
Improved Methods for
Signature-Tree Construction

ELENI TOUSIDOU, ALEX NANOPOULOS ANDYANNIS MANOLOPOULOS

Data Engineering Lab, Department of Informatics, Aristotle University, Thessaloniki, Greece 54006
Email: manolopo@delab.csd.auth.gr

Signature-based tree structures which have been proposed in the past do not perform well for large
databases. The problem arises from the fact that they are incapable of pruning searching, especially
at the upper tree levels, and thus they have decreased selectivities. In this paper, we locate a
number of reasons for this problem and propose several methods for node splitting and partial-tree
restructuring, which lead to improved query-response times. We have implemented all methods and
we present experimental results, which indicate that the proposed methods are superior in all cases
to the standard one and up to 5–10 times better for medium and higher weights in inclusive (partial-
match) queries. Additionally, we have developed new functions for the performance estimation of
signature trees which, in contrast to a previous estimation function, are able to take into account

the outcome of different split methods and to provide more accurate estimation.

Received January 17, 2000; revised June 5, 2000

1. INTRODUCTION

A significant amount of today’s stored data consist of records
with set-valued attributes. Among others, such attributes are
extensively used in object-oriented databases to represent
an object’s multivalued attribute, in digital library systems
and search engines for the world wide web (WWW), which
utilize information-retrieval methods based on set-valued
attributes, in data-mining applications [1, 2] where they
can represent basket market data and time-series data, and,
finally, in multimedia databases and hypertext systems [3, 4]
representing objects inside an image, or in www applications
[5, 6] as cache content.

As an example, suppose a sample database of a company
with the following class definitions, where notation ‘[]’ is
used for tuple constructors while ‘{}’ is used to represent
set-valued attributes:

Dept= [dname: str,projs: {Proj }, . . .]
Proj = [pname: str,emps: {Emp}, mnger: Emp, . . .]
Emp = [ename: str,projs: {Proj }, hobbies: {str}, . . .].

The basic query for this kind of data is theinclusive or
partial-matchquery, which retrieves all objects containing
specific attributes. Inclusive queries can be also char-
acterized as subset or superset queries, searching for all
sets which are supersets or subsets of a given query set.
For example, consider the query ‘find all employees who
like to spend their free time cooking or fishing or playing
basketball’, or simply

hobbies⊇ {cooking, fishing, basketball}.
Set-valued attributes, such ashobbies, can be represented

by bit vectors, calledsignatures. Each distinct element of

an attribute’s domain is represented by a distinct signature.
The object signature is produced by superimposing each
of its attribute’s element signatures (this will be explained
in Section 2.1). A collection of signatures comprises
a signature file, which presents low space overhead and
reduced update costs [7, 8]. Since signatures are abstractions
of the original represented information, they introduce an
information loss. As a result, non-qualifying objects, which
are calledfalse drops, may be retrieved as well. Several
signature-extraction methods have been developed for the
reduction of false-drop probability in signature files and the
improvement of their retrieval performance [9, 10].

Another direction to improve the performance of
signature files is the designing of tree- and hash-based
signature organizations to avoid the sequential scanning of
the signature file. Similar to B+-trees, S-trees are height-
balanced dynamic structures, which have been proposed
for improving the searching performance in signature-based
organizations [11]. As reported in [11], since the S-tree
is based on superimposition (OR-ing) of signatures, the
selectivity of the upper-level nodes tends to decrease. This
affects the S-tree performance in large databases.

Other tree-based signature-file organizations include two-
level [12] and multi-level [13] signature-based access
methods, the latter approach being more appropriate for
static data. Non-tree access methods are mostly based
on the partitioning of the superimposed signature files.
Horizontal or vertical fragmentation in combination with
hashing techniques were studied in [14, 15, 16]. A similar
approach has been investigated by Zezulaet al., who
proposed the method of Quick Filter [17, 18].

The performance of signature-file organizations in object-
oriented databases for indexing set-valued objects has been

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

302 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

studied in [19, 20, 21], where various variations of the
bit-sliced signature file were introduced. RD-trees have
been proposed for indexing set-valued data and, when used
with signatures, they exhibit similar performance to that
of S-trees [22]. Besides inclusive queries, [23] examines
the performance of signature-based structures for set-valued
objects under the join query with subset/superset predicates.
In [24, 25, 26], the use of signatures in path expressions has
been also studied.

In the present paper, we focus on optimizing S-trees,
which have been widely cited in previous works reporting
performance comparisons with other structures. However, in
the past, S-trees have been used under their original version,
where their performance can be significantly affected by
the node-splitting method. For instance, in [11] a heuristic
of linear complexity is used to distribute the contents of
overflowing nodes. Evidently, there does not exist an
optimal solution of non-exponential complexity for the split
method. For this reason, we provide several heuristics to
solve this problem. Further study on the way that S-trees
behave in comparison to other relevant methods can be
found in [27].

More specifically, we present and evaluate a number of
split methods of linear, quadratic and cubic complexity.
These heuristics are based on a more careful (a) seed-
selection method and (b) signature-distribution method of
the node contents. Another important criterion for the S-tree
performance is the selection of the leaf where a signature
will be inserted. For instance, in many cases two or more
paths could be followed equally well. For such cases of
ties, we give a simple heuristic for this procedure, which
leads to a better tree structuring. Finally, as reported in [28],
the insertion order of data into a tree access method has an
impact on its performance and the split method alone cannot
address this problem because it takes local decisions. In the
same paper, a forced reinsertion method is proposed to avoid
or delay node splitting and to partially restructure the tree.
Here, we adjust the reinsertion method for the S-tree, based
on the properties of signature data and test its impact on S-
tree performance.

We implemented all the proposed methods and carried
out experimental comparison with the standard S-tree
method, showing their efficiency with respect to the query
performance. Additionally, we have developed several
new performance-estimation functions, which provide more
accurate results in comparison to a previously proposed
function. Accurate estimation is important for a query
processing engine. These functions are based on specific
information from the resulting tree and can take into account
different signature distributions resulting from different split
methods.

The rest of the paper is organized as follows. Section 2
briefly gives background information on signatures and the
S-tree access method. Section 3 contains a description of
important performance factors and the drawbacks of the
previous S-tree split method that motivated our work. Pro-
posed methods are presented in Section 4 and performance-
estimation functions are described in Section 5. Experimen-

tal results are given in Section 6, and, finally, Section 7
concludes the paper and gives directions for future work.

2. BACKGROUND

2.1. Signatures

A signature, symbolized bys, is a bitstring ofF bits, where
F is the signature’slength. Signatures are used to indicate
the presence of individuals in sets. For example, in an
object-oriented database they would be used to represent a
set-valued attribute of an object. Each element of a specific
set can be encoded by using a hashing function into a
signature, by setting exactlym out of F bits to 1, where
the value ofm is called theweightof the element signature
and is often symbolized byγ (s). The set bits are uniformly
distributed in the [1, . . . , F] range, since the involved hash
function is assumed to have ideal characteristics. Therefore,
the probability of a bit position in an element signature to
be set to 1 is equal tom/F . Finally, the set signature is
generated by applying the superimposed coding technique
on all element signatures, i.e. all positions are superimposed
by a bitwise OR-operation to generate the set signature.

