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In this paper, indexing in spatio-temporal databases by using the technique ofoverlapping is
investigated. Overlapping has been previously applied in various access methods to combine
consecutive structure instances into a single structure, without storing identical sub-structures. In
this way, space is saved without sacrificing time performance. A new access method, overlapping
linear quadtrees is introduced. This structure is able to store consecutive historical raster
images, a database of evolving images. Moreover, it can be used to support query processing
in such a database. Five such spatio-temporal queries along with the respective algorithms that
take advantage of the properties of the new structure are introduced. The new access method
was implemented and extensive experimental studies for space efficiency and query processing
performance were conducted. A number of results of these experiments are presented. As
far as space is concerned, these results indicate that, in the case of similar consecutive images,
considerable storage is saved in comparison to independent linear quadtrees. In the case of query
processing, the results indicate that the proposed algorithmic approaches outperform the respective
straightforward algorithms, in most cases. The region data sets used in experiments were real
images of meteorological satellite views and synthetic random images with specified aggregation.
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1. INTRODUCTION

Spatial databases(SDBs) represent, store and manipulate
data of spatial types, such as points, lines, surfaces, volumes
and hyper-volumes in multi-dimensional space. There are
numerous applications that require efficient retrieval of
spatial objects: geographical information systems (GISs),
image and multimedia databases, urban planning, computer-
aided design (CAD), rule indexing in expert database
systems, etc. The traditional indexing methods (B-trees [1],
hashing methods, etc.) are not suitable for storing spatial
data because of their inability to implement a total ordering
of objects in space and preserve proximity, at the same
time. Since the early 1980s several structures have been
proposed for spatial data in the literature. These spatial
access methods (SAMs) form the following classes.

• Methods that obey an embedding space hierarchy:
a region containing data is split (when a certain
criterion holds) to sub-regions in a regular fashion.
A representative of this class is thequadtreeand its
variations [2, 3]. Quadtrees assume a quadrangular
space (a square) which is recursively split into four
subquadrants.

1Parts of this work have been presented at the 6th ACM Symposium
on Advances in Geographic Information Systems (ACM-GIS’98) and at
the 3rd East-European Conference on Advanced Databases and Information
Systems (ADBIS’99).

• Methods that obey a data space hierarchy: a region
containing data is split (when, for example, a maximum
capacity is exceeded) into sub-regions which depend
on these data only (for example, each of two sub-
regions contain half of the data). The R-tree [4] and
its variations are the most widely used structures of this
class. R-trees organize multidimensional data objects
by making use of the minimum bounding rectangles
(MBRs) of the objects.

SDBs have attracted increasing interest over the last
two decades. References [5, 2] are extensive surveys
with detailed methodology and algorithms of a plethora of
techniques for spatial data.

On the other hand,temporal databases(TDBs) support
the maintenance of time-varying data versions and special-
ized queries about them. Conventional databases are not
suitable to handle continuously changing data, since they can
store only one version of data, the one which is applicable at
thepresent time. Therefore, whenever a piece of data is no
longer valid, it is either deleted or updated, at the physical
level.

Two concepts of time are usually considered in TDBs,
valid andtransaction time. According to [6] valid time is the
time during which a fact is true in the real world. Transaction
time is the time during which a piece of data is recorded
in a relation. ‘Transaction times are consistent with the
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serialization order of transactions and may be implemented’
as a single value by ‘using transactions commit times’ [6].
In terms of data modeling, these two temporal aspects are
orthogonal, in that each could be recorded independently.
Each of them usually comprises astart time pointand anend
time pointor, equivalently, aninterval [StartTime, EndTime)
and has specific properties associated with it. A TDB that
handles only valid time is calledvalid or historical; when
it handles only transaction time it is calledtransactionor
rollback; one handling both of these notions of time is called
bi-temporal[7]. A number of access methods for temporal
data have been proposed up to now. Some of these methods
achieve acceptable performance in real-life applications [8].

Although, in 1977 Thrift observed that time could be
considered as an additional dimension in a two- or three-
dimensional space [9], until recently the fields of temporal
and spatial databases remained two separate worlds.
However, modern applications (GIS, time-sequence analysis
and forecasting, animation, etc.) demand the efficient
manipulation of spatial objects that move and/or change
their shapes and/or size over time and involve relationships
among them. For instance, Worboys [10] provides a survey
of (mainly GIS oriented) spatio-temporal applications on
administrative areas, road networks and land ownership.

Spatio-temporal databases(STDBs) are SDBs in which
data objects may change their spatial locations and/or
their shapes at different time intervals. In these
databases, special implementation techniques should be
developed for efficient storage and access of spatial objects,
their geometric representations and their time-varying
characteristics. Reference [11] is an excellent survey on the
advances made over the last few years, in STDB research.

According to the first attempt towards a specification
and classification scheme for access methods suitable for
STDBs [12] and up until now, several general spatio-
temporal indexing methods have appeared in the literature:
3D R-tree [13], 2+3 R-tree [14], MR-tree and RT-tree [15]
and HR-tree [16]. These approaches have the following
characteristics:

• 3D R-tree and 2+3 R-tree treat time as another
dimension using a state-of-the-art spatial indexing
method, namely the R-tree,

• MR-tree and HR-tree use overlapping in R-trees to
represent successive states of the database, and

• RT-tree couples time intervals with spatial ranges in
each node of the tree structure by adopting ideas from
R-tree and TSB-tree [17].

In addition, several methods have been proposed to index
moving points and trajectories (see [18] for a survey on
these specialized methods). All these above methods are
extensions of the R-tree, which is based on the ‘conservative
approximation principle’, i.e. spatial objects are indexed
by considering their MBR. These methods are not suitable
for representing regional data, in cases where many empty
(‘dead’) space is introduced in the MBRs, since this fact
decreases the index ability to prune space and objects during
a top–bottom traversal.

The fundamental objective of the proposed study is to
present an efficient spatio-temporal access method (STAM)
for a sequence of images (regional data). Efficiency
is considered in terms of space requirements and time
performance while processing queries. The new indexing
structure that is based on the transaction time is called
overlapping linear quadtreesand it is a variant of the linear
quadtree [19, 2]. It makes use of quadcodes that do not
introduce dead space to decompose and represent image
data. Moreover, it supports all the well-known spatial
queries for quadtree-based SDBs (spatial joins, nearest-
neighbor queries, similarity and spatial selection queries,
etc.) without taking time into account. It can also support
efficiently all the typical temporal queries for transaction
time TDBs (most of which have been examined in [20])
without considering space at all. However, the major
feature of overlapping linear quadtrees is that they can
efficiently handle some special types of spatio-temporal
window queries for quadtree-based STDBs, not previously
mentioned in the literature. The rest of the paper is organized
as follows. Section 2 provides a detailed description of
the new implementation. Section 3 investigates query
processing in overlapping linear quadtrees. Section 4
presents experimental results regarding space requirements
and query performance. Finally, section 5 concludes the
paper and, also, introduces ideas for further research.

2. THE NEW STRUCTURE

2.1. Framework and assumptions

In our discussion of STDBs we assume two-dimensional
space, although the presented results can be easily expanded
into higher dimensions in most cases. We assume that a
sequence of evolving raster images is stored in the database.
Each of them is represented as a 2n × 2n array of pixels
ordered by rows, wheren is a positive integer. If the
pixel colors are black and white only, the image is said to
be binary, where one represents black and zero represents
white. Each image has a unique timestamp2 Ti , where
i = 1, 2, . . . , N , andN is the total number of images. This
temporal attribute expresses the transaction time.

A transaction time STAM implicitly associates a time
interval to each record representing a spatial object. When
a new record is inserted at timeT1, this time interval is
set equal to [T1, now3). A ‘real-world’ deletion at time
point T2 is implemented as alogical deletion by changing
the EndTime timestamp of the time interval fromnow
to T2. Alternatively, an STDB could be viewed as an
SDB with time as an extra dimension. But, since this
dimension behaves differently from other dimensions in
most applications, it is not efficient to implement such a case
by simply adapting methods for high-dimensional SDBs.

