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Since its introduction in 1984, R-tree has been proven to be one of the most practical and
well-behaved data structures for accommodating dynamic massive sets of geometric objects and
conducting a very diverse set of queries on such datasets in real-world applications. This success
has led to a variety of versions, each one trying to tune the performance parameters of the
original proposal. Among them, the most prominent one is R∗-tree, which employs a number of
carefully designed heuristics and is widely accepted as achieving the best performance in most cases.
However, in the presence of actively changing datasets, R∗-tree still does not avoid performance
tuning with forced reinsertion, i.e. a process that performs a kind of local rebuilding. The latter
fact has motivated the investigation of the adaptation of a known dynamization technique, based
on carefully triggered local rebuildings, for converting static or semi-dynamic, main memory data
structures to dynamic ones onto R∗-trees. In this paper, we present LR-trees, a new efficient scheme
for dynamic manipulation of large datasets, which combines the search performance of the bulk-
loaded R-trees with the updated performance of R∗-trees. Experimental results provide evidence

on the latter statement and illustrate the superiority of the proposed method.
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1. INTRODUCTION

Numerous applications have emerged during the last few
years that demand the efficient manipulation of massive sets
of geometric objects like points, lines, areas or volumes
in one or more dimensions. To name just a few, this
is particularly useful in geographical information systems,
in CAD/VLSI design, and in mobile object movement
detection and prediction. The databases that accommodate
these specific kinds of objects are called spatial and they
employ data structures that must be capable of answering a
very diverse set of geometric queries, like range queries that
ask for all objects lying within a given region, or nearest-
neighbor queries that seek for the object closest to a given
object, and join queries that search for all pairs of objects
satisfying a given predicate on the set of objects that they
accommodate.

The last requirement, combined with the ‘massive’ vol-
ume of the datasets under consideration, is the main reason
why practical, general-purpose data structures are in fact
used in virtually all real-world applications. This also
explains why R-trees, since their introduction by Guttman
in 1984 [1], became so popular from the research point of
view as proved by the many variants [2]. An R-tree is a
height-balanced tree similar to a B+-tree; actually, it can be
considered as an extension of the latter structure for multi-
dimensional data. The minimum bounding rectangle (MBR)

of each geometric object, along with a pointer to the address
where the object actually resides, are stored into the leaves.
Each internal node entry consists of a pair (pointer to a sub-
tree T , MBR of T ), with the MBR of a tree T defined as the
MBR enclosing all the MBRs stored in T . Like in B+-trees,
each node contains at least m and at most M entries, where
m ≤ M/2. On the other hand, unlike B+-trees, a search
query may activate several search paths from the root to the
R-tree leaves, resulting, in the worst case, in a performance
linear to the size of the dataset just to retrieve a few objects.

As mentioned above, various variants of the R-tree have
been proposed, each one aiming at improving the perfor-
mance by tuning some parameters. Among the members of
the ‘R-tree family’, the most prominent one is the R∗-tree of
Beckmann et al. [3]. In the latter work, a number of heuris-
tics were applied, like forced re-insertions during insertions
(as in the case of deletions), buffering and optimization cri-
teria for splitting/merging nodes and adjusting the involved
MBRs, so that R∗-trees are widely accepted as achieving
the best performance. However, a hard fact remains:
the construction of any R-tree version by using repeated
insertions does not necessarily mean that a ‘good’ tree is
produced in terms of query performance. In fact, the linear
worst-case query time complexity cannot even be avoided.

On the other hand, bulk-loading techniques for R-trees do
exist that, by exploiting a priori knowledge of static datasets,
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build the structure from scratch and achieve better utilization
and search performance in the average case. The last fact
was the main motivation for the present work. Next, we
briefly discuss bulk loading. Kamel and Faloutsos [4] used
the Hilbert sorting technique to first sort data and then build
the R-tree. Leutenegger et al. [5] extended this approach,
employing a more elaborate technique, according to which
successive sorting and division of data into slabs for each
of the dimensions is applied. Bercken et al. [6] and Arge
et al. [7] proposed the building of indices with repeated
block-wise insertion; buffers are attached to index pages.
During the bulk-load, each object is inserted into the buffer
of the root. When the root buffer overflows, all objects
are dispatched to the next level and so on, until the data
level is reached. In [8] a recursive top-down algorithm is
employed, which, operating in a manner similar to quick
sort, determines the tree topology (height, fan-out, etc.) and
uses a split strategy to bisect the data in secondary storage
and construct the index directory in a depth-first, post order
way.