An inclusion (or subset) query searches for all objects
containing certain attributes. Given an inclusion query with
argumento′, its query signatureq is obtained by using the
same methodology. The answer to the inclusion query is
the collection of all objectso for which o′ ⊆ o. If s is the
signature of an objecto, then it is easy to show that:

o′ ⊆ o⇒ q ⊆ s

where the right part of the above expression represents the
fact that signatures has a 1 in all positions where the query
signature also has a 1.

For example, suppose that an employee’s hobbies are
{basketball, cooking, hunting}, and we have to satisfy the
query described in the introduction. Then the derived
employee and query signatures would be as the ones
illustrated in the left and right table below, respectively. As
shown, since the query signature is not a subset of employee
signature, the specific employee cannot be part of the answer
to the query.

Element Signature Element Signature
Basketball 010001001 Basketball 010001001
Cooking 000101001 Cooking 000101001
Hunting 100101000 Fishing 011001000
Employee 110101001 Query 011101001

Thus, signatures can provide a filter for testing attribute
inclusion for objects, because if the subset condition does
not hold for the signature, then it does not hold also for
the object. Since the inverse of the above relation is not
necessarily true, some objects that do not satisfy the query
may be retrieved as well. These objects are calledfalse
drops. It has been proved that the false-drop probability is
minimized when [7]:

F × ln 2= m×D

whereD is the number of object attributes in a stored set.

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 303

FIGURE 1. An example of an S-tree withK = 4 andk = 2.

2.2. S-trees

S-trees, similarly to B+-trees, are height-balanced trees
having all leaves at the same level [11]. Each node contains
a number of pairs, where each pair consists of a signature
and a pointer to the child node. The S-tree is defined by two
integer parameters:K andk. The root can accommodate at
least two and at mostK pairs, whereas all other nodes can
accommodate at leastk and at mostK pairs. Unlike B-trees
wherek = K/2, here it holds that: 1≤ k ≤ K/2. The
tree height forn signatures is at most:h = dlogk n − 1e.
Signatures in internal nodes are formed by superimposing
(OR-ing) the signatures of their children nodes.

Due to the hashing technique used to extract the object
signatures, the S-tree may contain duplicate signatures
corresponding to different objects. In Figure 1, an example
of an S-tree with heighth = 3 is depicted, where
signatures in the leaves represent individual set signatures
(i.e. the indexed objects). For simplicity these signatures are
assumed to be of equal weight, i.e.γ (s) = 3, but they vary
from 3 to 6 in upper levels due to superimposition.

Successful searches in an S-tree proceed as follows.
Given a user query for all sets that contain a specified
subset of objects, we compute its signature and compare
it to the signatures stored in the root. For all signatures of
the root that contain 1s at least at the same positions as the
query signature, we follow the pointers to the children of
the root. Evidently, more than one signature may satisfy
this comparison. The process is repeated recursively for
all these children down to the leaf level following multiple
paths. Thus, at the leaf level, all signatures satisfying the
user query lead to the objects that may be the desired ones
(after discarding false drops). In the case of an unsuccessful
search, searching may stop early at some level above the leaf
level, if the query signature has 1s at positions where the
stored signatures have 0s.

For the insertion of a new signature, the appropriate leaf
is selected by traversing the tree top-down and choosing at
each level the child node whose signature will require the
minimum weight increase. Ifs′ is the new signature ands is

the signature of a node, then the weight increaseε is [11]:

ε = γ (s ∨ s′)− γ (s).

Thus, selecting the node with minimumε aims at the
minimization of the number of multiple paths that have to
be followed. As a tie criterion, the node with minimum
Hamming distance may be used. After the insertion in the
leaf, the parent-node signature may need to be updated.
Therefore, the update of signatures at ancestor nodes may
propagate up to the root.

If the leaf, where a new signature is to be inserted, is
already full, i.e. it containsK entries, then it is split. A
new node is created and theK + 1 entries have to be
distributed between the two nodes so that the probability
of accessing both nodes together (i.e. by the same query)
is as low as possible. The splitting algorithm described in
[11] can be viewed as consisting of two phases: theseed-
selection phaseand thesignature-distribution phase. During
the seed-selection phase, we locate (a) the signature with the
highest weight, called seedα, and (b) the signature with the
maximum weight increaseε from seedα, which is called
seedβ. Seedα and seedβ are assigned to the two leaves
that result from the split. During the signature-distribution
phase, the remaining signatures are considered one-by-one,
with no particular ordering, and assigned to one of the two
pages. More specifically, every signature is superimposed
with both seeds, the weight increases are calculated, and
then it is stored in the node of the seed for which the weight
increase is smaller. Ties are resolved by taking the minimum
Hamming-distance criterion. When one of the nodes has
already acceptedK − k + 1 entries, then the remaining
entries are forced to be assigned to the other node so that the
minimum-containment criterionis fulfilled, without taking
into account the weight-increase criterion. It is easy to prove
that this method has linear complexity.

Due to the superimposition technique, nodes near the root
tend to have heavy signatures (i.e. with many 1s) and thus
they have low selectivity. For such a case, it has been
proposed to cut off the top tree levels and to form a forest

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

304 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

of a certain number of independent S-trees [11], which all
need to be searched upon a query. Although this action may
reduce the accesses to internal nodes for low-weight queries,
it does not resolve the problem of excess disk accesses to the
leaf nodes. Since the number of leaf nodes is much larger
than the number of internal nodes, the overall performance
of S-trees is affected by the disk accesses to the leaf nodes.
The following sections present several improved methods
for the S-tree construction to address the problem without
the need to cut off the tree.

3. PERFORMANCE FACTORS AND MOTIVATION

Several factors affect the performance behavior of S-trees
during query execution. Since S-trees resemble R-trees,
multiple paths can be followed to answer an inclusion query.
The reduction of I/O complexity during query execution can
be achieved by the following.

Weight minimization at each node. Weight minimization
results in fewer 1s in each node so that the probability
of a node being invoked during an inclusion query is
reduced.

Overlap minimization between nodes.Overlapping bet-
ween any two nodes (co-occurrence of 1s at the same
positions) should also be decreased, since this reduces
the number of multiple paths to be followed.

Storage utilization maximization. Storage utilization is
tuned by parameterk. Larger k values result in
trees with fewer nodes. Such small trees are more
suitable for inclusion queries with low weight, since
such queries invoke a large tree portion. (In this case
the previous two factors are not as important.)

It is easy to notice that the above factors are contradictory.
Weight minimization may result in more overlap between
nodes and vice versa. Additionally, weight and overlap
minimization may require lowerk values, which reduces
storage utilization.

S-trees try to minimize each node’s weight during
insertions or node splits, whereas they do not pay attention to
the rest of the factors. Since S-trees have many similarities
with R-tree-like access methods [29], performance tuning
of S-trees can be achieved with approaches followed by
existing spatial access methods.