2‘A timestamp is a time value associated with some object, e.g. an
attribute value or a tuple’ [6].

3The termnow is a special value in TDBs [21]. Its usage means that the
respective object will be valid until some time point far in the future, that is
not known beforehand.
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FIGURE 1. (a) A 23 × 23 raster image array of black and white pixels and its corresponding (b) region quadtree and (c) region linear
quadtree.

2.2. Quadtrees and linear quadtrees for regional data

A quadtreeis a term used to describe a class of hierarchical
spatial data structures (first class of SAMs in the discussion
of Section 1) whose common characteristic is that they are
based on the principle of recursive space decomposition.
A simpler example of a quadtree representation of data
corresponds to the representation of two-dimensional binary
raster images. It is calleda region quadtreeand is based
on the successive decomposition of the images into four
quadrants of 2n−1 × 2n−1 pixels. If a part is not covered
entirely by black or white, it is recursively subdivided
into four subquadrants, until each subquadblock is entirely
unicolor. The number of times that the decomposition
process is applied depends on the input data, but always
proceeds according to a regular scheme, until a quadblock
of homogeneous color is reached. An example of a region
quadtree is Figure 1b, which represents the 23 × 23 binary
image of Figure 1a.

The root of the unbalanced tree of Figure 1b corresponds
to the entire image array. Each child of a node represents
a quadrant of the region corresponding to that node.
The children, from left to right, correspond to the NW
(Northwest), NE, SW and SE quadrants. Leaf nodes
correspond to those quadblocks for which no further
subdivision is necessary. Non-leaf nodes are said to be
gray because their quadblocks contain both black and white
pixels.

The region quadtree is a main memory structure.
However, sometimes the represented image is very large
and its quadtree cannot be stored in the main memory. In
such a case, information on the leaf nodes that correspond
to black quadblocks of the image array, can be inserted
into a B+-tree producing, thus, a pointer-less version of the
quadtree. The latter method is calledlinear region quadtree
(linear quadtreein the following). This is because its leaf
nodes contain records that correspond to the linear list of the
quadtree black nodes (nodes representing black quadblocks
of the image).

Each black node of the quadtree is represented by a pair
of numbers. The first number is the level of the quadtree
at which the node is located (the root of the quadtree is
said to be at leveln and the pixels at level 0). The second
number is termed alocational code. It is a base-4 number
of n digits (qn−1, qn−2, . . . , q0) whose values can be 0, 1,

2 or 3 corresponding to quadrants NW, NE, SW and SE,
respectively. Each one of then digits is a directional code
that supports the traversal of the quadtree along a path from
its root to the appropriate leaf. If the black node resides on
level i, wheren ≥ i ≥ 0, then the firstn–i digits determine
the path from the root to this node and the lasti digits are all
equal to 0 (‘don’t care’).

This linear representation of the quadtree nodes is called
an FD (Fixed length—Depth) linear implementation. The
interested reader can find two other linear implementations
in the literature: FL (Fixed Length) and VL (Variable
Length), made of base-5 digits (see [3] for details). For
reasons that will be explained in Section 2.4 the choice for
this study was to use the FD linear implementation.

Figure 1c presents a linear quadtree which corresponds to
the quadtree of Figure 1b and the binary raster image array
of Figure 1a. In practice, a linear quadtree is created directly
from the corresponding binary raster image. The algorithm
OPTIMAL BUILD [3] is used for converting the image to
its linear FD representation. This algorithm processes the
image array row by row (from top to bottom and from left
to right) and produces the FD codes that are inserted one by
one or in a batched manner [22] in an empty B+-tree.

For simplicity, only the FD locational codes (quadcodes
in the following) of the black nodes appear in the linear
quadtree of Figure 1c, whereas the level at which the nodes
are located is not shown. For example, node 7 (16) of
the quadtree is represented by the pair of numbers 033/0
(330/1). The base-4 quadcode is 033 (330) and corresponds
to the NW, SE and SE (SE, SE and ‘don’t care’ for the last
i = 1 digit) directions followed to reach this node from the
root.

The linear quadtree reduces the necessity to store non-
leaf and white leaf nodes of the pointer-based version of a
quadtree. There are also variations of this representation
where white nodes are also stored, or variations which are
suitable for multicolored images.

2.3. The concept of overlapping

The technique of overlapping was initially presented by
Burton et al. [23, 24]. The authors proposed the use of
overlapping trees to manage the evolution of text files.
Later the idea was generalized in [25] to manage temporally
evolving B+-trees. Recently, in [20], the idea was extended,

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000



328 T. TZOURAMANIS, M. VASSILAKOPOULOS ANDY. M ANOLOPOULOS

FIGURE 2. (a) Two similar binary images, (b) the respective
quadtrees and (c) the corresponding overlapping quadtrees.

producing an efficient access method for transaction time
databases in a two-dimensional key-time space. Also, in [15,
16] the original overlapping approach was extended from
B+-trees to R-trees, producing a spatio-temporal access
structure suitable for moving spatial data.

The basic idea behind all these techniques is that, given
two B+-trees (or R-trees) where the second one is based
on some changes upon the data set of the first one, the
second B+-tree (or R-tree, respectively) can be represented
by registering only the modified branches of the first one.
The subtrees that remain the same, are not replicated but
simply re-used. Thus, each tree has a separate root and
substantial space is saved.

In [26, 27] another implementation on the concept of
overlapping trees is presented and analyzed. Considering a
sequence of similar images, overlapping quadtrees can be
used to represent this sequence and save significant main
memory by not storing the common subtrees of consecutive
separate quadtrees. Figure 2 demonstrates two similar binary
images and the respective quadtrees. The result of applying
overlapping to these trees is also shown.

2.4. Overlapping linear quadtrees

Overlapping linear quadtrees are based on linear region
quadtrees. Let us assume that a sequence ofN images is
stored in the database and that each image has a unique
timestampTi (for i = 1, 2, . . . , N). If we use a single
linear quadtree, then updates will overwrite old linear FD
codes and only the last inserted image will be retained.
In applications where spatial queries refer to past states of

Linear quadtree of image i,
timestamp Ti

Linear quadtree of image i+1,
timestamp Ti+1
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FIGURE 3. (a) Two linear quadtrees, (b) the corresponding depth-
first (DF)-expressions and (c) their linear overlapping tree structure.

the structure, all the successive versions of the structure
have to be accessible. The simplest method to store
all these images is to construct one independent linear
quadtree for each of them. Therefore, a search in such a
database corresponds to spatial data accessing with different
timestamps. However, in most cases, a large amount
of spatial information remains stable between successive
images and the corresponding linear quadtrees may differ
only marginally. In such cases, instead of storing each
complete image independently, the possibility of setting up
a system for data-sharing should be explored to facilitate the
storage and indexing of this data.

Overlapping linear quadtrees are a transaction time spatio-
temporal indexing structure, implemented as a sequence
of linear quadtrees. The first image atT1 is stored in a
linear quadtree and the image at timeTi+1 is constructed
based on the linear quadtree ofTi by sharing their common
subtrees. As an example, consider the two consecutive linear
quadtrees (with respect to their timestamps) of Figure 3a.
They are the pointer-less versions of the quadtrees of images
of Figure 2a. Since in the same quadtree two black nodes
that are ancestor and descendant cannot co-exist, two linear
FD codes that coincide at all the locational digits can also not
exist. This means that the locational part of the FD codes is
sufficient for building linear quadtrees at all the levels. At
the leaf level, the depth of each black node should also be
stored, so that images are accurately represented and that
overlapping can be correctly applied. For simplicity, only

THE COMPUTER JOURNAL, Vol. 43, No. 4, 2000



OVERLAPPING LINEAR QUADTREES AND SPATIO-TEMPORAL QUERY PROCESSING 329

the FD-locational codes appear in the linear quadtrees of
Figure 3a. (The locational code of each black quadtree node
of the two depicted trees can be seen in Figure 2b.) The
resulting overlapping version of the two linear quadtrees can
be seen in Figure 3c.

