University of

"1l Kent Academic Repository

Bowman, Howard, Bryans, Jeremy W. and Derrick, John (1998) Analysis
of a Multimedia Stream using Stochastic Process Algebra. In: Priami, C.,
ed. Sixth International Workshop on Process Algebras and Performance
Modelling. . pp. 51-69. , Nice

Downloaded from
https://kar.kent.ac.uk/21606/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21606/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Analysis of a Multimedia Stream using
Stochastic Process Algebra’

H. Bowman, J.W. Bryans and J. Derrick

Computing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UK
Tel: +44-1227-827570 and Fax: +44-1227-762811
{H.Bowman,J.W.Bryans,J.Derrick } @ukc.ac.uk

Abstract. It is now well recognised that the next generation of dis-
tributed systems will be distributed multimedia systems. Central to mul-
timedia systems is quality of service, which defines the non-functional
requirements on the system. In this paper we investigate how stochastic
process algebra can be used in order to determine the quality of service
properties of distributed multimedia systems. We use a simple multime-
dia stream as our basic example. We describe it in the Stochastic Process
Algebra PEPA and then we analyse whether the stream satisfies a set of
quality of service parameters: throughput, end-to-end latency, jitter and
error rates.

1 Introduction

It is now well recognised that the next generation of distributed systems will
be distributed multimedia systems, supporting multimedia applications such as
video conferencing. Importantly though, multimedia imposes a number of new
requirements on distributed computing, not least of which is the need to en-
sure “timely” transmission and presentation of multimedia data, e.g. ensuring
that the end-to-end timing delay between transmitting and presenting video
frames stays within acceptable bounds. Such real-time constraints are typically
embraced by the concept of quality of service [BBBC98].

Quality of Service (QoS) characterizes the non-functional properties of a sys-
tem; it is expressed in terms of a number of quantifiable criteria, e.g. timeliness,
capacity, integrity, cost, security, reliability and priority. In this paper we focus
on real-time QoS parameters, such as throughput, end-to-end latency and jitter,
we will clarify these concepts shortly.

Traditionally, in the field of real-time systems, fulfilment of real-time require-
ments is ensured by a process of measurement and refinement. However, such
approaches are usually informal and there are examples of finished systems which
are rendered worthless because they cannot meet their real-time requirements.
In the field of distributed systems, the role of ensuring real-time requirements

" The research presented here is supported by the UK Engineering and Physical Sci-
ences Research Council under grant number GR/L95878 (A Specification Architec-
ture for the Validation of Real-time and Stochastic Quality of Service).

are met falls on QoS management [HCCB94]. Attempts can be made to pro-
vide the required quality of service through a combination of QoS management
functions including resource reservation and admission control, monitoring and
adaptation. Again, however, such measures are undertaken after the system is
deployed.

Tt is also worth noting that QoS management is a notoriously difficult activity.
Specifically, QoS capabilities change dramatically as the load on a system varies;
such contention for bandwidth implies that QoS is a highly dynamic measure and
is difficult to determine statically. Furthermore, QoS is fundamentally an end-to-
end measure; localized measurement is only a partial solution. In addition, end-
to-end measurement must typically be made in a highly heterogeneous setting,
across administrative and management domains [Slo94].

It is clear that attempting to quantify the performance of a system once it
is built will not always yield a reliable measure of QoS capabilities. Information
on performance capabilities need to be determined during system development
and be used to inform dynamic measurement, systems.

In response, a number of researchers have considered techniques for the speci-
fication [BBBC98,FL98] and verification [BFM98] of Quality of Service. However
to date, this work has been restricted to specification and verification using de-
terministic timing, e.g. putting fixed upper and lower bounds on the time that
actions are offered to the environment. This is a useful first step, but it does not
lead to a very refined model of the performance of systems. It is also necessary to
consider probabilistic and stochastic concerns, for example to reason about the
distribution of timings on packet deliveries or the probabilities of packet loss.

This paper makes a first step in this direction by assessing the suitability
of stochastic process algebras for the specification and analysis of distributed
multimedia systems. Stochastic process algebras are now a relatively extensively
investigated topic, with a number of techniques and tools available, e.g. PEPA
[Hil96], TIPP [HRW95], EMPA [BDG95] PA ;s [Kat96] and SPADES [DKB97].
Here we consider one of the most important techniques, PEPA. Our approach
is to model an existing example of a multimedia system, a multimedia stream,
in PEPA and then investigate how to check that the system satisfies certain

real-time quality of service properties.

The work being reported here has been performed in the context of the V-
QoS project which is an EPSRC funded project between the University of Kent
at Canterbury and Lancaster University.

Structure of paper. First we give background on distributed multimedia sys-
tems in Section 2, and in particular, we introduce the multimedia stream exam-
ple. Then in Section 3 we review the stochastic process algebra PEPA. In Section
4 we give a PEPA specification and analysis of the multimedia stream. In Section
5 we discuss the use of immediate actions in stochastic process algebra. Then in
Section 6 we assess the suitability of PEPA for such specification and analysis
in the light of Section 4 and we give pointers to further work.

2 Distributed Multimedia Systems

2.1 Background

It is typically argued that the incorporation of multimedia enforces three new
requirements on distributed systems [BBBC98]:-

— Continuous Interaction. Traditionally, distributed systems communication
paradigms support interaction of a logically singular character, e.g. a remote
procedure call. However, the advent of multimedia means that this is not
sufficient. In particular, interaction of an “ongoing” nature must be pro-
vided, e.g. continuous transmission of video frames in a video conferencing
application. Such an ongoing interaction is called a stream (the term flow
is also often used). We call the elements that are transmitted in a stream
packets.