There is an analogy between weight minimization in S-
trees and area minimization in R-tree nodes. It has been
noticed in [28, 30] for R-trees (and it also holds for S-trees as
verified by our experiments) that the insertion of a new entry
is biased towards the node with more entries. This takes
place during the invocation of thechoose-leafprocedure,
and can be explained by the fact that the node with more
entries has already high weight (large area in R-trees) and it
requires the least weight increase (enlargement in R-trees).

The same applies for thesplit procedure, where the initial
seeds are the entryα with the highest weight and the entry
β with the maximum weight increase when superimposed
with α. The assignment of the remaining entries tends to

prefer the node containing entryα, because it will require the
least weight increase due to its high weight. Moreover, after
the first few assignments, this problem is escalated since the
node containingα is continuing to accumulate more entries.
Also, the minimum-containment criterion is another source
of complexity. These facts result in an uneven distribution
of entries between the two nodes, which affects performance
and storage utilization.

Finally, since S-trees (as any other tree-structured access
method) depend on the insertion order, theforced reinsertion
technique, which has been proposed in [28], can be applied
to achieve efficient dynamic tree reorganization.

Although there are analogies between R-tree-like access
methods and S-trees, approaches from the spatial domain
cannot be followed directly since they exploit several
geometric properties of the entries. In the following, we
will present four splitting algorithms, one of linear, two
of quadratic, and one of cubic complexity. Our linear
algorithm behaves similarly to the original linear algorithm
[11]. The first quadratic algorithm adapts the R-tree-splitting
algorithm, taking into account signature properties. The
other new quadratic split algorithm is based on hierarchical
clustering. Finally, the cubic algorithm is based on an
exhaustive search of the best couple of seeds, based on a
minimization criterion. Each method tries to optimize one
or more of the previously mentioned factors. Additionally,
we present the application of the forced reinsertion method
to S-trees.

4. PROPOSED METHODS

4.1. A refined linear split

The first variation focuses on the seed selection phase and
adapts a technique from [31]. In particular, our variation of
the original linear split method is based on a different choice
of the two seeds that have to be distant according to the
weight criterion. Instead of choosing the first pair of seeds
that come out as a result of the linear algorithm, we could
continue searching for such pairs,m times. Specifically,
after randomly choosing one of the signatures as the starting
α seed, we search for theβ seed and continue by replacing
theα seed with theβ one. Then we start searching for a new
β seed and we keep on until we findm different pairs. We
keep the last one as the pair of our choice. The algorithm of
linear distribution is then followed to fill the two produced
nodes.

Algorithm: Refined choice of seedsα andβ afterm
repetitions.
1. Let seedβ be a randomly chosen

signature of the setS.
2. i ← 0.

Loop: 3. If i = m, then stop.
4. seedα← seedβ.
5. Find seedβ according to the original

linear splitting algorithm.
6. i ← i + 1.
7. Go to Loop.

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 305

This method tries to minimize the overlap between the
two new nodes after the split by selecting two seeds,
which are as far apart as possible with respect to the
weight-increase criterion. It should be noticed that it does
not choose the heaviest signature as the starting seed in
order to avoid any bias that could be created. Knowing
that the furthest pair can only be found with quadratic
complexity and since this algorithm is linear on the number
of repetitions, it can only find an approximation of it.

4.2. Quadratic split

The second variation focuses on the signature distribution
phase. In particular, we retain the original algorithm for
choosing seeds but we change the way we distribute the
remaining signatures to the two nodes. This new approach is
based on the R-tree split algorithm, which involves quadratic
complexity [32]. In other words, after assigning the two
seeds into the respective nodes, we search for the entry with
the maximum difference of the weight increase in the two
nodes and insert it in the appropriate one. We continue this
way until one of the nodes is filled withK − k + 1 entries.
In the following, the quadratic split algorithm is described.

Algorithm: Quadratic split of a node’s signaturesS

into nodesnodeAandnodeB.
1. Choose seedsα andβ.
2. signA← α andsignB← β.

Loop: 3. For eachsi ∈ S calculate the weight
increasesε(A) = γ (signA∨ s)− γ (signA)
andε(B) = γ (signB∨ s)− γ (signB).

4. Choose the signaturesi with the
maximum|ε(A)− ε(B)|.

5. If ε(A) < ε(B), then insertsi in nodeA
and calculatesignA← signA∨ si ,
else ifε(A) > ε(B), then insertsi in
nodeBand calculate
signB← signB∨ si ,
else insert in the node with the fewer
entries and perform the appropriate
superimposition.

6. S ← S − {si}.
7. Go to Loop.

Although this method presents an increase in time
complexity, it performs a more careful signature assignment
to nodes compared to the linear assignment method,
resulting in decreased node weights.

4.3. Cubic split

The third variation also focuses on the seed selection phase
and adapts a technique from [33].

Algorithm: Exhaustive search for seedsα andβ,
followed by a linear distribution.
1. minMaxWeight← MAX INTEGER.

Loop: 2. For each pair of signatures,sign(i) and
sign(j), apply the original linear

split algorithm and distribute all
entries betweennodeAandnodeB.

3. In each iteration, calculate the weights
of the superimposed signatures that are
produced by each one of the two nodes.
Let maxWeightbe the heavier of
the two.

4. If maxWeight< minMaxWeight, then
minMaxWeight← maxWeight,
α← sign(i) andβ ← sign(j).

5. Go to Loop.

In this method, we perform an exhaustive search for the
best couple of seeds that should be chosen. As a metric,
we consider the weight of the superimposed signatures that
result after the split. More specifically, we begin by applying
on every possible couple of seeds the distribution of the
remaining entries, as indicated by the original algorithm
of linear split. For each such couple, we superimpose the
signatures that resulted in each one of the two new nodes,
nodeAand nodeB, and measure the weights of the two
produced signaturesα andβ. By taking into account only
the heavier of the two, we will finally select the pair of
seeds that produces the minimum of these heaviest weights
(MinMax criterion).

This method requires all possible pairs to be tested as
possible seeds. For each pair, a linear assignment of
the remaining entries is performed. Therefore, the time
complexity of the method is cubic. The method is trying
to minimize both the overlapping (by selecting appropriate
seeds) and the weights in the resulting two nodes. Notice
that for each pair, the distribution of the remaining entries
could be performed with quadratic complexity, as in the
previous method. This would require anO(n4) time
complexity (n is the number of signatures in the node),
which would heavily affect the performance of the access
method during insertions. For this reason we did not test
methods of complexity higher than cubic.

4.4. Hierarchical clustering

The last one of the methods considered was based on the
hierarchical clustering method, since the notion of splitting a
node can be considered similar to that of clustering samples
into two clusters corresponding to the two empty nodes. Let
us consider a sequence of partitions of then signatures,
where the first partition comprisesn clusters, each cluster
containing exactly one sample. The next is a partition
of n − 1 clusters, the next a partition ofn − 2, and so
on until thenth partition, in which all samples form one
cluster. If the sequence has the property that whenever
two samples are in the same cluster at levelk they also
remain together at all higher levels, then the sequence is
said to be ahierarchical clustering. In the literature, two
classes of hierarchical clustering have been reported. The
agglomerative(bottom-up, clumping) one, which starts with
n singleton clusters and forms the sequence by successively
merging clusters, and thedivisive(top-down, splitting) class

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

306 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

that starts with all samples in one cluster and forms the
sequence by successively splitting clusters.