Note also that the choice of the FD linear representation
instead of the other two linear representations is not
accidental. The FD linear representation is the only one that
is made of base-4 digits and is thus easily handled using
two bits for each digit, since its decoding process is much
more simple [3]. Besides, the sorted sequence of FD linear
codes is a depth-first traversal of the quadtree. Since internal
and white nodes are omitted, sibling black nodes are stored
consecutively in the linear quadtree and there is an increased
probability for the same image part to reside in the same
leaf between consecutive linear quadtrees.4 This property
maximizes the probability that a leaf will not change and will
belong to consecutive linear quadtrees, since consecutive
images have large identical parts. To make this probability
even higher and keep the number of newly created paths as
low as possible, the capacity in records of the linear quadtree
leaf nodes is small (a few FD codes are very likely to remain
unchanged).

In our implementation, the leaf node capacity was 10 FD
codes, thus a disk page may host a number of consecutive
leaf nodes.

Each node in the structure holds in a field called
‘StartTime’ the timestamp when it was created. This field
is used to detect whether a node is being shared by other
trees. We assign a value to StartTime during the creation of
a node and there is no need for future modification of this
field.

The structure of overlapping linear quadtrees is accompa-
nied by the two following additional sub-structures:

Header table.This is built on top of the overlapping linear
quadtrees in order to index transaction time values.
Each record in this table is of the form<Ti, Pi>,
whereTi is the timestamp when the respective image
is recorded in the relation andPi points to the root
of the corresponding linear quadtree. For applications
with a reasonable number of images (e.g. less than
one billion), this sub-structure can be either a sequential
array in ascending time order stored in the main
memory, or a perfect hashing function, or even a B+-
tree with almost 100% utilization that has only its
leaves stored in a secondary memory.

Depth-first expression.The depth-first (DF)-expression [28]
of the last inserted image is kept and its use is to register
all the black quadblocks of the last inserted image and
to be able to know, without I/O cost, the black quadrants
that are identical between this image and the next one.
Thus, given a new image, we do know beforehand
which exactly are the quadcode insertions, deletions

4Note that the depth-first (DF) traversal successively visits black
quadtree nodes which correspond to potentially neighboring image parts,
independently of their size. This is not usually the case for a breadth-first
traversal.

and updates. The DF-expression is a compacted array
that represents an image in a pointer-less form of the
preorder traversal of its quadtree. It consists of the
symbols ‘B’, ‘W’ and ‘G’ corresponding to black,
white and gray nodes, respectively. It offers large
compression, as each node type can be encoded with
two bits. For example, assuming that sons are traversed
in the order NW, NE, SW and SE, the DF-expression
of the image of Figure 1 is: GGBWWGBWWBWWG-
WWGWWBBB. For reasonable image sizes, it is small
enough to be stored in the main memory (e.g. for
images of size 2048× 2048 pixels and the worst case
where there is a completely full quadtree, the DF-
expression is 1.33 Mbyte, which is quite reasonably
available in modern workstations).

As an example to illustrate the whole data structure of the
overlapping linear quadtrees, consider the two consecutive
raster images of Figure 2a and their corresponding linear
quadtrees of Figure 3a. Consider, also, that the image on
the left half of Figure 2a is the last imagei in a large
sequence of similar overlapping images that have already
been inserted in the overlapping linear quadtree of Figure 3c.
We face the insertion of the new imagei+1 (the image on
the right half of Figure 2a) in two stages. The first stage is
to sort the quadcodes of this image version and compare this
sequence against the set of quadcodes of the last inserted
image version, using the binary table of its DF-expression
(see the left-hand side of Figure 3b). In the next stage,
we use the header table of Figure 3c to locate the root of
the last inserted image at timestampTi . Then, following
the approach of [22], we build the new overlapping tree
instance at time pointTi+1 by carrying out all the FD
code insertions, updates and deletions in a batched manner,
instead of performing them one at a time. Simultaneously,
the DF-expression of imagei + 1 is being constructed (see
the right-hand side of Figure 3b), replacing, step-by-step, the
DF-expression of imagei.

A consequence of the technique for batch quadcode
modifications (i.e. insertions, updates and deletions) is that
a leaf may accept a number of quadcode insertions much
greater than the number of available free slots. Thus, a
specific leaf may split into more than two nodes. In a similar
manner, more than two sibling leaves may merge during
quadcode deletions.

2.5. Supplementary lists to improve query processing

In order to keep track of the image evolution (in other
words, the evolution of FD codes) and efficiently satisfy
spatio-temporal queries over the stored raster images, we
embed some additional information in the leaf nodes of
linear quadtrees. First, leaf nodes have one more extra field,
called ‘EndTime’, to register the timestamp when a specific
leaf becomes historical (no longer valid). As long as a leaf
remains valid, its field EndTime is fixed to the special value
now. Assuming that at some time pointTi at least one entry
of the node changes, a new copy of that node has to be
created (with<StartTime, EndTime> equal to<Ti , now>,
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FIGURE 4. Backward (left) and forward (right) chaining for the efficient support of spatio-temporal queries.

respectively) to handle the new update. Besides, the state of
the former node is changed to historical, by modifying the
EndTime timestamp fromnowto Ti .

Assuming that A and B are two leaf nodes of the
overlapping linear quadtrees, node A is atemporal
predecessor nodeof B if the creation timestamp of node B
is equal to thelogical deletion timestamp of A and the
quadcode range5 of node B intersects the quadcode range of
node A. Respectively, node B is calleda temporal successor
node of node A. As stated above, in overlapping linear
quadtrees, the exact number of temporal successor nodes
that a leaf node can have in the next timestamp is not fixed.

Figure 4 depicts a case where, at timestampT1, the
leaf node A was created with quadcode range [c1, c2]. At
timestampT2, the leaves B, C and D were created as the
temporal successor nodes of node A. At timestampT3, leaf E
was produced as the temporal successor node of leaf B. At
timestampT4, the leaves E and C were merged, producing
node F and, finally, at timestampT5 leaf nodes F and D were
merged, producing node G.

As it appears in Figure 4 (fine and bold arrows), we
incorporated some additional ‘horizontal’ pointers in the leaf
nodes of linear quadtrees. This way there is no need to
top–down traverse consecutive tree instances to search for
a specific FD code and excessive page accesses are avoided.
The tradeoff is a small overhead for insertions, deletions and
updates. More specifically, we embed four pointers in every
leaf to support spatio-temporal queries in an efficient way.
The names and roles of these pointers are:

A B-pointer is used during a temporal query to traverse
the structure backwards. When not-null, it points to
a historical leaf from the previous tree instance. The
node accommodating a not-null B-pointer is one of the
temporal successor nodes of that historical node, after
a merge/split/update (thin arrows on the left side of
Figure 4).

A BC-pointer is also used during a temporal query to
traverse the structure backwards. The node accommo-
dating a not-null BC-pointer is always historical. The

5Thequadcode rangeof a linear quadtree leaf node (a leaf node of the
respective B+-tree) is the set of quadcode values that are either contained
within the specific leaf, or would be contained, if they had been inserted.
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FIGURE 5. A real-word example for the forward and backward
chaining of the leaf nodes of overlapping linear quadtrees.

BC-pointer always refers to a historical leaf with the
samelogical deletion timestamp. This field is involved
in the merge procedure (thick arrows on the left-hand
side of Figure 4).

An F-pointer is used during a temporal query to traverse the
structure forwards. The node which accommodates a
not-null F-pointer is always historical. In such a case,
the F-pointer points to a successive tree instant leaf
created as one of the temporal successor nodes of this
specific historical node, after a split/merge/update (thin
arrows on the right-hand side of Figure 4).

An FC-pointer is also used during a temporal query to
traverse the structure forwards. When this pointer is
not-null, it points to a node with the same creation
timestamp created after a split (thick arrows on the
right-hand side of Figure 4).

