsically.

The severity of the problem introduced by virtual
machines is shown by Thompson’s demonstration that
explicit code (including code containing viral methods) in
a virtual machine can be made to disappear from one level
of the virtual machine by embedding it in an appropriate
form in the implementation machine (Section 4.1.1). If the
virtual machine supported is Turing complete and supports
actions such as modifying the environment map (e.g. by
permitting writing to files), then it is not possible to detect
viral methods. All ‘useful’ virtual machines meet these two
conditions.

4.4. A note on object-orientation

The increasing popularity of object-oriented programming
and icon-based user interfaces (where there are very many
observable objects in the environment) is based on claims on
their efficiency and convenience of programming. Although
the run-time systems of object-oriented systems (Java
being an example) may take steps to be secure, object-
orientation itself is at odds with secure computation. To the
extent that object-orientation has an impact on programmer
convenience, it is clearly dependent on large numbers of
computationally simple bindings. Inheritance is a problem
because it provides a recursive environment. Indeed, Java
has recently suffered from theStrangeBrew virus, which
infects the Java environment—and Java, being platform
independent, ensures that the virus can run on almost any
type of computer [47].

11Some authors call such virusesmacroviruses; however, the viral
methods typical of macroviruses (see [46]) are not restricted to macro
languagesper se. We suggest this terminology is misleading.

In systems that have inheritance, operations have default
behaviour. Bontchev [46] gives several concrete examples
based on a macro language. We give an abstract
characterization of one of his examples: suppose there is
an easily recognized virus consisting of a set of macros,S.
(Typically, one of the components will be activated by user
activity, such as opening a file, and on running it will install
another component as its payload.) A virus writer modifies
S to make a variant. Now anti-virus software may recognize
only the original components of this new virus and eliminate
them; however what remains may be an intact virus because
the ‘missing’ components inherit default implementations.
Ironically, this third, new, virus was created by the anti-virus
procedure!

A thorough analysis of these issues is beyond the scope
of this paper, except to note that any correct formal
computation expressible in an object-oriented paradigm is
expressible in another, possibly more secure, paradigm—
but the real issue here is actually the trade-off between
observable properties, the relationships of names in the
environment and other aspects of usability and security.

5. KOCH’S POSTULATES

Robert Koch, the distinguished bacteriologist, contributed
four criteria, known as Koch’s Postulates, for identifying the
causative agent of a particular biological disease.

(1) The pathogen must be present in all cases of the disease.
(2) The pathogen can be isolated from the host and grown

in pure culture.
(3) The pathogen from the culture must cause the disease

when inoculated into a healthy, susceptible host.
(4) The pathogen must be isolated from the new host and

shown to be the same as the original.

To make sense of Koch’s Postulates in our framework we
may equatepathogenwith viral method. It follows that a
biological-type ‘isolation’ (Postulate 2) is non-computable.
To the extent, then, that Koch’s Postulates capture biological
criteria, biological metaphors cannot be applied with any
fidelity to computer virus phenomena. Possibly Koch would
have had a different view if biological pathogens were
better able to mutate rapidly and maintain their (viral)
method.12 Because biological pathogens do not do this,
Koch’s Postulates can be usefully expressed with respect
to representations rather than interpretations. A more
appropriate biological metaphor for computer viruses is
Dawkins’s meme[26], for this corresponds to a software
configuration running in the virtual machine provided by the
hardware of a brain. (Dawkins makes explicit the connection
with computer viruses.)

Given current interest in prions and transgenic infections
(e.g. via xenotransplants) a formal framework for biological
applications would be desirable. The way in which
semantics in meta-interpreters disappears (exploited in
Thompson’s trojan) obviously has profound implications

12Biological viruses mutate rapidly (in biological terms) but do not
evolve rapidly [48].

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A FRAMEWORK FORTROJANS ANDVIRUSES 457

and may help understand prions. In any case, such
results would certainly apply to replication using DNA.
Unfortunately, our framework makes certain assumptions
that apply specifically to what might be called typical
electronic digital computers: whilst certain sorts of
computation can be performed to order (e.g. to detect
infection), one is not prepared to devote excessive resources
to this. In a biological context, the resources available
and how they can be recruited are very different. Immune
systems are massively parallel and autonomous, yet they
are very slow to produce new antigens (vaccination is a
rehearsal for the immune system). Biological replication,
whilst comparatively slow, occurs in parallel at a molecular
or species level but serially at an individual level. Computer
viruses typically do not mutate using genetic algorithms,
but rather use more specialized techniques (e.g. encryption)
that guarantee viable replication. Thus there are significant
differences, which are beyond the scope of this paper to
explore satisfactorily.

Notwithstanding the fundamental biological differences,
there is of course promise in biologically-inspired tech-
niques for detecting and fighting viruses. See [9] for an
insightful general discussion and [10] which describes a
prototype ‘digital immune system’. (Coincidentally, the
preceding article in the same journal gives examples of
biological viruses that successfully suppress their hosts’
immune systems [49]!)