Transferring this problem of clustering in the signature
domain, the procedure that best fits this domain is the
agglomerative one, since it will make a more refined split
of the set of signatures. For our purposes, the merging
sequence will stop at the (n − 1)th partition, when two
clusters will be left.

Next, the respective algorithm is shown, wheresi is one
of the node signatures andCi is a created cluster.

Algorithm: Basic agglomerative clustering.
1. k← n.
2. Ci = {si} for i = 1, . . . , n.

Loop: 3. If k ≤ 2, then stop.
4. Find the nearest pair of distinct clusters,

sayCi andCj .
5. MergeCi andCj , deleteCj .
6. k← k − 1.
7. Go to Loop.

In order to decide which two clusters will be merged
in each step, a distance function has to be defined. After
testing several distance measures, we decided to restrict our
attention to the following:

dmin(Ci, Cj) = min
sεCi,s ′εCj

hammDist(s, s′)

dave(Ci, Cj) = ‖xi − xj‖
where functionhammDistis the Hamming distance between
the two signatures. In the first case, we search for the pair
of clusters whose corresponding superimposed signatures
present the minimum Hamming distance. This way, in
every step the most similar clusters will be joined together.
In the second case, we search for the pair of clusters that
shows the minimum Euclidean distance among signatures.
More specifically, for each created cluster, an array can
be produced with size equal to the signature length. Each
entry in the array will contain the mean value of the
signatures’ weight in this position. The goal is to find the
two clusters whose respective arrays show the minimum
Euclidean distance.

Suppose that two clusters A and B are given, with three
signatures each as follows:

Cluster A Cluster B
11000010 00101010
01000101 00101100
10000011 00100110

The produced arrays for these two clusters are:

xA = (2/3, 2/3, 0, 0, 0, 1/3, 2/3, 2/3)

xB = (0, 0, 1, 0, 2/3, 2/3, 2/3, 0).

Thus, the Euclidean distance between Cluster A and Cluster
B is:

d2
ave= (2/3− 0)2+ (2/3− 0)2+ (0− 1)2+ (0− 0)2

+ (0− 2/3)2+ (1/3− 2/3)2+ (2/3− 2/3)2

+ (2/3− 0)2 = 25/9.

The objective of a clustering method is to minimize the
distance for all objects inside a cluster and to maximize the
distance of objects of different clusters. Therefore, the split
based on hierarchical clustering tries both to minimize the
overlap of the two nodes and the weight of each one. As
proved in [34], the complexity of the method is quadratic.

4.5. Other examined heuristics

All split methods described previously try to minimize
either the weight in each node, or the overlapping between
the nodes, or both criteria. With respect to the third
factor, i.e. storage utilization maximization, all algorithms
have to satisfy the condition that each node contains at
least a minimum number of entries. This is done during
the signature-distribution phase for all algorithms. When
necessary, all remaining entries are assigned to one of the
nodes so that it will contain the minimum number of entries.
Evidently, this may reduce the method effectiveness with
respect to the other two factors but, as has been mentioned,
it is important for queries with low weights.

From the experiments performed we realized that a
number of tie-break criteria have to be applied to increase
the performance of the tested methods. During top-down
traversing or during the split process, when the weight
increase is equal for two nodes, we use the Hamming-
distance criterion to solve ties. In the case that the tie still
holds, we choose the node with the fewer entries so that
both nodes will present a minimum occupancy. It has to be
noticed that the application of tie-break criteria is important
because thesplit andchoose-leafprocedures are resolved by
them very often. This is not usual in spatial access methods
and this is due to the distribution of 1s at the upper tree
levels.

Apart from the previous methods, we experimented with
a number of other splitting variations, with no significant
improvement over the original linear split algorithm. In
short, some of the tested algorithms were the following.

4.5.1. Seed selection variations
• We select as seedβ the signature maximizing the

Hamming distance and not the signature maximizing
the weight increase.

• We find seedα and seedβ as in the original algorithm.
We insert seedβ in the new node and keep on searching
for other β seeds from the overflowed node to store
them in the new node until the latter node reaches the
minimum occupancy.

4.5.2. Signature distribution variations
• We sort the remaining signatures in decreasing order,

based on the difference of the weight increase that they
would cause if inserted in each node. We choose the
one with the largest difference and insert it in the node
where it causes the least increase. From this point on,
the algorithm may be either linear or quadratic. In the
first case, we could continue with the second in the
list and insert it in the appropriate node as previously,

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 307

whereas in the second case we could perform the
sorting algorithm in the remaining entries (since one of
the nodes has changed), and continue accordingly.

• We make two sorted lists in increasing order. In the
first (second) list we store the signatures that increase
less the weight of the first node than of the second (of
the second node than of the first one, respectively). At
each iteration we choose the signature with the lesser
increase in one of the two nodes and insert it in the
appropriate node. As before, the algorithm may have
a linear or quadratic extension depending on whether
we repeat the sorting algorithm or not.

• We followed theinner-product method, which has been
proposed as a means to decluster the S-tree pages in
parallel disks [35]. Our algorithm was based on the
inner product of the signatures found in each page
and was applied on the way the signatures of each
overflowed node were distributed in the two new nodes.
More details about this method can be found in [35].

4.6. Forced reinsertion

When Beckmannet al. introduced the R∗-tree in [28], they
also proposed the technique of forcing the reinsertion of
part of the overflowed tree node. Forcing the reinsertion of
some entries could achieve a better clustering of signatures
in pages, by replacing older entries, which are no more
appropriate for a specific page. Apparently, to some extent
clustering is accomplished during the split process. In R∗-
trees and similarly in S-trees, the reinsertion technique used
is the following. Whenever an overflow occurs, we delay the
split process, or even avoid it, by eliminating a number of
the entries from the node and trying to reinsert them always
in the level from which they were eliminated. As shown in
[28], forced reinsertion can yield an improvement of up to
50% in retrieval performance. In the sequel, we only give
the algorithm of reinsertion adapted from the respective R∗-
tree algorithm, so that it matches the S-tree needs. More
details for the rest of the algorithm can be found in [28].

Algorithm: Reinsertion technique.
1. Lets the heaviest signature of allK + 1

entries of nodeN .
2. counter← 0.
3. signA← 0.

Loop: 4. signA← signA∨ s.
5. Compute the weight increase that could

be caused insignAby each of the
remaining entries.