Figure 5 shows a real-world example of how the leaves
of three successive linear quadtrees can be forward and
backward chained to efficiently support spatio-temporal
queries. The leaf on the top left-hand corner of the figure
corresponds to the first time instant,T1, and contains the
quadcodesC1 = 002/3, C2 = 003/3 andC3 = 302/3
(the form of the codes isC/L, whereC is the locational
code andL is the level). Suppose that during time instant
T2, eight quadcodes with keysC4 = 030/3,C5 = 031/3,
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C6 = 032/3, C7 = 200/2, C8 = 211/3, C9 = 330/3,
C10 = 331/3 andC11 = 332/3 are inserted. In such a case,
we have a node split. In other words, we have to allocate
three new leaf nodes at time instantT2, to accommodate
the eleven quadcodes in total. The leaf of time instantT1
is connected to the first of these three new nodes by using
the F-pointer field, whereas the FC-pointer field is used to
chain together the three new nodes. During time instantT3,
a set of five quadcodes is deleted, namely the quadcodes with
key valuesC6, C7, C8, C10 and C11. Thus, two nodes of the
tree corresponding to time instantT2 are merged to produce a
new node as depicted in the figure. B-pointer and BC-pointer
fields are maintained accordingly.

3. SPATIO-TEMPORAL WINDOW QUERY
PROCESSING

As mentioned in the introduction, the structure of
overlapping linear quadtrees supports all the well-known
spatial queries for quadtree-based SDBs, without taking
the notion of time into account. It also supports all the
typical temporal queries for transaction time TDBs, without
considering issues of space. A discussion on how to query
only the spatial features of overlapping linear quadtrees
(nearest-neighbor finding, similarity queries, spatial joins of
various kinds, window queries, etc.) appears in the original
papers of linear quadtree [19, 3], as no modifications to
the original algorithms are required. The reader can also
find interesting performance details in [20] of queries based
in the temporal domain only, taking into consideration the
stored quadcodes as ordinary numeric data (pure timeslice
and range-timeslice queries, history queries, etc.). As
already mentioned, the major advantage of the new STAM
is that it can efficiently handle some special types of spatio-
temporal window queries for quadtree-based STDBs, not
previously mentioned in the literature.

Window queries have a primary importance since they
are the basis of a number of operations that can be
executed in an STDB. The basic function of window query
processing is to divide the window into subwindows and
therefore to decompose the query into a sequence of smaller
queries onto these subwindows. Subwindows correspond to
quadblocks of the leaf nodes in the quadtree that represents
the interior part of the window region in the image space.
These subwindows are calledmaximal quadtree blocks
(maximal quadblocksfor the rest of this paper) and the
rationale for using them is to match the decomposition
of the underlying quadtree-based database. A window-
decomposition algorithm is given in [29]. It decomposes
a two-dimensional window ofk × k pixels, defined on an
image of 2n × 2n pixels into its 3(2k − logk)-5 maximal
quadblocks in O(k log log 2n) = O(k logn) time, in the
worst case.

3.1. The strict containment window query

Given ak × k window and a sequence ofN binary images
stored in an STDB, each one associated with a unique
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FIGURE 6. The quadblocks of a binary raster image and a query
window (bold lines).

timestampTi (where i = 1, 2, . . . , N): find the black
regions that completely fall inside the window (including
those that touch a border of the window from inside), at each
time point within the time interval [T1, TN ].

In Figure 6 is an example of a binary raster image
(corresponding to a specific time point) partitioned in
quadblocks and a query window. The strict containment
window query for this time point would return quadblocks
2 and 4. The algorithm that processes this spatio-temporal
window query is as follows.

Step 1.Break thek ×k window into itsQ = O(k) maximal
quadblocks, according to the algorithm described
in [29].

Step 2.For each of these sub-windows6 (sorted in lexico-
graphical order, according to the locational part of their
FD code) compute the quadcode of the pixels of their
NW and SE corners. These are the smallestCmini and
largestCmaxi locational FD codes, respectively, that
may appear in the sub-windowi (for i = 1, . . . ,Q).
The range [Cmini , Cmaxi ] of these locational codes
includes all the black quadblocks that are strictly
included within the sub-window.

Step 3.Find the root of the linear quadtree of the very first
time point using the header table.

Step 4.For each of theQ sub-windows, perform a
respective range search in the first linear quadtree
following a DF traversal of the tree and collect the
leaves that either contain codes in the range [Cmini ,
Cmaxi ], or would contain them if they had been
inserted. The codes that fall within the above range
and appear in these nodes are the black quadblocks that
are strictly contained within this sub-window for the
specific time point.
Comment. The answer to the whole window query,
for the first time point, is the union of all the answers
generated by querying the underlying STDB with every
maximal quadblock comprising the window.

Step 5.For each linear quadtree leaf node collected in the
last step, following the F-pointer at the first step and
the chain of FC-pointers at the second step, discover

6In the rest of the paper, the termssub-windowandmaximal quadblock
will be used interchangeably.
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the leaves that are the temporal successor nodes of this
leaf at the next time point.
Comment.Note that in the best case this specific leaf is
common between the two successive linear quadtrees
and no additional I/O access in the secondary memory
is required.

Step 6.Discard from further consideration all leaves whose
range does not intersect with the range [Cmini , Cmaxi ]
of the respective sub-windowi and collect all the
remaining accessed leaves. The codes that fall within
this range and appear in the remaining leaves are the
black quadblocks that are strictly contained within the
sub-window for the specific time point.
Comment.The answer to the whole window query for
this time point, is the union of the answers generated by
all theQ sub-windows.

Step 7.While the last time point of the time interval
[T1, TN ] has not been reached, proceed to the next tree
by repeating steps 5 and 6, for each leaf collected in the
last execution of step 6.

Note that when we process the query for a tree of a
specific time point, we keep in the main memory the nodes
discovered and collected for this tree, as well as some of the
accessed nodes of the tree of the preceding time point (only
those that are common between the two successive trees).
This holds for all the algorithms that are presented in this
paper, except for that related to the cover window query.

3.2. The border intersect window query

Given ak × k window and a sequence ofN binary images,
each one associated with a unique timestampTi (where
i = 1, 2, . . . , N): find the black regions that intersect a
border of the window (including those that touch the window
borders from inside or outside), at each time point within the
time interval [T1, TN ]’.

The border intersect window query for the time point
corresponding to Figure 6 would return quadblocks 1, 3, 4
and 5. The algorithm that processes this window query is as
follows.

Step 1.Create a rectangular strip that is formed by keeping
the pixels that make up the border of the window
and the pixels outside the query window that touch
its borders. For those sides of the query window that
possibly touch the image borders, there are no pixels
outside the window. Therefore, the resulting strip is up
to two pixels thick. Break the strip into itsQ maximal
quadblocks. Notice that each maximal quadblock will
be of size 2× 2, or 1× 1 pixels.

Steps 2 and 3.The same as steps 2 and 3 of the strict
containment window query, respectively.

Step 4.For each of these maximal quadblocks, follow
step 4 of the algorithm of the strict containment window
query. The quadblocks discovered (if any) in this
procedure are the black quadblocks that are strictly
contained within the rectangular strip and thus intersect
or touch a border of thek × k query window, for the

first time point. If the search procedure for a sub-
window returns no quadblocks, search for an ancestor
of the specific maximal quadblock. The reason is that
if such an ancestor exists, then the maximal quadblock
under consideration belongs to a larger black region
that intersects or touches a border of the query window.
All the quadblocks discovered in step 4 compose the
answer of the window query for the first time point.

Step 5.For each leaf collected during the previous step
(following the respective step of strict containment
window query), perform step 5 of the algorithm of the
strict containment window query.

Step 6.The same as step 6 of the strict containment window
query. In addition, if the search procedure for a sub-
window returns no quadblocks, search for an ancestor
of the specific maximal quadblock. All the quadblocks
discovered (if any) in this step are the black quadblocks
that intersect or touch a border of the originalk × k

window, for the specific time point.
Step 7.The same as step 7 of the strict containment window

query.

Note that a search for an ancestor of a maximal
quadblock with FD codeC/L (in the form loca-
tional code /level ) is a search for the maximum
locational code in the respective linear quadtree among the
quadcodes≤C. If such a quadcode exists and: (i) has a level
L′ > L and (ii) their locational codes coincide in their first
L′ bits, then this FD code corresponds to an ancestor of the
quadblock.