We now introduce some terminology: a data structure
for a searching problem can be static, semi-dynamic or
dynamic. A static one is built for a fixed, static set S

of objects and is employed for answering queries on S.
A data structure is semi-dynamic when it allows either
insertions in S, and is called insertions-only, or deletions
from S, and is characterized as deletions-only. A dynamic
data structure permits both insertions and deletions to the
underlying set S. The dynamic data structures usually
support updates employing some rebalancing operations
that enable their adjustment to set changes without query
performance degrade. We say that an object insertion or
deletion is weak, whenever such an operation is performed
in a ‘lazy’ manner (that is, without perfectly restoring
balance), so that performance is not degraded drastically
after executing cn of those operations (where n is the initial
size of a perfectly balanced structure and c is a constant).
Much research has been conducted in the area of dynamizing
main memory data structures: since it is easier to design data
structures for static sets with good query time, there have
been a number of efforts aimed at devising general methods
for transforming static or semi-dynamic data structures
into dynamic ones for decomposable searching problems
[9, 10, 11]. A searching problem is said to be decomposable
if one can partition the input set into a set of disjoint
subsets, perform the query on each subset independently and
then easily compose the partial answers. The most useful
geometric searching problems, like range searching, nearest-
neighbor searching or spatial join, as we will see, are in fact
decomposable.

In this paper we present LR-tree, a new index structure,
which is based on the logarithmic dynamization method
(to be explained later). LR-trees consist of a number
of component sub-structures, called blocks. Each block
is organized as a weak R-tree, termed wR-tree, i.e. a
semi-dynamic, deletions-only R-tree version. Whenever
an insertion operation must be served, a set of blocks is
chosen for reconstruction. On the other hand, deletions are

handled locally by the block structure that accommodates
the involved object. Due to the algorithms for block
construction, LR-trees achieve good tightness that provides
improved performance during search queries. At the
same time, LR-trees maintain the efficiency of dynamic
indexes during update operations. We initially describe the
applicability of the logarithmic method to the case of R-
trees and formalize the problem. Due to the performance
requirement to consider deletions as weak operations, we
first introduce the wR-tree. LR-trees are defined next,
along with the novel algorithms for querying and index
updating. We examine performance by both describing
theoretical bounds and presenting detailed experimental
results, which illustrate the efficiency gains achieved by LR-
trees, compared to existing counterparts.

The rest of the paper is organized as follows. Section 2
presents the logarithmic method. In Section 3 we introduce
wR-trees, whereas Section 4 defines LR-trees and presents
the algorithms for queries and updates. Section 5 gives the
performance study. Finally, Section 6 concludes our work.

2. A DYNAMIZATION TECHNIQUE FOR
DECOMPOSABLE SEARCHING PROBLEMS

In this section we will use the following notion of
decomposability [9, 11].

DEFINITION 1. A searching problem P(q, S) on a set S

with query q is called decomposable if and only if for any
partition V

V = {A,B}, S = A ∪ B, A ∩ B = ∅
of S and any query q ,

P(q, S) = �(P(q,A), P(q, B)),

for some operator � computable in O(1) time.

It follows promptly that, in order to solve a decomposable
problem, one can partition the input set into a set V =
{V0, V1, . . .} of disjoint subsets, perform the query on each
Vi independently and then compose the partial answers
using the suitable operator.

Not all searching problems are decomposable. For
example, asking whether a query point q lies in the convex
hull of a set S of points is not. However, the most useful
geometric searching ones, like range searching, nearest-
neighbor searching or spatial join, are in fact decomposable.
In the case of range searching, we can query each Vi

independently and then simply merge the partial results
using the trivial operator � = ∪. In order to answer nearest-
neighbor queries one can use as operator � = min distance
to find the closest object. Finally, in the case of spatial
join, we can perform join on every distinct Vi, Vj block
combination and then employ � = ∪ to get the result.
Practically, the ‘decomposability’ property means that one
need not store all points in one large data structure; instead,
one can manipulate the input set as a dynamic set of disjoint
subsets or ‘blocks’. Each block is accommodated in an

THE COMPUTER JOURNAL, Vol. 46, No. 3, 2003



LR-TREE: A LOGARITHMIC DECOMPOSABLE SPATIAL INDEX METHOD 321

independent data structure, and the queries are treated by
merging the separate answers.

This block partition technique is widely applied in the
area of main memory data structuring as a method for
dynamizing static data structures. Two versions have been
proposed [11]: (i) the equal block method, which maintains
almost equal block sizes; and (ii) the logarithmic block
method, that uses blocks of exponentially increasing sizes.
In this paper, we will consider the second case since in [11] it
was proved that the equal block method gives good trade-off
bounds for query-deletion times degrading the performance
of the insertion operation. The interested reader can consult
[11] and the references of Section 1 for a more detailed
treatment. In the following we will assume that the searching
problem P(q, S) under consideration can be solved by a
semi-dynamic, weak deletions-only data structure D.