6. Lets be the one causing the greatest
increase, remove it from nodeN , insert
it in a queue and increasecounter.

7. If counter= p, then go to step 8, else go
to Loop.

8. Invoke Insert for items in the queue, to
reinsert the entries.

Apart from the above algorithm, we experimented with a
variation, where the choice of signatures to reinsert is treated

as a virtual split. More specifically, we perform a quadratic
split (as described in Section 4.2), where the new (virtual)
node is filled to the reinsertion thresholdp. The signatures
of the latter node will be reinserted, whereas the other node
will play the role of the overflowed one. The quadratic
split was chosen because, this way, the inherent complexity
of reinsertion will remain unaffected. We will see how
this variation affects the performance of the methods in
Section 6.3, where we refer to the first kind of reinsertion as
the original method (using as notation the suffixRE), while
we refer to the second as the quadratic one (using the suffix
QRE, due to the virtual quadratic split).

It is noted that for all the previous split methods, whenever
the insertion is completed at the leaf level, all parent
signatures in the insertion path have to be updated by using
the technique of superimposed coding on their children
signatures.

5. PERFORMANCE ESTIMATION

The response time for a partial match query is the time
required to retrieve all corresponding pages from disk plus
the time to process their contents. The processing involves
fast bit-manipulation methods and can be considered as
negligible. The performance measure in the rest of the
section is the number of disk accesses. Additionally, we
assume that all signatures have the same weightγ and that
in each signature all 1s are uniformly distributed. The same
assumption for uniform distribution of 1s holds also for the
query signatures. These are realistic assumptions for many
hash functions for signature generation. Table 1 gives all
symbols used in the following.

The estimation of disk accesses for a partial match query
with weightγq can be made independently of the resulting
tree. This approach is followed in [11], where it is shown
that:

p(γq, d) =
[
1−

(
1− γ

F

)λ(d)
]γq

(1)

is the probability of a signature at depthd (where 1≤ d ≤ h

and h is the tree height) to contain 1s atγq prespecified
positions. Symbolλ(d) denotes the number of signatures
at the leaf level, which belong to a subtree rooted at a node
at depthd and is:

λ(d) = n∏d
i=1 ni

(2)

whereni is the average number of signatures per node at
depthi.

The expected number of disk accesses is the sum of the
number of expected disk accesses at each depth plus one disk
access for the root:

DA =
h−1∑
d=1

d∏
i=1

nip(γq, i)+ 1. (3)

The above estimation is based on the assumption [11]
that for signatures at the upper levels, allF positions are

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

308 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

TABLE 1. Symbol table.

Symbol Definition

h Tree height
n Total number of signatures
nd Average number of a node’s signatures at depthd (1≤ d ≤ h)
N Total number of tree nodes
γi Weight of the signature of nodei (in father node)
F Signature length
γ Signature weight
γq Query-signature weight
γd Average signature weight at depthd (1≤ d ≤ h)
P Number of histogram partitions
Pi Number of weight values ini-th histogram partition (1≤ i ≤ P)
γi Average weight withini-th histogram partition (1≤ i ≤ P)

set with equal probability. Different split methods result
in different distributions of 1s at the upper levels, not
necessarily uniform, so this assumption does not hold in
general. Information about the distribution of 1s can be
taken into account by considering the weights of tree nodes
after the tree construction. Given a nodei whose covering
signature (superimposed signature of all signatures of node
i) in its father node has weightγi , the following lemma gives
the probability that nodei will be invoked during a partial
match query.

LEMMA 1. The probability that a tree nodei with
covering signature of weightγi will be fetched by a partial
match query of weightγq is:

p(γq, γi) =
(
γi

γq

)
(
F
γq

) . (4)

Proof. Each of the
(
γi

γq

)
combinations is equi-probable (uni-

formity assumption for query signatures) and corresponds to
a partial match query with weightγq , which will require the
retrieval of nodei. The total number of all possible partial
match queries of weightγq is

(
F
γq

)
. It simply follows that

the fraction of queries, which will retrieve nodei over all
possible queries, gives the probability that nodei will be
fetched. 2

The root does not have a corresponding father signature
and its probability is one. Lemma 2 gives an estimation of
the total disk accesses.

LEMMA 2. The expected number of total disk accesses for
a partial match query of weightγq is:

DA =
N∑

i=1

p(γq, γi) =
N∑

i=2

(
γi

γq

)
(
F
γq

) + 1. (5)

Proof. From Lemma 1, every nodei contributes one disk
access with probabilityp(γq, γi). Therefore, the expected
number of disk accesses is given by the sum of probabilities
for all tree nodes besides the root. The root contributes

one additional disk access, i.e. it is fetched with probability
one. 2

With simple algebraic manipulations the above formula
can be expressed as:

DA = 1∏γq−1
k=0 (F − k)

N∑
i=1

(γq−1∏
k=0

(γi − k)

)
+ 1 (6)

from which it follows that the number of disk accesses is
heavily related to the signature weights, especially at the
upper tree levels where the weights are larger. Each split
policy results in a different distribution of weights and the
above estimation of the number of disk accesses considers
the outcome of each split method.

The estimation of Equation (5) requires information for
every tree node. This presents an O(N) space and O(Nγq)
time complexity. A more simple measure can use the
average weightγi for each tree depth. Since each tree depth
d has

∏d
i=1 ni signatures the expected total number of total

disk accesses is:

DA = 1(
F
γq

)
h−1∑
d=1

((
γd

γq

) d∏
i=1

ni

)
+ 1 (7)

which is easily derived from Equation (5), considering all
signatures at depthd to be of weightγd . The required space
complexity is reduced to O(h−1), whereh is the tree height,
with O(h!) time complexity (in our experiments:h ≤ 5).

Although Equation (7) provides a simple and computa-
tionally cheap estimation of the number of disk accesses, it
is based on the approximation of all signature weights of a
tree depth with their average value. The signature weights
for a tree depth may vary significantly, so the approximation
of Equation (7) will provide inaccurate estimations.

A computationally non-expensive estimation, which
considers the distribution of signature weights at the same
time, can be based on histograms for an approximation of the
weight distribution. The signature weights are partitioned
into P ranges of values, each one containingPi weights.
The partitioning is done into equi-width ranges. The weights

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 309

TABLE 2. Parameters used in experiments and the values tested.

Parameter Values

Number of inserted signatures(×103) N = 10, 50, 100, 150
Signature size/weight (in bits) F/γ = 512/80, 512/120, 1024/120, 1024/256
Page size (in KB) 1, 2, 4
Minimum page capacity (as percentage)k = 35% of maximum page capacity

of each partition are represented with their average value
γi within the partition. Following this approximation, the
expected number of disk accesses is:

DA =
P∑

i=1

(
γf

γq

)
Pi(

F
γq

) + 1. (8)

The estimation of Equation (8) presents O(P) space
complexity and O(Pγq) time complexity. SinceP �
N , Equation (8) is not as computationally expensive as
Equation (5) and is more accurate than Equation (7), since it
provides a better approximation of the weight distribution.
The histogram can be stored along with the S-tree and
can be dynamically updated after each insertion, or after a
prespecified number of insertions. This does not present a
significant overhead to the insertion algorithm.

6. EXPERIMENTAL RESULTS

All previously described splitting algorithms were tested
experimentally under varying parameters to evaluate their
performance. The structures were implemented in C++
and the experiments run on a Pentium II workstation under
Windows NT. Along the lines of the experimentation by
Deppisch [11], the considered parameters and the tested
values for each parameter that we used are given in Table 2.