Such a search can be performed, in most cases, by
accessing a very small number of extra disk pages. In more
detail, the following sequence of actions is performed. In
case the FD code under consideration is not the first in its
node, we examine the presence of one of its ancestors in
this node. Otherwise, if the previous leaf node (left sibling
node) is among the nodes that reside in the main memory,
we examine the presence of such an ancestor in this node.
If it is not in the main memory, but the respective temporal
predecessor node of the preceding tree is in main memory,
we use F- and, possibly, FC-pointers to reach the previous
node for the tree of interest, with very few disk accesses.
If, however, none of the above holds, we have to perform a
search in the tree of interest for the left sibling node, starting
from the root. This search accesses a number of nodes which
equals the height of the tree.

Note, also, that the ancestors of a maximal quadblock may
be common to a number of subsequent maximal quadblocks
(due to the order under which sub-windows are treated in
steps 5 and 6). Thus, keeping in a variable the ancestor
discovered (if any) for one maximal quadblock may help to
avoid the repetition of the same disk accesses later in the
processing of the same time point.

3.3. The general border intersect window query

Given ak × k window and a sequence ofN binary images,
each one associated with a unique timestampTi (where
i = 1, 2, . . . , N): find the black regions that completely
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fall inside the window or intersect a border of the window
(including those ones that touch a border of the window from
inside or outside), at each time point within the time interval
[T1, TN ].

The general border intersect window query for the time
point corresponding to Figure 6 would return quadblocks 1,
2, 3, 4 and 5. It is obvious that the answer to this query is
a combination of the answers generated by the previous two
queries. However, the algorithmic handling of this query
is not a combination of the previous two algorithms, in the
sense that the prospective query processing cost is not the
sum of the previous two. The algorithm that processes the
general border intersect window query is as follows.

Step 1.Create a new extended window that is formed by
adding to thek × k window of the query the pixels
outside it that touch its border. For those sides of the
query window that possibly touch the image borders
there are no such outside pixels. Thus, the new
extended window is of size(k + 2) × (k + 2) or
(k+1)×(k+2) or (k+2)×(k+1) or (k+1)×(k+1)

or k × k pixels. Break the new window into maximal
quadblocks.

Steps 2 and 3.The same as steps 2 and 3 of the strict
containment window query, respectively.

Step 4.For each of these maximal quadblocks, follow
step 4 of the algorithm of the strict containment
window query. The quadblocks discovered (if any)
of this procedure are the black quadblocks that are
strictly contained within the extended window query,
and thus fall inside the original window query or
intersect a border of it, for the first time point. If
the search procedure for a sub-window returns no
quadblocks, search for an ancestor of the specific
maximal quadblock. All the quadblocks discovered in
this step compose the answer of the window query for
the first time point.

Steps 5–7.The same as steps 5–7 of the algorithm of the
border intersect window query, respectively.

3.4. The cover window query

Given ak × k window and a sequence ofN binary images,
each one associated with a unique timestampTi (where
i = 1, 2, . . . , N): find out whether or not the window is
completely covered by black regions, at each time point
within the time interval [T1, TN ].

The cover window query returns YES/NO answers. For
the time point corresponding to Figure 6, it would return
NO. The algorithm that processes this kind of query is as
follows.

Step 1.Break the window into maximal quadblocks.
Step 2.Find the root of the linear quadtree of the first time

point, using the header table.
Step 3.For the first of the maximal quadblocks (according

to the locational code of their NW corner), perform a
search in the linear quadtree of the time point of interest
and access (discover) the leaf that should contain the

related FD code. If the code of the maximal quadblock
is present in the leaf, continue. If not, then examine
the FD codes in the same leaf that are before and after
the code of the maximal quadblock (one of them at
least exists). If these codes correspond to a sibling or a
descendant of a sibling or a descendant of the quadtree
node of the maximal quadblock, mark that the answer
for the specific time point will be NO. The reason is
that the sub-window cannot be completely covered,
because the specific maximal quadblock corresponds
to a quadtree node that is gray or white. However,
continue processing for this time point to discover the
leaves needed for the remaining time points. If the
adjacent FD codes do not correspond to a sibling or a
descendant, then search for an ancestor of this quadtree
node. If such an ancestor does not exist, then mark NO.

Step 4.For the leaf discovered in step 3, following the F-
pointer at the first step and the chain of FC-pointers
at the second step, discover the leaf nodes that are the
temporal successor nodes of this leaf at the next time
point. Examine these leaves for the presence of the
maximal quadblock of the respective sub-window, or
any of its siblings, descendants or ancestors (in rare
cases, a search from the root of the related tree may
be needed to examine the presence of an ancestor).
According to the FD codes discovered, NO may be
marked for this time point.

Step 5.Repeat step 4, until you have reached the last image.
Step 6.For those images that have been marked with NO,

such that all the images before or after them have also
been marked with NO, the answer is definitely NO.
There is no need to visit them in a subsequent stage and
these images are excluded from further consideration.
This means that the time interval gets smaller when we
conclude that a number of subsequent images covering
the left-hand or right-hand ends of the time interval
[T1, TN ] have all been marked with NO.

Step 7.Next, using the header table, find the root of the
first linear quadtree from the left-hand side of the time
interval that has not been marked with NO until now.

Step 8.Follow step 3 again and handle the next unprocessed
maximal quadblock for the remaining part of the initial
time interval. The algorithm stops when, for every
image that has not been excluded, all the maximal
quadblocks have been processed. For those images
that a NO has not been marked, the answer for the
corresponding time points is YES.

Note the difference of policy from the previous three
algorithms. In the cover window query we keep in the main
memory only the leaves related to one maximal quadblock
of the tree in process, as well as the respective leaf nodes of
the preceding tree. It is evident that we must reserve a 1-bit
space for holding the YES or NO answer of each image in
the time interval. This approach is likely to produce NO
answers for groups of images and not single images, while
it avoids unnecessary disk accesses.
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3.5. The fuzzy cover window query

This query can take two different forms. Given ak × k

window and a sequence ofN binary raster images, each
one associated with a unique timestampTi (where i =
1, 2, . . . , N):

(1) find out whether or not the percentage of the window
area that is covered by black regions is larger than
a given threshold, at each time point within the time
interval [T1, TN ], or alternatively

(2) find out the percentage of the window area that is
covered by black regions, at each time point within the
time interval [T1, TN ].

The second kind of fuzzy cover window query for the
time point corresponding to Figure 6 would return as
answer 80%. The answer of the first kind would depend
on comparison of 80% with the threshold given. The
algorithm that processes this kind of query is similar to the
algorithm for the general border intersect window query.
The main difference is that it works on the original window
(no expansion is necessary). Besides, for each quadblock
discovered, the area of the part of the quadblock that falls
within the window must be added to the area of the window
covered by black regions.

The first form of the fuzzy cover window query returns
answers YES/NO in a way analogous to the cover window
query. YES or NO answers are also possibly produced in
groups of images. In order to make this processing more effi-
cient, without making extra I/O disk accesses, we can calcu-
late incrementally both the white and the black percentages
of the window. In certain cases, the calculation of the white
percentage may lead us more rapidly to mark a NO answer.

Note that the cover window query may be considered as
a case of the first form of the fuzzy cover window query,
where the threshold equals 100%. Thus, we conclude that
this type of query can also be processed with an algorithm
similar to the cover window query. The drawback for using
this algorithm is that during its execution, from one maximal
block to the next, many previously accessed leaf nodes have
to be accessed again and again, at different time points. We
believe that this shortcoming could be minimized with the
use of a carefully designed cache policy.

Note, also, that the second form of the fuzzy cover query
may also be formulated as follows. Given ak × k window
and a sequence ofN binary images, each associated with
a unique timestampTi , wherei = 1, 2, . . . , N : determine
whether or not the black and/or white color exists inside the
window, at each time point within the time interval [T1, TN ].
Depending on the black percentage of the window area, only
the black/white or both colors may exist inside the window
for the corresponding time point.