— Quality of Service. QoS requirements also have to be associated with such
continuous interactions. For example, if in a video conferencing application,
the end-to-end delay between the generation of frames and their presenta-
tion becomes too great the sense of simultaneous interaction will be lost.
Typical quality of service properties include: end-to-end latency (delay) be-
tween the generation of packets and their presentation, throughput, i.e. the
rate at which packets are presented and jitter, which is a measure of the
variability of delay [BBBC98]. Limiting jitter ensures that there is not an
unacceptable variability around the optimum presentation time, e.g. if one
packet is presented quite early and the next is presented relatively late an
unacceptable stutter in the presentation may result.

— Real-time Synchronisation. It is also often necessary to synchronise multiple
media streams. For example, in order to enforce lip-synchronisation, video
and audio streams must be synchronised. Application specific real-time syn-
chronisation also arises, e.g. if captions need to be displayed at particular
points in a video presentation.

The simple multimedia stream, which we present next, illustrates the first
two of these requirements. Unfortunately, it is beyond the scope of this paper to
consider real-time synchronisation, however, we can point the interested reader
to a number of papers which specify a lip synchronisation algorithm using process
algebras, e.g. [Reg93,BBBC98,ABSS96,BFM98].

2.2 The Multimedia Stream

The basic multimedia stream is as depicted in Figure 1. It has three top level
components: a Source process, a Sink process and a communication Medium.
The Source generates a continuous sequence of packets! which are relayed by

! These could be video frames, sound samples or any other item in a continuous media
transmission. In this way the scenario remains completely generic. However, instan-
tiation of data values specializes the scenario.

the Medium to the Sink, which then displays them. The Medium is assumed
to support asynchronous communication between the Source and the Sink. In
addition, the Medium is unreliable and may lose messages. Three basic actions
support the flow of data (see Figure 1 again), transmit, receive and display,
which respectively signal the transfer of packets from the Source to the Medium,
from the Medium to the Sink and their display at the Sink. In our stochastic
analysis, specific rates will be associated with the actions transmit, receive and
display.

This example is based upon the LOTOS/QTL specification that appears in
[BBBC93,Bla94,BBBC98]. However, the formulation of the stream in [Bla94]
contains specific timing assumptions, e.g. that the Sink takes 5ms to process
frames and error behaviour, e.g. that if a frame arrives particularly late then the
system should go into an error state. A theme of the sequel is to see to what
extent we can reflect these timing assumptions in the setting of a PEPA analysis.

Source Sink :
Process Process |\ disPlay
transmit receive
Medium

Fig. 1. A Multimedia Stream

In Section 4, we present a PEPA description of the basic stream behaviour
and focus on our main objective: to analyse the quality of service properties of
the stream. We will vary parameters in the system and see what consequences
they have on a number of quality of service properties. The QoS properties we
will consider will be, latency, the end-to-end delay between a transmit action
and its corresponding display action; throughput, the rate at which the Sink
process displays packets; jitter, which quantifies how latency values vary about
the optimum; and the error rates at which the system can go into error.

3 The Stochastic Process Algebra PEPA

Process algebras are a mature formalism for describing and analysing concur-
rent and distributed systems; important process algebra approaches include CCS

[Mil89], CSP [Hoa85] and LOTOS [BB88]. Furthermore, there are now a num-
ber of approaches for incorporating stochastic features into process algebra, e.g.
[Hil96 HRW95 BDG95,Kat96,DKB9I7]. It is argued [Hil96] that stochastic pro-
cess algebras offer a number of benefits over standard performance analysis tech-
niques such as queueing models [Kin90] and Petri Nets [MBC*95], not least of
which is that stochastic process algebra enable compositional description of per-

formance issues.

The particular stochastic process algebra we consider is PEPA [Hil96]. Within
PEPA, every activity (so called to distinguish it from process-algebraic actions)
has a duration. However, an event — what the observer sees when an activity
finishes — is instantaneous. An activity a is defined as a pair (a, r) where a € A
is the action type and r is the activity rate. Each activity is uniquely typed. 7 is
the unknown type (which plays the same role as the CCS silent action [Mil89]).

The duration of each PEPA activity is determined by an associated ezpo-
nential probability distribution function. This function is parameterised by the
activity rate, which is either a real number or T — the unspecified rate. When
enabled, the activity ¢ = («,r) will delay for a period determined by its dis-
tribution function: the probability that ¢ happens within time ¢ is given by
F,(t)=1—e".

The syntax of PEPA is given by

P:=(a,r).P|P+Q|PT Q|P/L|A

where P is a process, L is a set of actions and A is a constant. We assume a
countable set of process definitions 4 = P. These terms represent, prefix, choice,
cooperation, hiding and process instantiation. For definitions of these operators
the reader is refered to [Hil96]. The cooperation operator is perhaps the most
interesting - the two components P and () evolve in parallel, synchronising on
all activities whose type is in the set L. An action whose type is not in L will
proceed independently. It is assumed that each component in a cooperation has
its own implicit resource. Cooperation creates a new shared action, with the
same type as before, but a rate reflecting the rate of the slower participant.

Having specified a system in PEPA| it can be analysed using the PEPA Work-
bench [Gil97]. Any finite PEPA process has an underlying Markov chain; this
fact forms the basis of all the analysis that is performed. The PEPA workbench
generates this Markov chain which can then be solved to determine the under-
lying probability vector. This vector characterises the equilibrium behaviour of
the PEPA specificaton: elements of the vector give the (steady state) probability
that the specification is in a particular state. As illustrated later, a number of
performance measures can be derived from these steady state probabilities.