For each experiment, we created signatures randomly
using a uniform distribution for the positions that will be
set to 1. The performance measure was considered to be the
number of disk accesses required to satisfy a query. For each
query weight, an average of 100 measurements was taken.

6.1. Evaluation of estimation functions

First we evaluated the accuracy of the estimation functions
given in Section 5. Estimates for each query weight
were compared with the results obtained by performing the
queries of the same weight to the actual implementation of
the corresponding S-tree.

The acronyms that are used in the graphs giving the result
of comparison are:

Exp for the actual experimental result,

TI-U (Tree-Independent Uniform) for the estimation of
Equation (3), which is independent of the underlying
tree and is based on the assumption that 1s in signatures
of the upper levels are uniformly distributed,

0

10

20

30

40

50

60

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 10K Entries

EXP
TI-U

NB-E
LB-A
HB-D

0

50

100

150

200

250

300

350

400

36 56 76 96 116 136 156 176 196 216 236 256

D
is

k
A

cc
es

se
s

Query Weight

1024-256 Sig, 2K PageSize, 100K Entries

EXP
TI-U

NB-E
LB-A
HB-D

FIGURE 2. Comparison of estimation functions of the original
(upper) and quadratic (lower) split methods as a function of the
query weight.

NB-E (Node-Based Exhaustive)for the estimation of
Equation (5), which is based on weights obtained from
each node,

LB-A (Level-Based Average) for the estimation of Equa-
tion (7), which is based on the average weight for each
tree level, and

HB-D (Histogram-Based Distribution) for the estimation
of Equation (8), which is based on the distribution of
signature weights obtained from a histogram.

Figure 2, in the upper part, illustrates the results for
10,000 entries of length 512 and weight 120. The used
split algorithm was the original linear one. In the lower
part, results are given for 100,000 entries of length 1024
and weight 256, where the split algorithm was the quadratic.
As shown, TI-U cannot provide accurate results because

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

310 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

0.01

0.1

1

10

100

20 30 40 50 60 70 80

D
is

k
A

cc
es

se
s

Query Weight

512-80 Sig, 1K PageSize, 100K Entries

ORIG
REFN

1

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 150K Entries

ORIG
REFN

FIGURE 3. Performance of the two linear algorithms as a function
of the query weight.

the assumption that the distribution of 1s at the upper tree
levels is uniform, is not adequate. Also, LB-A which is
based on the approximation of the query weight for each tree
level with the average value of weight for that level, does
not provide accurate estimations. LB-A tries to overcome
the assumption of uniformity made by TI-U but the use
of average weights only does not capture the distribution
of weight at the upper tree levels. On the other hand,
NB-E provides an accurate estimation. The error of NB-
E compared to the experimental results (Exp) is not larger
than 3%. Also, HB-D gives accurate estimates with an
error between 2 and 15%. Evidently, the improved accuracy
of NB-E is achieved at the cost of increased computation
and space complexity. Therefore, in our experiments HB-D
provides results which are close to the ones of NB-E, while
being less computationally expensive. The same conclusions
were derived for all other split algorithms and for different
parameter values.

6.2. Evaluation of split algorithms

The acronyms used in the graphs where the results are
represented are: ORIG for original linear split, REFN
for refined linear split, CBIC for cubic split, QUAD
for quadratic split, HIER for hierarchical clustering with
minimum distance, and HIER2 for hierarchical clustering
with mean distance.

As far as the linear algorithms are concerned, the choice

0.01

0.1

1

10

100

20 30 40 50 60 70 80

D
is

k
A

cc
es

se
s

Query Weight

512-80 Sig, 1K PageSize, 50K Entries

HIER
HIER2

1

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 50K Entries

HIER
HIER2

FIGURE 4. Performance of the two variations of hierarchical
clustering (minimum and mean distance) as a function of the query
weight.

of seeds by itself does not seem to have any effect on the
general performance of the splitting procedure. This can
be understood by the performance of the refined original
linear split as shown in Figure 3. By trying to find
the best couple of seeds afterm = 5 times and then
applying the linear signature distribution, this technique did
not perform significantly better than the original algorithm,
while sometimes it performed slightly worse.

Regarding the two functions of hierarchical clustering as
shown in Figure 4, when the minimum distance heuristic
is applied (HIER) the method excels in the lightest cases
(i.e. 512-80 and 1024-120 signatures), whereas for the rest
of the cases the mean-distance heuristic is more efficient.
Due to the very similar performance of the two functions,
and in order to present more ‘readable’ graphs, we will
only show hierarchical clustering with mean distance as a
representative of the two methods.

In the upper part of Figures 5 and 6 we present the disk
accesses with respect to the query signature weight for the
four most interesting methods (original linear, quadratic,
hierarchical clustering with mean distance and cubic) for
two representative signature sizes (i.e. 512-120 and 1024-
256). In the lower part of Figures 5 and 6 the normalized
results are shown with respect to the cubic method. The
original linear split method (ORIG) presents the worst
performance in all cases. The cubic split method (CBIC)
clearly outperforms all other methods. As far as the

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 311

0.1

1

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 50K Entries

ORIG
QUAD
HIER2
CBIC

0

2

4

6

8

10

12

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 50K Entries

ORIG
QUAD
HIER2
CBIC

FIGURE 5. Performance of the proposed methods for 512-120
signatures (normalized results in the lower part) as a function of
the query weight.

quadratic complexity algorithms are concerned, both QUAD
and HIER2 perform pretty close together, with HIER2
performing slightly better. The exhaustive searching in cubic
split for the two seeds seems to play a significant role in
combination with the creation of nodes with the smallest
possible superimposed weights, needed to reduce as much as
possible the concentration of 1s. Split methods of quadratic
and cubic complexities present an overhead to the insertion
time but this pays off during query processing.

Figures 7 and 8 (in their upper parts) illustrate the disk
accesses of the same methods with respect to the number
of signatures that are stored in the tree. Again the same
two representative signature sizes were chosen. The lower
parts of Figures 7 and 8 present the normalized results with
respect to the cubic method. It can be easily seen that
all methods present a linear behavior, where the original
linear split method has the largest increase with respect to
the number of disk accesses. Again, the cubic split method
outperforms all other methods, whereas the HIER2 method
presents the second-best performance. Both quadratic and
cubic split methods scale much better compared to the
original linear method and can be used for large signature
databases.

Figure 9 presents the disk accesses with respect to the
query signature weight, using double page sizes. By
doubling the space size it can be clearly seen that the
performance deteriorates greatly, no matter what split

0.01

0.1

1

10

100

1000

26 46 66 86 106 126 146 166 186 206 226 246

D
is

k
A

cc
es

se
s

Query Weight

1024-256 Sig, 2K PageSize, 50K Entries

ORIG
QUAD
HIER2
CBIC

0

10

20

30

40

50

60

70

80

90

26 46 66 86 106 126 146 166 186 206 226 246

D
is

k
A

cc
es

se
s

Query Weight

1024-256 Sig, 2K PageSize, 50K Entries

ORIG
QUAD
HIER2
CBIC

FIGURE 6. Performance of the proposed methods for 1024-256
signatures (normalized results in the lower part) as a function of the
query weight.