3.6. General comment for window query algorithms

Alternative naive approaches for answering the above spatio-
temporal queries are easy to devise. The respective
algorithms would perform a suitable range search for all the

trees that correspond to the given time interval as if all of
them were separately stored, starting from the respective
roots. These alternative approaches would not take into
account the ‘horizontal’ pointers that link leaves of different
trees and they are expected to have significantly worse I/O
performance.

Moreover, all the presented sophisticated algorithms can
be easily transformed to work backwards by starting from
the end of the time interval and by using the B- and BC-
pointers.

4. EXPERIMENTS

4.1. Preliminaries

The structure of overlapping linear quadtrees was imple-
mented in the C++ language and all the experiments were
performed on a Pentium II PC. As already mentioned in
Section 2.4, in order to maximize overlapping, the capacity
of leaf nodes was fixed to 10 FD codes. Thus, a disk page
could host a number of consecutive linear quadtree leaves.
We performed experiments for page sizes equal to 1 and
2 Kbytes (1K and 2K). For 1K (2K) page size, the capacity
of internal nodes of linear quadtrees was 124 (252) keys and
the size of each leaf was112 ( 1

24) of a page.
The evolving images were synthetic and real raster binary

images of sizes: 256×256, 512×512 and 1024×1024 pixels.
For the experiments with the synthetic (real) images, the
number of evolving images wasN = 2 (N = 26). Thus,
the header table had a very small size and was stored in the
main memory.

For every insertion of a new image (for converting it
from raster to linear FD representation) in overlapping
linear quadtrees, we used the algorithm OPTIMALBUILD
described in [3]. At the start of every experiment, the FD
codes of the first image were inserted in an empty B+-tree.
The codes were inserted one at a time, as they were produced
by OPTIMAL BUILD. Thus, we obtained the result of a
typical linear quadtree with average storage utilization equal
to ln 2. The FD codes of the next image were inserted in the
second linear quadtree, so that the identical subtrees between
the two trees would overlap.

The FD codes of the second image (and of each of the
remaining images) were firstly sorted in increasing order, so
that an algorithm which performs batch modifications (i.e.
insertions, deletions and updates) along the lines of [22]
could be used. There was no I/O cost for black quadrants that
were identical between the two consecutive images, since,
by keeping the quadcodes of the last inserted image in a
compact array as a DF-expression, we were able to sort out
the respective identical FD codes. Note that the size of the
DF-expression, for a 256× 256 image is 21.3 Kbytes, for a
521× 512 image 85.3 Kbytes, whereas for a 1024× 1024
image it is 341.3 Kbytes in the worst case. Therefore, in any
case it is small enough to be stored in the main memory.

4.2. Storage requirements

In the experiments of this subsection, the size of the images
was fixed to 256× 256 pixels. Every experiment was
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FIGURE 7. First experiment: the storage gain (left) and the percentage of common FD codes (right), as functions of the black probability,
for various image differences.

repeated 50 times using a pair of similar synthetic random
images. The main goal was to count the average storage
gain measured as a ratio of the number of common linear
quadtree nodes between the two images over the total
number of the linear quadtree nodes of the second image, as
if the latter image was physically stored. Due to the number
of repetitions of every experiment, the results obtained
converge to the average storage gain of a large sequence
of evolving images (stored in the new structure). The
parameters that varied in our experiments were as follows.

• The black probability, i.e. the percentage of the black
pixels (from 50% up to 95%) for the creation of the
first random image. Note that a random image is not
considered very realistic when the black probability
does not differ significantly from 50%, since the image
created includes very small regions covered entirely
by black or white and corresponds to an almost full
quadtree.

• The aggregation coefficient, agg(i) of an imagei. This
quantity was defined and studied in [30] and expresses
the coherence of regions of homogeneous colors, of the
image. Starting from a random image and using the
algorithm presented in [30], an image with exactly the
same black probability and higher aggregation (more
realistic) can be created.

• The image difference, i.e. the percentage of pixels
changing value from the first image to the next one
(from 2% to 10%). Note that the random changing
of single pixels is an extreme method of producing
evolving images and the results produced by this policy
should be seen as very pessimistic. In practice, much
higher storage gains are expected.

4.2.1. First experiment
This experiment concerned random images of various black
probabilities, the aggregation of which remained unchanged.
Each image was randomly changed and overlapped with its
changed version. The left-hand side of Figure 7 depicts the
average storage gain as a function of the black probability of

the first image of each pair, for various image differences.
The right-hand side of this figure depicts the average
percentage of common FD codes between the images of
each pair. In most cases, the storage gain is significant and
varies between 20% and over 70%, according to the image
difference.

The abrupt decrease of the common disk space after the
85% black probability is explained by the fact that images
with 85% black pixels and higher form many large and solid
black spatial regions (‘islands’). Thus, when we change the
color of the 2% (for instance) of the pixels of this image in
order to produce the second image, many of these islands are
fragmented, producing different quadblocks. As a result, it
is evident that all the curves of Figure 7 converge to point
(100, 0).

4.2.2. Second experiment
This experiment concerned random images of various black
probabilities, the aggregation of which was increased by
various amounts. Each synthetic image was randomly
changed and overlapped with its changed version. Since a
large number of results were produced, Figure 8 depicts, for
two cases only (on the left for 60% black probability and on
the right for 80% black probability), the storage gain as a
function of aggregation for various image differences.

Figure 9 is based on the data produced by the same
experiment. The difference in this figure is that in each
curve the black probability was stable (while in Figure 8
in each curve the image difference was stable). Again, for
two cases only (for image difference equal to 2%, left and to
8%, right), the storage gain as a function of aggregation for
various black probabilities is depicted. In this experiment,
the storage gain is also significant and, in most cases, varies
between 15% and 70%, according to the image difference.
The decrease of the percentage of the common disk-space
inversely to the increase of the coefficient of the aggregation
took place for the same reason as was described in the first
experiment.
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FIGURE 8. Second experiment: the storage gain as a function of aggregation, for various image differences. The images were 60% black
(left) and 80% black (right).
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FIGURE 9. Second experiment: the storage gain as a function of aggregation, for various black probabilities. The image difference was 2%
(left) and 8% (right).

4.3. Query processing

4.3.1. Experiments with synthetic data sets
The sizes of the binary random images were set to 256×256
or to 512× 512 pixels. Every experiment was repeated 10
times using a pair of similar images. At the start, the first
image was created with a specific black probability and an
aggregation coefficientagg() that was increased at various
amounts. After the insertion of the first image, according
to the procedure described in Section 4.1, a linear quadtree
with an average node occupancy equal to ln 2 was produced.
This image represents the last image in a large sequence of
overlapping images. Next, the second image was created
again by randomly changing the color of a given percentage
of the pixels of the first image. Finally, the FD codes of that
image were compared with those of the previous image and
inserted in the second linear quadtree which overlaps.

Windows of sizes equal to 32× 32, to 64× 64 or to
128×128 pixels were queried against the structure produced.
Each of the five spatio-temporal window query algorithms
was executed 10 times for a randomly positioned window

on the image space. Thus, since every experiment was
executed 10 times, each of the algorithms was run 10×
10 = 100 times. Besides, for each window, the respective
naive algorithms were executed (the algorithms that perform
independent searches through roots, as if all linear quadtrees
were independently stored). In each run, we kept track
of the number of disk reads needed to perform the query
for the linear quadtree corresponding to the second image.
The reason why we excluded the query processing cost for
the first image from the measurement is that in this linear
quadtree both algorithms would perform the same range
search, starting from its root and obtaining the same I/O
processing cost. We are interested only in the I/O cost profit
we can gain by the use of the horizontal pointers. In this case
also, due to the number of repetitions of every experiment,
the results obtained converge to the average I/O cost profit
of a large sequence of evolving images (stored in the new
structure). In the following, various experimental results
are depicted by assuming that the image difference is 2%.
Except for Figure 10, the black pixel probability of the first
image is always fixed to 70%.
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FIGURE 10. The I/O efficiency (for 1K pages) of the strict containment window query, as a function of aggregation, for various black
probabilities.
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FIGURE 11. The I/O efficiency of the strict containment window query, as a function of aggregation, for two algorithmic approaches (left)
and for one or 12 leaf nodes per disk page of size 1K (right).