4 PEPA Specification of the Stream

4.1 Specification

We model the stream as a composition of four components: a Source, a Channel,
a Sink and a Timer. The complete specification is given by

Source > Channel

{transmit} {receive} Sink {reset} Timer

We describe each component in turn.

Source. The Source simply transmits frames onto the medium at a rate of rqns;
we specify it as,

def .
Source = (transmit, Tipens).Source

Channel. The Channel component models the medium; it accepts frames from
the source (via the action type transmit) and then either passes them on to the
Sink, (via the action type receive, with rate r.¢.), or loses them (via the action
type loss, with rate r,ss). A perfect channel may be described by setting ryyss
to zero.

We model the Channel as a finite buffer holding up to five frames?. The com-
plete description is as follows. Although not strictly allowed by the PEPA syntax,
we parameterise the definition of Channel in order to simplify our presentation.

Channel = Channely

Channely & (transmit, T).Channely

Channel; & (transmit, T).Channel,11 + 1<ig4
(receive, ryec). Channel; 1 +
(loss, rioss)- Channel;_y

Channels & (receive, rre.). Channely + (loss, rioss). Channely

The transmit action type in Channel is passive (the medium can accept
frames from the Source at any rate). In fact, to use the Workbench to anal-
yse the specification, transmit must be passive since the current version of the
PEPA Workbench requires that only one action type instance may influence the
corresponding activity rate.

In the untimed setting the action loss would be hidden from the environment,
we could use the PEPA hiding operator to obtain the same effect with PEPA.
However, in contrast to in the (deterministic) timed case, where hiding enforces
maximal progress [Reg93], here it does not effect the results of Markov analysis,
thus, we do not include it.

? We cannot model an infinite buffer since in standard process algebras it would ei-
ther be modelled using data, e.g. Buf(q:Queue) := transmit?z:Item; Buf(add(z,q)) +
[not(empty(q))] -> receivelfirst(q); Buf(remove(z)) or by allowing an infinite set of
equations, e.g. replacing 1 < 4 < 4 in our definition of Channel with 1 < i, neither
of which is possible in PEPA.

Sink. The Sink (modelled as a three place buffer) receives frames and displays
them. The receive action type is passive (any rate of frames is accepted).

Sink = Sink,
Sinky < (receive, T).Sink,
Sink; & (receive, T).Sink; 11 + (display, raisp). Sinkgi—1) 1 < i <2
Sinks = (display, T4isp). Sinkpo
Sinkg; < (reset, Treset).Sink; 0<i<2

Error Rates. In the deterministic case, an error is typically signalled by forcing
the system to enter an error state (which would typically be a stop state) when
certain behavioural properties are invalidated, e.g. the level of throughput goes
out of certain bounds [BFM98]. However, this is not possible within the PEPA
formalism since in order for Markov analysis to be performed, the specification
must be irreducible [Hil96]. The existence of a deadlock state would invalidate
irreducibility. Consequently, in this paper we investigate an alternative form of
error behaviour. The approach is that if the gap between consecutive displays
is beyond a certain threshold level, then the system simply signals an error,
by performing an error. Such signals could be used in a network management
backbone where error rate statistics are accummulated.

In order to model this error behaviour we use a Timer component. The job
of Timer is to monitor the delay between displays, and to report an error if
the delay exceeds a certain limit. After each display, the Sink sends a reset to
the Timer. The resets are signals to the Timer (which synchronises on them),
and we would naturally like to model them as immediate actions. Although
some attempts have been made to allow instantaneous actions within stochastic
process algebras (see for example [HRW95]), they are not included within PEPA.
We therefore model signal activities by setting the rate to be much greater (by
a factor of 10 in our example) than the rate of any of the other activities. We
will return to the issue of immediate actions in Section 5.

Timer. The Timer monitors the delay between displays. Such a feature neces-
sarily requires the Timer to “remember”? the time of the last display, in order
to determine whether the next one is on time. The restriction to exponential
distributions means that we can only approximate such a feature, which we do
using Erlang distributions.

An Erlang distribution is a sequence of exponential distributions which ap-
proximate a deterministic timing to an arbitrary degree of accuracy [Jai91]. For
example, to model an error event occurring deterministically at time ¢, we use

We use the term remember in the sense that the timer must count down the waiting
time in a deterministic fashion. This goes contrary to the memory-less assumption
which implies that if an event does not occur in a particular time unit then evaluation
of whether it occurs in the next time unit is completely independent of the previous
time unit. Thus, the memory-less property implies that there is no sense in which
how long a delay has been counting down for is remembered.

a sequence of n tick events followed by an error event. The tick activities are
exponentially distributed (rate rycx) where t = (n x r;;) + rg k), this results
in a model where the error event occurs at time ¢ on average, and the vari-
ance of when it occurs gives us the accuracy with respect to timing. We can
reduce the overall variance (i.e. increase the accuracy) simply by increasing n
and correspondingly increasing ;..

In our example, we allow Timer to tick five times before reporting an error.
It may be reset at any time. Note that it keeps ticking after reporting an error,
i.e. it is therefore possible to get multiple errors before the next frame arrives.
We therefore define Timer as follows:

. def -
Timer = Timery

. def .
Timerg = (reset, T). Timer;

IN
/N
ot

. def ;. . .
Timer; = (tick, reer). Timer; 1 + Timery 1

. def . .
Timerg = (error, repror). Timery + Timerq

4.2 Analysis

Having presented a PEPA description of the basic behaviour of the stream, we
can now focus on our main objective: to analyse the quality of service properties
of the stream. We will vary parameters in the system and see what consequences
they have on the following quality of service properties:-

1. Latency. This is the end-to-end delay between a transmit and its correspond-
ing display. When deterministic timing is used, the approach is to determine
an upper bound on latency, e.g. that the maximum time between generation
and display of a frame cannot excede 95ms. Here however, in line with the
stochastic approach, we will consider the average latency.