6. CONCLUSIONS

A new framework has been introduced that appears to
be better than previous attempts at addressing trojan and
viral issues. Its main merit is that it is productive in
raising and helping clarify the sorts of issues that need
addressing. Although it abstracts away from the richness of
the phenomena, it accounts for most of the concrete features:
it makes clear that viruses are a very complex notion—
involving the naming of objects, their behaviour and the
observation of that behaviour.

Our framework for computer virus infection shows that
Koch’s Postulates are inadequate for the phenomenon of
computer viruses; in other words, the medical/biological
metaphor for computer virus behaviour is seriously
misleading.

A virus is a program that, in addition to having a trojan
activity, infects other programs. We have shown that a
Turing machine equivalent model is insufficient to capture
important details of virus behaviour. As contributions
towards a theory of computer viruses we pointed out that
formalism as such has no notion of expected behaviour,
against which undesirable behaviour can be compared.
Infection is with respect to an environment and must be
identified by an observer using finitary tests. It follows that
suitable constraints on environment operations can inhibit
both trojan and virus infection.

We have given a proof that trojan code in general cannot
be detected. Classes of trojan cannot be detected either
and this result puts limits on what can be expected of

both pattern-matching type detectors and detectors that
rely on intercepting certain sorts of behaviour. We have
suggested various forms of observation as appropriate to
control viruses.

We have shown that virus infection can be detected and
limited. It follows that the spreading of viral methods can be
restricted, but once infected by a virus there are limitations
on what can be done to detect it, either by its unwanted
behaviour, its code signature or any other characteristic.
Whether users of computers would wish to convert to a new
architecture more secure against infection is a question we
do not address here; necessarily such computers would be
incompatible with existing computers [50]—merely being
discless network computers will not be sufficient.

Finally, we admit we are not yet satisfied. Although
we have introduced and motivated important distinctions,
the framework itself is unwieldy and the distinctions are
hard to maintain in applied reasoning. It is hard to derive
interesting theorems. Nevertheless we have successfully
shown that viruses are a very complex phenomenon, despite
frequently exhibiting such utterly banal behaviour that we
would rather dispel them from our minds—if not just from
our computers. Just as the current variety of viruses is not
the last word in deviousness, our framework is not the last
word in theoretical work with computer viruses. We hope
our lasting contribution will be a greater awareness amongst
system designers of the possibilities that unnecessarily
liberal programming environments provide hackers. We
hope, too, to have challenged other theorists to pursue some
of the interesting and important formal questions begged by
taking viruses seriously.

ACKNOWLEDGEMENTS

Professor Ian H. Witten (Waikato University, New Zealand)
made very helpful suggestions for which the authors are
grateful. The referees made useful comments that improved
the presentation of the paper enormously.

REFERENCES

[1] Brunner, J. (1993) Sometime in the recent future. . . . New
Scientist, 138, 28–31.

[2] Wegner, P. (1997) Why interaction is more powerful than
algorithms.Commun. ACM, 40, 80–91.

[3] Meinel, C. P. (1998) How hackers break in. . . and how they
are caught.Sci. Amer., 279, 70–77.

[4] Bissett, A. and Shipton, G. (1998) Envy and destructiveness:
understanding the impulses behind computer viruses. InProc.
4th Int. Conf. on Ethical Issues in Information Technology,
Ethicomp’98, pp. 97–108.

[5] Virgil (19 BC) The Aeneid, Book II.
[6] Anderson, J. P. (1972)Computer Security Technology

Planning Study, ESD-TR-73-51, vols I & II. USAF
Electronics Systems Division, Bedford, MA.

[7] Cohen, F. (1994)A Short Course On Computer Viruses(2nd
edn). John Wiley, New York.

[8] Denning, D. E. R. (1983)Cryptography And Data Security.
Addison-Wesley, Reading, MA.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

458 H. W. THIMBLEBY, S. O. ANDERSON ANDP. CAIRNS

[9] Forrest, S., Hofmeyr, S. A. and Somayaji, A. (1997)
Computer immunology.Commun. ACM, 40, 88–96.

[10] Kephart, J. O., Sorkin, G. B., Chess, D. M. and White, S. R.
(1997) Fighting computer viruses.Sci. Amer., 277, 88–93.

[11] Spafford, E. H. (1994) Computer viruses as artificial life.
Artificial Life, 1, 249–265.

[12] Virus Bulletin, ISSN 0956–9979.
URL: http://www.virusbtn.com/

[13] Hoffman, L. J. (1990)Rogue Programs: Viruses, Worms And
Trojan Horses, p xi. Van Nostrand Reinhold, New York.

[14] Stevens, M. (1998) Pest control.New Scientist, 159, 64.
[15] Goodenough, O. R. and Dawkins, R. (1994) The ‘St Jude’

mind virus.Nature, 371, 23–24.
[16] Rhodes, R. (1994) Chain mail.Nature, 372, 230.
[17] Jones, S. K. and White, C. E. Jr. (1990) The IPM model of

computer virus management.Comput. Security, 9, 411–418.
[18] Turing, A. M. (1939) Systems of logic based on ordinals.