In Figure 10, for the sophisticated algorithmic approach
of the strict containment window query, one can see the
number of page accesses as a function of aggregation for
various black probabilities of the first image. In the left
(right)-hand side of the figure, the image size is 256× 256
(512× 512), the window size is 32× 32 (64× 64) pixels
and the page size is 1K. The decrease of the query I/O cost
after the 0.90 aggregation coefficient is explained by the fact
that images with the 0.90 aggregation coefficient and higher,
form many large and solid black islands. Thus, increasing
the aggregation coefficient, the size of the linear quadtrees of
the produced images decreases and the query I/O cost also
decreases. This phenomenon is more visible as the linear
quadtrees are larger.

The left-hand side of Figure 11 shows, for the same
window query and 512× 512 image, the number of page
accesses as a function of aggregation for the naive and the
sophisticated algorithmic approaches. The black probability
is 70% and the page size is again 1K. Results (different plots)
for windows of the size of 64× 64 and 128× 128 pixels
are depicted, showing a considerable improvement of the
approach that uses the F- and FC-pointers to process the
spatio-temporal query.

The right side of Figure 11 that concerns the sophisticated
approach of the strict containment window query, shows
that there is a significant improvement in the performance,
when each 1K disk page holds 12 leaf nodes instead of
a single one. However, this figure indicates that this I/O
improvement cost is not directly proportional to 12, i.e. the
number of leaf nodes that a 1K disk page may hold. This is
because, as it was expected, not all the 12 stored leaves of
an accessed page are useful for the answer of a query. It is
also evident from the figure, that the query processing cost
for the sophisticated approach is independent of the value
of aggregation coefficientagg() and thus independent of the
coherence of regions of homogeneous colors in the images.
This is the result of two reverse factors that neutralize each
other. Both factors are related to the aggregation coefficient
of the corresponding images. Increasing the aggregation
coefficient of the first image, the solid black spatial regions
in it become larger. Thus, as we also claimed earlier, the size
of the linear quadtrees of the produced images is expected to
decrease. On the other side, when we change the color of the
2% of the pixels of this image in order to produce the second
image, many of these large black islands are fragmented,
producing many different quadblocks and a larger linear
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FIGURE 12. The I/O efficiency of the border intersect window query for page size of 1K (left) and 2K (right), as a function of aggregation.
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FIGURE 13. Analytical performance comparison of the strict containment, border, and general border intersect window queries for page
size of 1K (left) and the I/O efficiency of the cover window query for two algorithmic approaches (right), as a function of aggregation.

quadtree for the second image. The result is that the size of
the linear quadtree of the second image is finally expected
to be almost the same for different values of the aggregation
coefficient. Therefore, the I/O cost needed to perform the
query for the second image is also expected to be about
the same for different values of the aggregation coefficient.
This conclusion holds for all the experiments we made with
synthetic data sets. The image and the window sizes for
the experiments concerning the right-hand side of Figure 11
were 256× 256 and 32× 32 pixels, respectively.

Figure 12 sets out the I/O processing cost for the border
intersect window query and two algorithmic approaches (the
naive and the sophisticated). The image size is 512×
512 pixels whereas the page size equals 1K on the left-hand
side and 2K on the right. It is apparent that the I/O cost
difference between the two page sizes is very small even if
the height of the corresponding linear quadtrees is not the
same.

In the left-hand side of Figure 13 we compare the
I/O efficiency of the sophisticated approach for the strict
containment, border and general border intersect window
queries for images with 256×256 pixels, query window with
32× 32 pixels and 1K disk pages. It is shown that the I/O

processing cost for the first two queries is almost the same,
since the corresponding linear quadtrees are quite small and
the respective algorithms access almost the same pages in
each of them. The important conclusion of this figure is that,
as expected and analyzed in Section 3.3, the I/O cost for the
process of the general border intersect window query is not
the sum of the other two ones, but only slightly greater than
the greater of them.

The right-hand side of Figure 13 refers to the cover
window query: one can see the number of page accesses as
a function of aggregation for the naive and the sophisticated
algorithmic approaches. The image and window sizes are
512×512 and 64×64 pixels, respectively. Results (different
plots) for page sizes equal to 1K and 2K are depicted. Note
that, since the cover window query is of YES/NO type and
the intelligent exclusion of group of images from further
consideration was used (see Section 3.4), the number of node
accesses is extremely small.

A general remark from the diagrams in which the naive
and the sophisticated approaches of Section 3 are compared
is that the use of horizontal pointers leads to significantly
higher I/O efficiency for all the five spatio-temporal window
queries.
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FIGURE 14. Three successive images (those with transaction time values of 24, 25 and 26, respectively) of the visible spectral channel for
a 60% black pixel probability.

4.3.2. Experiments with real data sets
In the following we provide the results of some
experiments based on real raster images that may
be acquired via an anonymous FTP, from ftp://s2k-
ftp.cs.berkeley.edu/pub/sequoia/benchmark/ raster/. The im-
ages were meteorological views from the area of California,
which were directly derived from the Sequoia satellite. They
correspond to three different categories of spectral channels:
visible, reflected infrared and emitted (thermal) infrared.
Originally, each 8-bit pixel of these images represented a
value in a scale of 256 tones of gray. We transformed
each image to black and white, by choosing a threshold
accordingly, so as to achieve a requested black probability.
This probability ranged between 20% and 80%. The size of
the evolving binary images was fixed to 1024× 1024 pixels
and the total number wasN = 26 in every channel.
Therefore, time point values varied fromT1 = 1 toTN = 26.

Every group of N meteorological satellite images
corresponds to a particular 2-week interval of the same
area (almost one image every 13 h) and, thus, it is self-
evident that there must appear many differences from image
to image. Figure 14 depicts three successive images of the
visible spectrum and confirms this fact. Table 1 shows that
from the comparison of the 26 consecutive images of the
spectral channel, the average percentage of pixels changing
value from each image to the following one is from 12.5%
to 21.2%, depending on the average black probability of the
images. The same and even worse holds for the other two
sequences of images, that of the reflected infrared and the
thermal infrared spectral channels. Thus, it could be argued
that the specific images are not the most suitable data to
test the performance of overlapping linear quadtrees and the
results produced should be seen as very pessimistic.

Note that in Section 4.2 (see Figures 8 and 9) the
experiments with synthetic images showed clearly that if
the image difference as a percentage of the pixels is more
than 10%, whereas the average aggregation coefficient of the
images is very high (like the image data in Table 1), then the
average storage gain of storing these images in overlapping
linear quadtrees is expected to be negligible. Indeed, the
last row of Table 1 indicates that this is true and that the
experiments with synthetic region data sets led to an exact
prediction. In the case of inserting the sequence of these

TABLE 1. Values of different parameters (in per cent) from
the experiment of 26 consecutive images of the visible spectral
channel. The average values inN = 26 images.

Black probability 20 40 60 80
Image difference 16.22 21.22 18.77 12.49
Aggregration coefficient 89.70 92.38 95.55 98.18
Storage gain 0.18 0.40 0.44 0.52

images into overlapping linear quadtrees the average storage
gain from tree to tree is less than 0.53%. Thus, theN linear
quadtrees are almost all physically stored and overlapping
linear quadtrees cannot trade on their major advantage:
that of sharing sub-trees whose spatial information remains
unchanged between successive timestamps in order to obtain
the smaller possible space occupancy and faster responses
in queries that involve space and time. However, the query
performance results we obtained with these real images
were encouraging in such a worst-case environment. Much
better query performance is expected in other, more suitable,
spatio-temporal applications.

Real-world examples of such applications include the
storage and manipulation of data of meteorological phe-
nomena (e.g. atmospheric pressure zones or icebergs as
they change and move over time), of faunal phenomena
(e.g. movements of populations of animals/birds/fish), of
the urban environment (e.g. areas covered by buildings as
they change over time), of natural catastrophes (e.g. the
evolution of fire or flood), etc. In every case, the data sets
must include sequences of images where there are limited
differences between consecutive images (e.g. successive
images of digital video or satellite views of the same area,
shot with small time intervals between them).