2. Throughput. We would like to determine the rate at which the Sink pro-
cess displays packets. Clearly, there is a direct link between the rate of loss
of the Medium and the throughput at the Sink. Thus, the flavour of our
investigation of this property will be to determine how the rate at which the
Medium loses messages affects throughput.

3. Jitter. Jitter constraints are imposed in order to ensure that there is not an
unacceptable variability around the optimum presentation time. In previous
work bounded jitter has been analysed, i.e. verification has ensured that jitter
levels do not stray out of certain upper and lower bounds [BFK*98]. If jitter
is bounded in this way then we know that extreme bad (jitter) behaviour
cannot occur. However, the resulting constraint is likely to be rather coarse.
In particular, extreme fluctuations would be allowed within these bounds.
Here we consider a statistical measure of jitter, the variance of the latency
delay, which yields a more refined jitter property. In the sequel we simply
call this jitter.

4. Error Rates. As discussed earlier our error scenario is that the system sim-
ply signals an error, by performing the action type error, whenever the gap
between consecutive displays goes beyond a certain threshold level. We will
assess how the rate of these error signals change as we alter other parameters
in the system.

To generate meaningful performance figures we analyse the system in its
equilibrium state. To do so we build the infinitesimal generator matrix of the
corresponding Continuous Time Markov Chain (CTMC). For all states, this
matrix gives the probability that the system will be in that state once it has
reached equilibrium, i.e. at the steady state. This can be calculated automatically
by the PEPA Workbench. To calculate performance figures such as throughput,
latency and jitter we need to find the true rates of the activities, which in turn
requires that we calculate the probability that each activity is enabled.

The system is made up of four processes, and the state of the system changes
whenever the state of one of the processes changes. The probability of the system
being in a particular state is worked out numerically using MATLAB. The PEPA
State Finder takes input such as

Source_0|*|*|x*

and returns all the states of the system in which Source is in the state Sourcey.
The sum of the probability values of these states is the probability that the
Source is in state Sourcey, and we can use this to determine the true rates of
components.

True rates and steady state probabilities Here we show how to derive the
various performance measures from the steady state probabilities. We consider
p(Channely) to be the probability that the Channel component of the specifi-
cation is in state Channely at equilibrium, and similarly for Sink, Source and
Timer. In addition, p(Sinky and Channely) denotes the probability that the
Sink component is in state Sinky and the Channel component is simultaneously
in state Channely;. These can be determined using the PEPA Workbench, and
are used to calculate the true rates of activities.

The specified rate of an activity is not necessarily the same as the rate of
that activity in the equilibrium state, since bottlenecks elsewhere in the system
may slow the activity down. The true rate (or equilibrium rate) of an activity is
thus the specified rate multiplied by the probability that the activity is enabled.
An activity is enabled if the system is in a state in which it can perform that
activity. For example, the true rate of the display activity is,

true_raisp = Tdisp X Z?zl p(Sink;)

since only the Sink process is involved in this activity, and it is only capable
of performing a display event if it is in one of the states Sink;, Sinks or Sinks. If
Tloss 18 set to zero, then the probability of Sink being in state Sink; (p(Sink;)) is

0.1152, p(Sinks) = 0.0136 and p(Sinks) = 0.0016. So the probability of being in a
state where it can perform a display is the sum of the above probabilities. Hence
the true rate of the display activity is 200 x (0.1152+0.0136+0.0016) = 26.0800
(subject to rounding error, actually 26.0861).

Throughput, latency and jitter We consider each of these in turn.

Throughput. The rate of throughput of frames in the equilibrium state is given
by the true rate of the display activity. This is calculated as shown above.

Latency. Our approach to obtaining the mean end-to-end delay is to sum the
mean delays imposed by each individual component in the communication path.
To determine the latency of an individual component we must consider the true
rates of entry and exit of frames. In our example the precise calculation varies
with each component.

The Source component does not have an explicit entry activity, since it is
modelling the generation of frames. We consider that one frame starts to be
formed as soon as the previous one is transmitted, so the latency is given by the
mean time between transmit activities, which is the inverse of the true transmit
rate.

source_latency = (true_rtmns)*]

The Channel component poses more problems. We need to take into account
the fact that not all frames are passed on to the Sink: some are lost via the
activity loss. The probability of a frame being lost by Channel and the probability
of it being successfully passed on are determined by the race condition between
the two activities loss and receive. If we let ave_frames_lost be the average
number of frames in the Channel which will be lost, and ave_frames_received be
the average number of frames in the Channel which will eventually be received,
then

ave_frames_channel = ave_frames_lost + ave_frames_received

and we have the equality,

ave_frames_lost __ true_rj,..
ave_frames_received true_rie.

Then using Little’s law in the context of successful transmissions, the average
latency of the successfully passed on frames (channel_latency) is given by,

ave_frames_received
true_rrec

channel_latency =

The Sink component has only one input and one output activity, and so the
latency is given by a straightforward application of Little’s Law.

ave_no_jframes_sink
true_risp

sink_latency =

* In fact, because of the assumptions implicit in Markovian analysis, this turns out to
be equal to the latency of the lost frames.