0

20

40

60

80

100

120

140

50 100 150

D
is

k
A

cc
es

se
s

Number of Entries (x 1000)

512-120 Sig, 1K PageSize, 50 QueryWeight

ORIG
QUAD
HIER2

CBIC

0

2

4

6

8

10

12

50 100 150

D
is

k
A

cc
es

se
s

Number of Entries (x 1000)

512-120 Sig, 1K PageSize, 50 QueryWeight

ORIG
QUAD
HIER2

CBIC

FIGURE 7. Performance of the proposed methods for 512-120
signatures (normalized results in the lower part) as a function of
the number of signatures.

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

312 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

0

5

10

15

20

25

30

35

40

45

50

50 100 150

D
is

k
A

cc
es

se
s

Number of Entries (x 1000)

1024-256 Sig, 2K PageSize, 106 QueryWeight

ORIG
QUAD
HIER2
CBIC

0

5

10

15

20

25

50 100 150

D
is

k
A

cc
es

se
s

Number of Entries (x 1000)

1024-256 Sig, 2K PageSize, 106 QueryWeight

ORIG
QUAD
HIER2
CBIC

FIGURE 8. Performance of the proposed methods for 1024-256
signatures (normalized results in the lower part) as a function of the
number of signatures.

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 2K PageSize, 50K Entries

ORIG
HIER2
QUAD
CBIC

10

100

1000

26 46 66 86 106 126 146 166 186 206 226 246

D
is

k
A

cc
es

se
s

Query Weight

1024-256 Sig, 4K PageSize, 100K Entries

ORIG
QUAD
HIER2
CBIC

FIGURE 9. Performance of the proposed methods for larger page
sizes. Top: 2K-512 signatures. Bottom: 4K-1024 signatures.

1

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 50K Entries

ORIG_RE
ORIG

QUAD_RE
QUAD

1

10

100

1000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 1K PageSize, 50K Entries

ORIG_QRE
ORIG

QUAD_QRE
QUAD

FIGURE 10. Performance of the reinsertion technique when
applied on the original and quadratic split methods. Top: original
reinsertion with 30% threshold. Bottom: quadratic reinsertion with
15% threshold.

method has been used. This is the consequence of a big
accumulation of 1s in the upper tree levels, making it
impossible to reduce the number of subtrees that will be
visited. Therefore, S-trees are not appropriate for large page
sizes.

Finally, it must be mentioned that all methods seem to
converge to a point, which corresponds to the smallest query
weight. This is expected since, for very small query weights,
many tree nodes will match and therefore they will lead
in a quite large number of page accesses, regardless of the
applied method.

6.3. Evaluation of reinsertion method

Finally, we tested the use of the forced reinsertion method
along with the split methods described previously. It turned
out that the reinsertion method is not appropriate to be used
in combination with some split methods. Therefore, here we
present results only for the original linear and the quadratic
split methods.

Figure 10 presents the disk accesses with respect to the
query signature weight when using only the ORIG and
QUAD split in comparison to the case when using the same
split methods along with the forced reinsertion. As we can
see in the upper part of Figure 10, for a 30% reinsertion
threshold (percentage of signatures forced to be reinserted),

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

IMPROVED METHODS FORSIGNATURE-TREE CONSTRUCTION 313

0

50

100

150

200

250

300

350

400

36 56 76 96 116 136 156 176 196 216 236 256

D
is

k
A

cc
es

se
s

Query Weight

1024-256 Sig, 2K PageSize, 100K Entries

EXP
TI-U

NB-E
LB-A
HB-D

10

100

1000

10000

20 40 60 80 100 120

D
is

k
A

cc
es

se
s

Query Weight

512-120 Sig, 2K PageSize, 100K Entries

ORIG
QUAD

ORIG_QRE
QUAD_QRE

FIGURE 11. Performance of the quadratic reinsertion for larger
pages (2K for 512 length signatures) and 15% reinsertion threshold.

the original reinsertion does not improve ORIG, while it
worsens the performance of the QUAD one. The situation
didn’t improve much with a 15% threshold, neither for the
original nor for the quadratic reinsertion, as shown in the
lower part of Figure 10.

We also experimented with the application of the
quadratic forced reinsertion in the case of double page sizes,
with a 15% reinsertion threshold. The results of the original
reinsertion and of the 30% reinsertion threshold did not
exhibit a good performance; therefore we eliminate them
from this discussion. We have already seen that when
the page size is doubled, the performance of all methods
deteriorates greatly. Figure 11 illustrates the disk accesses
with respect to the query-signature weight for two different
total numbers of signatures. We observe that when the
quadratic reinsertion is applied the performance of both
ORIG and QUAD split improves significantly.

The previous results, as far as the first set of experiments
is concerned, were unexpected; the reorganization resulting
from the reinsertion of a number of signatures, and by
concurrently avoiding to perform node splitting, should
improve the performance. An explanation could be that
since there are only a few signatures in the small pages,
the split method does succeed in clustering the signatures,
whereas further reorganization from the forced reinsertion
method does not pay off. On the other hand, when double
page sizes are used there is still space for improvement of
the clustering, and that is what the forced reorganization

tries to achieve. It should be noticed, however, that due to
the increased weight that appears when a large page size is
used, as mentioned earlier in the section, the performance
of the methods with large page sizes and reinsertion is still
worse than when small page sizes are used.

7. CONCLUSION

In conclusion, we have shown that the simple split method
of linear complexity is not adequate for the S-tree-access
method. A number of new split methods were proposed
instead. Their increased complexity is justified during
query execution, as is verified by our experiments. Scale-
up experiments indicated that, by applying the proposed
split methods, the S-tree can be used for large signature
databases.

Several new performance-estimation functions were
presented. A previous function was based on the assumption
of a uniform distribution of 1s at the upper tree levels. As
was verified by our experiments, this assumption does not
hold. We proposed an approximation of this distribution
with a histogram-based method, which provides accurate
results with low computational complexity in comparison to
an exhaustive method.

We also examined the application of the forced reinsertion
method. It seems that it does not present significant improve-
ment and its effective use requires further consideration.
Future work could involve a combination of S-trees with
some of the methods that are based on data partitioning
in combination with hashing techniques [36]. A possible
direction could also be the application of this method in a
parallel environment [37].

REFERENCES

[1] Andre-Jönsson, H. and Badal, D. (1997) Using signature
files for querying time-series data.Proc. 1st Eur. Symp.
on Principles of Data Mining and Knowledge Discovery,
Trodheim, Norway, pp. 211–220.

[2] Agrawal, R., Imielinski T. and Swami, A. N. (1993) Mining
association rules between sets of items in large databases.
Proc. 1993 ACM SIGMOD Conf., Washington, DC, pp. 207–
216.