Proc. London Math. Soc., Series 2,45, 161–228.
[19] Witten, I. H., Thimbleby, H. W., Coulouris, G. F. and

Greenberg, S. (1991) Liveware: a new approach to sharing
data in social networks.Int. J. Man-Machine Studies, 34, 337–
348.

[20] Coulouris, G. F. and Dollimore, J. (1988)Distributed Systems.
Addison-Wesley, Reading, MA.

[21] Burger, R. (1989)Computer Viruses, A High-tech Disease
(3rd edn). Abacus, Data Becker, Düsseldorf.

[22] Stevens, K. (1994) Mind control.Nature, 372, 734.
[23] Cohen, F. (1987) Computer viruses.Comput. Security, 6, 22–

35.
[24] Ferbrache, D. (1992)A Pathology Of Computer Viruses.

Springer, London.
[25] Nachenberg, C. (1997) Computer virus–antivirus coevolu-

tion. Commun. ACM, 40, 46–51.
[26] Dawkins, R. (1989)The Selfish Gene(2nd edn). Oxford

University Press, Oxford, 1989.
[27] Adleman, L. M. (1988) An abstract theory of computer

viruses. In Goldwasser, S. (ed.),Advances in Cryptology—
CRYPTO’88, (Lecture Notes in Computer Science,403),
pp. 354–374. Springer, Berlin.

[28] Cohen, F. (1989) Computational aspects of computer viruses.
Comput. Security, 8, 325–344.

[29] Thimbleby, H. W. and Anderson, S. O. (1990) ‘Virus theory’,
Institution of Electrical Engineers Colloquium. InViruses and
Their Impact on Future Computing Systems, pp. 4/1–4/5.
Institution of Electrical Engineers Publication No. 1990/132.

[30] Thimbleby, H. W., Witten, I. H. and Pullinger, D. J. (1995)
Concepts of cooperation in artficial life.IEEE Trans. Syst.,
Man Cyber., 25, 1166–1171.

[31] Ladkin, P. B. and Thimbleby, H. W. (1994) Comments on
a paper by Voas, Payne and Cohen, ‘A model for detecting
the existence of software corruption in real time’.Comput.
Security, 13, 527–531.

[32] Bates, J. (1990) WHALE. . . a dinosaur heading for
extinction.Virus Bulletin, November 17–19. See [12].

[33] Thimbleby, H. W. (1987) Optimizing self-replicating pro-
grams.Comput. J., 30, 475–476.

[34] Fokkinga, M. (1996) Expressions that talk about themselves.
Comput. J., 39, 408–412.

[35] Kanada, Y. (1997) Web pages that reproduce themselves by
Javascript.ACM SIGPLAN Notices, 32, 49–56.

[36] Lamport, L. (1994) How to write a long formula.Formal
Aspects Comput., 6, 580–584.

[37] Langton, C. (1988) Artificial life. In Langton, C. (ed.),
Artificial Life (Santa Fe Inst. Studies in the Sciences of
Complexity), pp. 1–47. Addison-Wesley, Reading, MA.

[38] Thompson, K. (1987) Reflections on trusting trust.ACM
Turing Award Lectures. In Ashenhurst, R. L. and Graham, S.
(eds),ACM Turing Award Lectures, pp. 171–177. Addison-
Wesley, Reading, MA.

[39] Henderson, P. (1980)Functional Programming. Prentice-
Hall, Englewood Cliffs, NJ.

[40] Leiss, E. L. (1990)Software Under Siege. Elsevier Science
Publishers, Oxford.

[41] Thimbleby, H. W. (1991) An organizational solution to piracy
and viruses.J. Syst. Software, 25, 207–215.

[42] Pozzo, M. M. and Gray, T. E. (1987) An approach to
containing computer viruses.Comput. Security, 6, 321–331.

[43] Race, J. (1990) Using computer graphics to find interesting
properties in data.Comput. Bull., IV, 2, 15–16.

[44] Lipton, R. J. (1991) New directions in testing. In Feigenbaum,
J. and Merritt, M. (eds),Proc. DIMACS Workshop in
Distributed Computing and Cryptography (DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 2),
pp. 191–202.

[45] Zimmermann, P. (1995)PGP: Source Code And Internals,
MIT Press, MA.

[46] Bontchev, V. (1998) Macro virus identification problems.
Comput. Security, 17, 69–89.

[47] Hancock, B. (1998) Security views (Java gets a foul taste—
first reputed Java virus).Comput. Security, 17, 462–474.

[48] Huang, A. S. and Coffin, J. M. (1992) Virology: how does
variation count?Nature, 359, 107–108.

[49] Beckage, N. E. (1997) The parasitic wasp’s secret weapon.
Sci. Amer., 277, 82–87.

[50] Thimbleby, H. W. (1991) Can viruses ever be useful?
Comput. Security, 10, 111–114.

THE COMPUTER JOURNAL, Vol. 41, No. 7, 1998

 at U
niversity of E

dinburgh on June 9, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