The latency of the stream is the sum of the component latencies:

stream_latency = source_latency + channel_latency + sink_latency

Jitter. Jitter measures the variability of the time duration between the ex-
pected and actual arrival times of packets. This will be the variance of a sum
of exponential distributions, one for each component in the system. Since these
distributions are all independent, the variance of the sum is simply the sum of
the variances (see [HP93)), i.e.

jitter = source_variance + channel_variance + sink_variance
where, for example,

source_variance = (true_rians) >

Component usage We can also determine the average number of frames in
a component by taking a weighted sum of the appropriate probabilities. For
example, the average number of frames in the Channel component is

215-:02' x p(Channel;)

In a similar fashion we can calculate the average number of frames in the
Source and Sink components, and the average number of frames in the entire
system is the sum of these averages.

We can also calculate idling and busy times: the percentage of time that a
component spends idling is given by the probability that there are no frames in
the component. The percentage busy time is the probability that there are one
or more frames in the component.

4.3 An Example

With the PEPA Workbench, we can calculate the various performance figures
and quality of service parameters we are interested in. For example, with the
following particular rates: rians = 60.0; rree = 30.0; rgisp = 200.0; reer =
100.0; rerror = 2000.0; 77eset = 2000.0 and varying r,ss we get the table shown
in Figure 2.

In explaining this table we can make a number of points:

1. As the rate of loss increases the true rate of transmission increases (since
the Channel is less often full); the true rate of transmission tends to the
specified rate of transmission, i.e. 60, as ry,ss tends to infinity.

2. The true rates of reception and display are equal, since no frames are lost
between these activities and the true rates of reception and display decrease
as loss increases, for obvious reasons.

Tl0ss|00.0 10.0 20.0 30.0 40.0 50.0
true_rioss [00.0 9.5490 |18.0536|25.0964(30.6408|34.9059
true_rirans |29.0897|37.7430(44.7389|49.8593|53.3447|55.6212
true_rr.[29.0897|28.1940(26.6853|24.7629|22.7039|20.7153
true_raisp [29.0897(28.1940|26.6853|24.7629|22.7039(20.7153
true_ryick [99.4546(99.4455|99.4287(99.4056(|99.3795(99.3531
true_remor|10.9080{11.0891|11.4261(11.8875{12.4098|12.9375
ave no. in source|1.0000 (1.0000 |{1.0000 (1.0000 |1.0000 {1.0000
ave no. in chan|4.1273 |3.6087 |3.0477 (2.5203 |2.0715 |1.7112
ave no. in sink|0.1713 [0.1648 [0.1545 |0.1418 |0.1285 [0.1160
ave no. in stream|5.2985 (4.7735 |4.2021 |3.6620 (3.2000 |2.8272
source latency (s)|0.0344 10.0265 |0.0224 |0.0201 |0.0187]0.0180
chan latency (s)[0.1419 [0.0956 |0.0681 |0.0505 |0.0388 |0.0308
sink latency (s)[0.0059 [0.0058 |0.0058 |0.0057 |0.0057 |0.0056
stream latency (s)[0.1821 |0.1280 |0.0963 [0.0763 |0.0632 |0.0543
throughput jitter|0.0012 |0.0013 [0.0014 |0.0016 |0.0019 [0.0023
channel jitter|{0.0012 |0.0013 [0.0014 |0.0016 [0.0019 |0.0023
source jitter(0.0012 |0.0007 [0.0005 |0.0004 [0.0004 |0.0003
latency jitter|0.0035 [0.0032 |0.0033 [0.0037 |0.0042 |0.0050

Fig. 2. Table 1 - Analysis of Stream

3. The true rate of the tick event does not change greatly when the rate of loss
is increased. This is because of the use of the Erlang distribution, i.e. the
large number of tick events ensures that tick’s are “almost” independent of
reset events. In addition, reset and error events are very fast events relative
to tick.

4. The results here allow us for example to relate the rate of loss to the through-
put. For example, if we wished to ensure that the throughput (true rate of
display) was greater then 28 packets per second then we would know that
setting the rate of loss to 10.00 would be close to the boundary condition.

5. The true rate of display is very different to the specified rate of display. This
is because the Sink needs something to display before it can do anything,
i.e. it spends much of its time in state Sinkg.

6. The average number of frames in the stream declines as the rate of loss
increases, for obvious reasons. In addition, latency of the stream component
and the stream itself decrease as the rate of loss increases.

4.4 Figures for the Tempo Stream

The example that we have analysed here is based upon previous formulations of
the problem to be found in [BBBC93,Bla94, BBBC98]. In this section we inves-
tigate to what extent we can bring our analysis in to line with the specification
to be found in [Bla94]. One reason for doing this is to make the results of our
analysis relevant to the earlier work, thus enabling our results to inform those
found in [Bla94]. We inform the earlier work in two ways, firstly by providing a

formal analysis ([Bla94] just gives a specification of the problem) and secondly,
because our analysis is performed in a stochastic context, [Bla94] only considers
deterministic timings.
In pursuing this goal, we firstly, in line with the specification in [Bla94],
employ a marginally more sophisticated Source process:-
Sourcey = (gen, Tgen)-Source

def .
Source; = (transmit, Tirans) Sourcey

which differentiates between the generation of frames (the gen activity) and the
transmission of frames (the transmit activity). Secondly, we have attempted to
bring the figures resulting from our analysis into line with those used in [Bla94].
The requirements given in [Bla94] are:

— The data source generates frames at a rate of 30 frames per second.