[3] Rabitti, F. and Zezula, P. (1990) A dynamic signature
technique for multimedia databases.Proc. 13th ACM SIGIR
Conf., Brussels, Belgium, pp. 193–210.

[4] Faloutsos, C., Lee, R., Plaisant, C. and Shneiderman, B.
(1990) Incorporating string search in a hypertext system: user
interface and signature file design issues.HyperMedia, 2,
163–174.

[5] Chidlovskii, B. and Borghoff, U. M. (1998) Signature file
methods for semantic query caching.Proc. 2nd ECDL Conf.,
Heraklion, Greece, pp. 479–498.

[6] Lee, W. C. and Lee, D. L. (1999) Signature caching
techniques for information filtering in mobile environments.
ACM Wireless Networks, 5, 57–67.

[7] Christodoulakis, S. and Faloutsos, C. (1984) Signature
files: an access method for documents and its analytical
performance evaluation.ACM Trans. Office Inform. Syst., 2,
267–288.

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

314 E. TOUSIDOU, A. NANOPOULOS ANDY. M ANOLOPOULOS

[8] Faloutsos, C. (1992) Signature files. In Frakes, W. B. and
Baeza-Yates, R. (eds),Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs, NJ.

[9] Dervos, D., Manolopoulos, Y. and Linardis, P. (1998)
Comparison of signature file models with superimposed
coding.Inform. Proc. Lett., 65, 101–106.

[10] Kocberber, S., Can, F. and Paton, J. (1999) Optimization of
signature file parameters with varying record lengths.Comp.
J., 42, 11–23.

[11] Deppisch, U. (1986) S-tree: a dynamic balanced signature
index for office retrieval.Proc. 9th ACM SIGIR Conf., Pisa,
Italy, pp. 77–87.

[12] Sacks-Davis, R. and Ramamohanarao, K. (1983) A two
level superimposed coding scheme for partial match retrieval.
Inform. Syst., 8, 273–289.

[13] Pfaltz, J., Berman, W. and Cagley, E. (1980) Partial match
retrieval using indexed descriptor files.Commun. ACM, 23,
522–528.

[14] Ciaccia, P. and Zezula, P. (1996) Declustering of key-based
partitioned signature files.ACM Trans. Database Syst., 21,
295–338.

[15] Lee, D. L. and Leng, C. W. (1989) Partitioned signature files:
design issues and performance evaluation.ACM Trans. Office
Inform. Syst., 7, 158–180.

[16] Lee, D. L. and Leng, C. W. (1990) A partitioned signature
file structure for multiattribute and text retrieval.Proc. 6th
IEEE Conf. on Data Engineering (ICDE’90), Los Angeles,
CA, pp. 389–397.

[17] Zezula, P., Rabitti, F. and Tiberio, P. (1991) Dynamic
partitioning of signature files.ACM Trans. Inform. Syst., 9,
336–369.

[18] Zezula, P., Ciaccia, P. and Tiberio, P. (1993) Hamming filter:
a dynamic signature file organization for parallel stores.Proc.
19th VLDB Conf., pp. 314–327.

[19] Ishikawa, Y., Kitagawa, H. and Ohbo, N. (1993) Evaluation of
signature files as set access facilities in OODBs.Proc. 1993
ACM SIGMOD Conf., Washington, DC, pp. 247–256.

[20] Kitagawa, H., Fukushima, Y., Ishikawa, Y. and Ohbo, N.
(1993) Estimation of false drops in set-valued object retrieval
with signature files.Proc. 4th FODO Conf., Chicago, IL,
pp. 146–163.

[21] Kitagawa, H., Watanabe, N. and Ishikawa, Y. (1996) Design
and evaluation of signature file organization incorporating
vertical and horizontal decomposition schemes.Proc. 7th
DEXA Conf., Zurich, Switzerland, pp. 875–888.

[22] Hellerstein, J. M. and Pfeffer, A. (1994)The RD-Tree:
an Index Structure for Sets. Technical Report No. 1252,
University of Wisconsin at Madison.

[23] Helmer, S. and Moerkotte, G. (1997) Evaluation of main
memory join algorithms for joins with set comparison join

predicates.Proc. 23rd VLDB Conf., Athens, Greece, pp. 386–
395.

[24] Lee, W. C. and Lee, D. L. (1992) Signature file methods
for indexing object-oriented database systems.Proc. 2nd
Computer Science Conf., Hong Kong, pp. 616–622.

[25] Lee, D. L. and Lee, W. C. (1996) Signature path dictionary
for nested object query processing.Proc. IEEE Phoenix Conf.
on Computers and Communications (IPCCC’96), Phoenix,
pp. 275–281.

[26] Yong, H. S., Lee, S. and Kim, H. J. (1994) Applying sig-
natures for forward traversal query processing in object-
oriented databases.Proc. 10th IEEE Conf. on Data Engineer-
ing (ICDE’94), pp. 518–525.

[27] Tousidou, E., Bozanis, P. and Manolopoulos, Y. Efficient
handling of signature files used for objects with set-valued
attributes, submitted.

[28] Beckmann, N., Kriegel, H. P., Schneider, R. and Seeger, B.
(1990) The R∗-tree: an efficient and robust access method
for points and rectangles.Proc. 1990 ACM SIGMOD Conf.,
Atlantic City, NJ, pp. 322–331.

[29] Manolopoulos, Y., Theodoridis, Y. and Tsotras, V. (1999)
Advanced Database Indexing. Kluwer Academic Publishers,
Boston, MA.

[30] Ang, C. H. and Tan, T. C. (1997) New linear node splitting
algorithm for R-trees.Proc. 5th SSD Symp., Berlin, Germany,
pp. 339–349.

[31] Faloutsos, C. and Lin, K.-I. (1995) FastMap: a fast algorithm
for indexing, data mining and visualization of traditional and
multimedia datasets.Proc. 1995 ACM SIGMOD Conf., San
Jose, CA, pp. 183–200.

[32] Guttman, A. (1984) R-trees: a dynamic index structure for
spatial searching.Proc. 1984 ACM SIGMOD Conf., Boston,
MA, pp. 47–57.

[33] Ciaccia, P., Patella, M. and Zezula, P. (1997) M-tree: an
efficient access method for similarity search in metric spaces.
Proc. 23rd VLDB Conf., pp. 426–435.

[34] Eppstein, D. (1998) Fast hierarchical clustering and other
applications of dynamic closest pairs.Proc. 9th ACM-SIAM
Symp. on Discrete Algorithms, San Francisco, CA, pp. 619–
628.

[35] Im, B. M., Yoo, J. S. and Kim, M. H. (1998)A Dynamic
Signature File Declustering Method based on the Signature
Difference. Technical Report, KAIST, Korea.

[36] Bozanis, P., Makris, C. and Tsakalidis, A. (1995) Parametric
weighted filter: an efficient dynamic manipulation of
signature files.Comp. J., 38, 478–488.

[37] Tousidou, E., Vassilakopoulos, M. and Manolopoulos, Y.
(2000) Performance evaluation of parallel S-trees.
J. Database Management, 11, 28–34.

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000