The page size in the following experiments was fixed at
1K since the height of the trees was rather low. Windows
with sizes of 4×4, 16×16, 32×32, 64×64, 128×128 and
256×256 pixels were queried against the structure produced.
Each of the five sophisticated spatio-temporal window query
algorithms executed 50 times for each window size and in
a random window position every time. For each window
position, the respective naive algorithms were also executed.
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FIGURE 15. The I/O activity of the strict containment window
query as a function of the black probability of the evolving images.

In each run, we kept track of the average number of disk
reads needed to perform the query per linear quadtree. For
a more effective comparison of the two different algorithmic
approaches, we excluded from the measurement the number
of disk reads spent for the very first image of the sequence
of theN images. As already mentioned in the experiments
with synthetic images, the reason is that for the first image,
both algorithms would perform the same range search in
the corresponding linear quadtree, starting from its root
and, thus, accessing the same number of disk pages. It is
important to highlight that we are only interested in the I/O
cost profit we achieve by the use of horizontal pointers for
the images 2 to 26.

Below, various experimental results are set out. In
Figure 15, for the strict containment window query, one can
see the average number of page accesses per linear quadtree
as a function of black probability of the images for the naive
and the sophisticated algorithmic approaches. The window
sizes are 64× 64, 128× 128 and 256× 256 pixels. The
main conclusion that can be drawn from this figure is the
following. Although Table 1 pointed out that the choice of
the specific images to test the behavior of overlapping linear
quadtrees was very bad, the sophisticated algorithm always
outperforms the corresponding naive one in a percentage that
is about 25% for 256×256 windows, 30% for 128×128 and
approaches 45% for the 64× 64 windows. This, of course,
is due to the fact that the sophisticated algorithm does not
access internal nodes in the linear quadtrees of images 2–
26 (see Section 3.1). For the naive algorithm the following
holds. The larger the window size, the smaller the ratio
of the internal nodes accessed against the corresponding
leaf nodes. This is the reason that the average gain of the
algorithm that does not access internal nodes, decreases as
the window becomes larger and larger. The graph shows
also that the average I/O activity per tree is higher when
the images are 40% or 60% black than when they are 20%
or 80% black. The reason is that the average number of
corresponding FD codes produced by the images in the first
two cases is higher than in the other two.

The presentation of graphs for the border and general
border intersect window queries is omitted from this
subsection, since these experiments did not give plot
behaviors that differed from those in strict containment
window query. The left-hand side of Figure 16 illustrates the
performance of overlapping linear quadtrees for the cover
window query and the two algorithmic approaches (the naive
and the corresponding sophisticated approach) for various
window sizes and images with black pixel probability of
20%. It appears that the average query processing cost per
tree is almost stable, regardless of the increase of the window
size. This is because, even if the window is 32× 32 or
256× 256 pixels, the black probability is very low (20%
on average). Thus, both algorithms conclude in answer NO
and terminate, with very few accesses.

The right-hand side of Figure 16 for the same window
query indicates that the performance of the sophisticated
approach depends significantly on the black pixel probability
and the aggregation coefficient (the corresponding values
are shown in Table 1) of the images. In contrast, the
corresponding naive algorithm is not, in practice, influenced
by this. It accesses few pages every time, indicating a linear
behavior. The reason that the naive algorithm for the cover
window query outperforms the sophisticated algorithm is
due to the way that these two algorithms work during the
query process. The algorithm presented in Section 3.4,
after the window decomposition into maximal quadblocks,
searches from linear quadtree to linear quadtree (by the use
of F- and FC-pointers) to process the query for this maximal
quadblock for the whole time interval. After finishing
this task, the process continues with the next maximal
quadblock and follows the same procedure. This procedure
will probably lead us to read many already accessed pages
per linear quadtree, since most of the time two consecutive
maximal quadblocks have neighboring FD codes. For this
reason, for the experiments of Figure 16, we accommodated
the sophisticated algorithm with a least-recently-used buffer
of N–1 pages, in the sense that there was one buffered
page for every linear quadtree in the interval [T2, TN ]. A
general conclusion for the cover window query is that when
the linear quadtrees do not share much of their stored
spatial information, then the naive algorithm outperforms
the corresponding algorithm of Section 3.4 and, therefore,
it is recommended to the database designer as the preferred
solution.

The left-hand side of Figure 17 illustrates the performance
of the overlapping linear quadtrees in the fuzzy cover
window query when images are 40% black and the window
size varies from 64× 64 to 256× 256 pixels. Recall that
this query can take two different forms. The algorithm that
uses the F- and FC- (or B- and BC-) pointers is exactly the
same in both forms of the query, following the algorithmic
behavior of the general intersect window query. However the
corresponding naive algorithms differ. The naive algorithm
of the second form will search, for every maximal quadblock
produced by the query window, in all the linear quadtrees.
However, the naive algorithm of the first form of the query
will search only for those maximal quadblocks that are
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FIGURE 16. The I/O activity of the cover window query as a function of the window size for two different algorithmic approaches (left)
and of the black probability of the evolving images (right).
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FIGURE 17. The I/O activity of the fuzzy cover window query as a function of the window size (left) and of the black probability of the
evolving images (right), for different algorithmic approaches.

enough to conclude whether the answer is YES or NO
for each linear quadtree, depending on the threshold given
by the query. As derived from the figure, for the case
of the first (second) form of the query, the sophisticated
algorithmic approach is always superior of the naive one,
in a percentage that varies from 1% to 10% (30% to 38%,
respectively).

The right-hand side of Figure 17 demonstrates the
performance of the above three algorithmic approaches (the
two different naive approaches and the sophisticated one)
in the fuzzy cover window query, for two different window
sizes, as a function of the black probability. It is evident that
for the case of the second form of the query, the sophisticated
approach outperforms from 25% to 36% for the 128× 128
window size and up to 52% for the 64× 64 window size.
For the first form of the query, in most cases this approach
is also effective depending on the black probability of the
evolving images. Therefore, for the first kind of fuzzy cover
window query, it is a responsibility of the database designer
to choose the algorithm that makes use of horizontal pointers
or the corresponding naive approach.

5. CONCLUSIONS

In the present paper, we proposed a new spatio-temporal
structure: overlapping linear quadtrees. This access
method is based on transaction time and can be used as
an index mechanism for a database of consecutive raster
images. Experimentation with synthetic regional data
revealed that considerable storage is saved in comparison
to the independent linear quadtrees that are used to store
these images. Five efficient algorithms for processing
temporal window queries in an image database organized
with overlapping linear quadtrees were also presented. It
was thus demonstrated that this structure can be used in
STDBs to support query processing of evolving images.
More specifically, we introduced algorithms for processing
the following spatio-temporal queries: strict containment,
border intersect, general border intersect and cover and
fuzzy cover window queries. In addition, we presented
experiments performed to study the I/O efficiency of these
algorithms. The latter experiments were based on real and
synthetic sequences of evolving images. In general, our
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experiments showed clearly that, thanks to the presence of
‘horizontal’ pointers in the leaf nodes of overlapping linear
quadtrees, our sophisticated algorithms are very efficient in
terms of disk activity.

In the future, we plan to develop algorithms for other
new spatio-temporal queries (such as spatio-temporal joins,
as well as spatio-temporal nearest-neighbor queries) in the
context of overlapping linear quadtrees, and examine their
performance. Along the same line, we plan to examine
other quadtree-based STAMs and study their behavior.
Preliminary results have been published in [31], where the
structure of a multiversion B-tree (see [32]) is extended by
accommodating quadcodes instead of ordinary numeric data.
In addition, we believe it would be significant to extend
the methods presented to grayscale and/or colored images.
Another area of further research would be to perform
experiments based on artificial similar images produced
by shifts, rotations, scaling and other transformations, or
experiments based on real images from various real-life
applications.
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