— After generation, 5ms elapse before it is transmitted

— Successfully transmitted frames arrive at the data sink between 15ms and
20ms after transmission

— The data sink takes 5ms to process a frame

— The end-to-end latency of a single frame should not exceed 30ms

— The end-to-end throughput should be within 25 and 35 frames per second.

In attempting to follow these figures we obtained the table shown in figure 3,
where ryen, = 35.3; Trans = 200.0, rpee = 78.0, raisp = 200.0, ryier, = 50.0, Terpor =
2000.0 and 7yese¢ = 2000.0. We can see from the table that using these parameters
enables us to model the requirements given in [Bla94], which were highlighted
above. In particular, the figures found in the first two columns in this table fall
within the required timings. This is subject to the fact that we are working with
average latency values rather than crude latency bounds. Thus, the first column,
where loss is zero, probably has too high an end-to-end latency value: 29.99 ms,
i.e. since variance of latency (jitter) is non-zero some transmissions will certainly
invalidate the 30ms upper bound on end-to-end latency.

Thus, the second column contains figures that are probably most closely in
line with those in [Bla94]. Focussing on this column, we can identify a number of
conclusions, which inform the earlier multimedia stream work. Firstly, the figures
identify an acceptable bound on loss (i.e. a true rate of 3.4488) and indicate a
certain rate of error (i.e. a true rate of 3.2493).

Furthermore, the analysis reveals that the average number of frames in the
stream at any one time is never more than one and as the rate of loss increases
this number declines. This indicates that the requirements given in [Bla94] are
not completely realistic; in particular that the channel itself is not accurately
modelled. Two possible ways of improving the modelling are allowing multiple
sources and sinks to use the same channel; and modelling the channel as a
sequence of buffers, each of which delays the frames as they pass through.

Tioss| 00.0 10.0 20.0

true_ross| 00.0 | 3.4488 [6.1772
true_rgen |30.0041]30.0046|30.0042
true_Trans |30.0041|30.0046|30.0042
true_rre:[30.0041(26.5554(23.8270
true_raisp|30.0041|26.5554|23.8270
true_riicr |49.9294149.9188(49.9090
true_rreset |30.0041(26.5554(23.8270
true_reror| 2.8233 | 3.2493 | 3.6395

ave no. in source| 0.1500 | 0.1500 | 0.1500
ave no. in channel| 0.5742 | 0.4735 | 0.4035
ave no. in sink| 0.1736 | 0.1505 | 0.1329
ave no. in stream| 0.8978 | 0.7740 | 0.6865
source latency (s)| 0.0050 | 0.0050 | 0.0050
channel latency ()| 0.0191 | 0.0158 | 0.0134
sink latency (s)| 0.0058 | 0.0057 | 0.0056
stream latency (s)| 0.0299 | 0.0264 | 0.0240
variance of sink| 0.0011 | 0.0014 | 0.0018
variance of channel| 0.0011 | 0.0014 | 0.0018
variance of source| 0.0011 | 0.0011 | 0.0011
jitter| 0.0033 | 0.0039 | 0.0046

Fig. 3. Table 2 - Tempo like figures

5 Immediate Actions

In this section we consider to what extent immediate actions influence the anal-
yse we obtained above. As suggested earlier, it may be possible to reduce the
variance of the error action by using immediate actions, and some work has been
done on including immediate actions in stochastic process algebra. In [HRW95],
immediate actions are added to a basic stochastic process algebra. The resulting
language is called TIPP and it extends the class of processes which may be speci-
fied. But in order to derive a Continuous Time Markov Chain immediate actions
must have only an internal impact, and to capture this an equivalence, called
Markovian Observational Congruence, is defined. Every term in the TIPPtool
input language [KM98] can be interpreted as a Continuous Time Markov Chain,
provided all delays are Markovian. The TIPPtool allows CTMC analysis similar
to the capabilites of the PEPA workbench.

Timeouts are approximated by Erlang distributions followed by immediate
actions. Thus if, in a similar way to in TIPP, we could use immediate actions,
then we could model error as a visible immediate action, and we could define
Timer as

. def .
Timerg = (reset, T). Timer;

Timer; < (tick, riier). Timer;41 + Timerg 1<i1<5

. def . .
Timerg = error.Timer; + Timery

However, the equational laws of Markovian Observational Congruence, to be
found in [HRW95], give us

Timerg = error.Timer; + Timery

= error. Timenr (Aziom9)

which reflects the fundamental property of immediate actions: that they always
“win” the race condition. Furthermore, we get that

Timers = (tick, riicr).error. Timer) + (reset, T). Timer;

and so the only difference here is that when the erroris enabled, it has to happen
immediately.

So, in a stochastic process algebra which provides them, we can use immediate
actions to signal errors. However, in a situation where an Erlang distribution has
been used to approximate a deterministic delay, making the error an immediate
action will only have a very minor impact on the error variance. To see this,
consider the example of the Timer above. Error variance is calculated as

errorvariance = 5 % (1/(true_riicr * true_riicr)) + (1/((rve_repor * true_repror))

With the rate of the error action set to 2000, the error variance is 0.0020, and
with the rate of the error action set to 200000, the error variance is also 0.0020.

It is evident from these figures that once the rate of error is sufficiently fast,
increasing it does not alter the variance significantly. The Erlang distribution
itself is responsible for all the variance.

In conclusion, although in an appropriate SPA we could specify the multi-
media stream using an immediate action for the error, since it would make no
difference to the performance figures presented in this paper we have not followed
this route.

6 Assessment and Further Work

6.1 Assessment of PEPA

This subsection gives a short assessment of PEPA (and stochastic process alge-
bra in general) in the light of our application of them to specifying and analysing
the multimedia stream. Qur experience with PEPA has generally been positive.
Its major strength being that it supports automated analysis and corresponding
generation of performance figures. This is a major strength of the technique.

Clearly, restricting to exponential distributions is critical in enabling such anal-
ysis to be performed.

A number of limitations of the approach can also be highlighted. These typ-
ically reflect the current “state of the art” of stochastic process algebra tech-
niques.

— Change of Mind Set. Specification in PEPA requires a significant change of
mind set from specification in classic process algebra, such as CCS [Mil89],
CSP [Hoa85] and LOTOS [BB88]. A central aspect of this change is the
nature of action offers. The classic process algebra interpretation is that
actions are offered to the environment, which decides whether to take them.
Thus, in this aspect, the system is passive® - the system offers a set of actions,
then it waits passively for the environment to decide which (if any) to take.
(Deterministically) timed process algebras, such as Timed CSP [Dav93] or
ET-LOTOS [LL93], refine this interpretation by allowing time bounds to be
placed on the period of time in which actions are (passively) offered to the
environment; untimed process algebra can be seen as a subclass of timed
process algebra where the time bounds are always zero to infinity.

In PEPA the interpretation is somewhat different. Firstly, the basic unit of
modelling is an activity, the completion of which is marked by the occurrence
of an action type. Importantly, although the occurrence of this action type
can be seen by the environment, it is not directly controlled by the envi-
ronment. In this way, the system is more active in deciding the instance of
action occurrence, this is born out by the discussion in chapter 3 of [Hil96].
In fact, the PEPA interpretation is one of usage of (implicit) resources. Thus,
choice models competition for a resource while parallel composition repre-
sents cooperative use of resources in performing activities.

This change of mind set can be difficult to come to terms with when starting
to use PEPA. Also, for some specification problems both the classic inter-
pretation and the PEPA interpretations can arise in describing the same
system.

— Deadlock States. Another aspect of moving from the classic process algebra
model to PEPA is that, in order to enable Markovian analysis to be per-
formed, deadlocks cannot arise in the system specification. A consequence
of which is that the the deadlock process stop does not appear in the PEPA
abstract syntax. In our case study this became a problem when we tried to
describe error behaviour, i.e. we would have liked to have allowed the system
to time out and then stop. With respect to this problem, a possible area for
future work is transient analysis, which determines the probabilities of be-
ing in particular states before equilibrium is reached. There are a number of
numerical methods which can be used to find transient solutions to Markov
chains (see for example [Ste94]). In addition, the TIPPtool [KM98] allows
transient analysis - if the labelled transition system generated from a specifi-

5 Internal actions complicate this interpretation, since their selection is determined
internally by the system. Thus, what we say largely concerns observable actions.

cation is not strongly connected, a time instant can be given to the tool and
it will compute the probabilities of being in particular states at that time.

Setting True Rates. A useful feature would be the ability to set the true
rate of a particular transition, i.e. the analysis would ensure that the rate
specified for a particular transition is indeed its true rate and would adjust
the true rates of other activities accordingly. This would, for example, have
enabled us to set the true rate at which frames are transmitted and see how
other parameters vary around this rate. Thus, such a feature would have
been useful when trying to relate the results of our analysis to the earlier
stream specifications.

Deterministic Timing. It is clear from our case study that even in the context
of stochastic specification, deterministic timings will frequently arise. Mod-
elling a timeout from which an error state is reached is an example which
arises in our specification. In a Markovian setting, the standard solution is
to use an Erlang distribution, as we have indeed done. This is a reasonable
solution, however, it potentially leads to a massive state explosion, which
would prohibit the application of support tools. The state explosion is con-
strained in our application since we only have a single Erlang distribution.
However, if a number of Erlang distributions evolve concurrently, their com-
ponent phases are interleaved, which causes state explosion according to the
product of the number of phases.

Generalised Distributions. The last point leads onto what is perhaps the
most fundamental limitation of the PEPA approach, and that is what is
also its strength - the restriction to exponential distributions. Generalised
distributions are required, not just in order to obtain deterministic timing,
but since distributions found in the application area commonly fail to be
memoryless (or deterministic). For example, in our case study, the rate of
the action receive has a major affect on determining the latency delay of the
channel and this rate is assumed to be exponentially distributed. However, it
is well known that packet lengths are not in reality exponentially distributed,
rather they are either of constant length (as in ATM cells [Tan96]) or they
are uniformly distributed with minimum and maximum size (as in Ethernet
frames [Tan96]). Furthermore, the latency delay imposed by a channel will
clearly be tied to packet lengths. Thus, our assumption of an exponential
channel latency is not in practice realistic.

This observation suggests that a suitable modelling technique should sup-
port generalised distributions. This brings a number of problems, not least
of which is that analytical techniques become significantly more complicated
[Kin90]. In addition, it has been pointed out [Kat96] that use of exponential
distributions is very closely tied to the interleaving assumption underlying
parallel composition in process algebra. Furthermore, it is suggested [Kat96]
that true concurrency models, which are typically more complex than inter-
leaved approaches, are appropriate to be used in the presence of generalised
distributions.

6.2 Further work

The assessment made in the previous subsection suggests a number of areas for
future work. Firstly, we are investigating the applicability of transient analysis
to our case study. This is being performed in the context of an assessment of
the TIPP approach [HRW95]. In addition, we are exploring a number of ap-
proaches that support generalised distributions, e.g. SPADES [DKB97]. We are
also working on model checking techniques in a stochastic setting [ACD91] and
we intend to analyse some larger multimedia case studies, e.g. the lip synchro-
nisation specification to be found in [BBBC98].

Acknowledgements

We would like to thank Joost-Pieter Katoen and Holger Hermanns from the
University of Erlangen, who fielded a number of our questions on stochastic pro-
cess algebras. Also, Stephen Gilmore from the University of Edinburgh advised
on using PEPA, while Lynne and Gordon Blair from Lancaster University were
involved in V-QoS discussions from which this paper has grown. Joost-Pieter
Katoen and Lynne Blair provided valuable comments on a draft of the paper.

References

[ABSS96] A. Feyzi Ates, M. Bilgic, S. Saito, and B. Sarikaya. Using timed CSP
for specification, verification and simulation of multimedia synchronization.
IEEE Journal on Selected Area in Communications, 14:126 137, 1996.

[ACD91] Rajeev Alur, Costas Courcoubetis, and David Dill. Verifying automata
specifications of probabilistic real-time systems. In Proceedings of Real-
Time Theory in Practice, Lecture Notes in Computer Science 600, pages
28 44, 1991.

[BB8S] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, 1988.

[BBBC93] H. Bowman, L. Blair, G. S. Blair, and A. Chetwynd. Time versus abstrac-
tion in formal description. In FORTE’93, Boston, October 1993. North-
Holland.

[BBBC98] G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Specification
of Distributed Multimedia Systems. University College London Press, 1998.

[BDGY95] Marco Bernardo, Lorenzo Donatiello, and Roberto Gorrieri. Integrating per-
formance and functional analysis of concurrent systems with empa. Tech-
nical Report UBLCS-95-14, Department of Computer Science, University
of Bologna, Piazza di Porto S. Donato, 5, 40127 Bologna, September 1995.
Revised March 1996.

[BFK*98] H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Auto-
matic verification of a lip synchronisation algorithm using UPPAAL. 1998.
Submitted for publication.

[BFM98] H. Bowman, G. Faconti, and M. Massink. Specification and verification of
media constraints using UPPAAL. In 5th Eurographics Workshop on the
Design Specification and Verification of Interactive Systems, DSV-IS 98,
Abingdon, UK, Eurographics Book Series. Springer-Verlag, 1998.

[Bla94]
[Dav93)]

[DKB97]

[FLOS8]

[Gil97]
[HCCBY4]

[Hil96]

[Hoa85]
[HP93]

[HRW95]

[Jai91]

[Kat96]

[Kin90)

[KMO8]

[LL93]

Lynne Blair. The Formal Specification and Verification of Dsitributed Mul-
timedia Systems. PhD thesis, Lancaster University, September 1994.

Jim Davies. Specification and Proof in Real-time CSP. Distinguished Dis-
sertations in Computer Science. Cambridge University Press, 1993.

Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. A stochastic
automata model and its algebraic approach. In Ed. Brinksma and Albert
Nymeyer, editors, Process Algebra and Performance Modelling. Fifth Inter-
national Workshop, number 97-14 in CTIT Technical Report, pages 1 16,
P.O. BOX 217 - 7500 AE Enschede, The Netherlands, June 1997. University
of Twente.

S. Fischer and S. Leue. Formal methods for broadband and multimedia
systems. Computer Networks and ISDN Systems, Special Issue on Trends
in Formal Description Techniques and their Applications, to appear, 1998.
Stephen Gilmore. The PEPA Workbench: Users Manual. University of
Edinburgh, April 1997. http://www.dcs.ed.ac.uk/pepa.

D. Hutchison, G. Coulson, A. Campbell, and G.S. Blair. Quality of Service
Management in Distributed Systems. Addison Wesley, 1994.

Jane Hillston. A Compositional Approach to Performance Modelling. Dis-
tinguished Dissertations in Computer Science. Cambridge University Press,
1996.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
Peter G. Harrison and Naresh M. Patel. Performance Modelling of Com-
munication Networks and Computer Architectures. International Computer
Science Series. Addison-Wesley, 1993.

Holger Hermanns, Michael Rettlebach, and Thorsten Weiss. Formal Char-
acterisation of Immediate Actions in SPA with Nondeterministic Branching.
The Computer Journal, 38(7):530 541, 1995.

Raj Jain. The Art of Computer Systems Performance Analysis. J. Wiley,
New York, 1991.

Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Euvent
Structures. PhD thesis, Centre for Telematics and Information Technology,
P.O. Box 217, 7500 AE Enschede The Netherlands, April 1996.

Peter J. B. King. Computer and Communications Systems Performance
Modelling. Prentice Hall International Series in Computer Science. Prentice
Hall, UK, 1990.

U. Klehmet and V. Mertsiotakis. TIPPtool: Timed Processes and Performa-
bility Evaluation. Technical Report 1/98, University of Erlangen, 1998.
Luc Leonard and Guy Leduc. An enhanced version of timed LOTOS and
its application to a case study. In FORTE’93, Boston, October 1993. North-
Holland.

[MBC'95] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-

[Mil89)]
[Reg93]
[Slo94]
[Ste9d]

[Tan96]

elling with Generalized Stochastic Petri Nets. Wiley, 1995.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

T. Regan. Multimedia in temporal LOTOS: A lip synchronisation algo-
rithm. In PSTV XIII, 18th Protocol Specification, Testing and Verification.
North-Holland, 1993.

M. Sloman, editor. Network and Distributed Systems Management. Addison
Wesley, 1994.

William J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princetown University Press, Princetown, New Jersey, 1994.

A. S. Tanenbaum. Computer Networks (3rd Edition). Prentice-Hall, 1996.