The logarithmic method

Let us assume that the search problem on the set S

in question can be solved by a static data structure
DS . According to the logarithmic method, block Vj

accommodates zero or 2j elements and is organized as a
data structure DVj . Whether a block Vj is void or not is
determined by the binary representation of the cardinality
n of the original set S. In order to insert a new element,
one must: firstly, locate the smallest i such that Vi is empty;
secondly, destroy all Vj with j < i; and lastly, build a new
data structure DVi corresponding to the block Vi , which,
from now on, accommodates the new element and all the
elements from the discarded blocks (data structures). The
queries are answered by combining with the appropriate
operator � the partial results obtained independently from
each block Vj .

For example, assume that set S consists of 55 =
1101112 elements. Then S is organized in five blocks
V0, V1, V2, V4, V5 containing 1, 2, 4, 16 and 32 elements,
respectively. In order to insert a new element, we destroy
V0, V1 and V2 and build V3 since 56=1110002. The example
shows the intuition behind the insertion algorithm: it is
known that the amortized cost of the carry propagation is
constant. When we insert a new point to the structure,
the actions that follow are in one-to-one correspondence
to adding one to the cardinality of the accommodated set
of elements. And so, on the average, the number and the
size of blocks getting involved in the insertion algorithm
are small enough to compensate for the rebuilding cost.
Additionally, one has the benefits of the well-organized
block substructures when searching the structure.

One can actually serve deletions equally well, if the
underlying, auxiliary data structure D is weak semi-
dynamic, i.e. it can support deletions in a ‘weak’ only
fashion. In other words, deletions operate in a quick-and-
dirty way, that does not improve the query performance
asymptotically, but it does not degrade it either. The
following theorem summarizes the complexity bounds
achieved with the logarithmic method in the case of a semi-
dynamic data structure D with query time Q(n), bulk-

loading3 or preprocessing time P(n), weak deletion time
D(n) and storage requirements S(n) [11].

THEOREM 1. Given a semi-dynamic, weak deletions-only
data structure D for a decomposable problem P, one can
build a fully dynamic data structure D′ for P, such that:

Q′(n) =




O(Q(n)), when Q(n) = �(nε),

ε > 0,

O(log n)Q(n), otherwise

I ′(n) =




O(P(n)/n) when P(n) = �(n1+ε),

ε > 0,

O(log n)P(n)/n otherwise

D′(n) = O(log n + D(n) + P(n)/n)

S ′(n) = O(S(n))

where Q′(n),I ′(n),D′(n) and S ′(n) denote the query
time, the insertion time, the deletion time and the storage
requirements of D′, respectively.

This theorem actually states that if the underlying semi-
dynamic data structure has superlinear building time and
superlogarithmic query time, then one can construct a
fully dynamic data structure without performance loss,
asymptotically speaking, while the space requirements
remain the same. Observe that if the construction or bulk-
loading time is linear, then the insertion time is actually
logarithmic. The update bounds are amortized, but they
can also be converted into worst-case ones, in a rather
complicated and impractical way, which is omitted for
brevity. For all practical purposes, the amortized-case is
adequate.

Similar formulae can be easily derived if the cardinalities
of the subsets are powers of some constant B ≥ 2 (cf. [10,
11]). In this case, we partition S into a logarithmic number
of disjoint blocks Vj of size ajB

j , where the aj ’s are the
coefficients of the representation of n in a numeric system
with base B, and thus they take values less than or equal to
B − 1. A block Vj of size (B − 1)Bj < Bj+1 is called
completely filled; otherwise, i.e. 0 ≤ aj ≤ B − 2, it is
partially filled. Now, in such a configuration, a new element
can be accommodated as follows. Let j be the minimum
integer such that the block Vj is partially filled (observe that

1 + ∑j−1
k=0 |Dk | = Bj .) We destroy the first D0, . . . ,Dj

structures, and we build a single Dj structure, with the new
point included. In the case where deletions are allowed,
then the definition must be slightly changed: a block Vj is
partially filled if it can accommodate the items of all blocks
Vi , i ≤ j , plus a new item without exceeding the Bj+1

bound; otherwise, it is completely filled.
Static R-trees fulfil the requirements of the above

theorem. Namely, their worst-case query time is linear
to the number of stored elements and the preprocessing
time is superlinear (i.e. O(n log n) to be precise [4]). If a

3This term is widely used by the database community for the procedure
of constructing an index for a given dataset from scratch. In the context of
main memory data structures, this procedure is known as preprocessing.
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deletion algorithm, designed to be weak, is added in order to
transform them into a semi-dynamic, weak deletions-only
data structure, then one has at one’s disposal a structure
suitable for the organization of the blocks of Theorem 1.
Thus, the application of the logarithmic method is possible,
generating a data structure, let us call it an LR-tree, which
has the same asymptotical performance characteristics in
the worst case. However, since the whole construction
is based on rebuilding that, by nature, gives trees with
very good time-space complexity, one can expect that
eventually the resulting index LR-tree is also very good as
a whole. The fact that the insertion/deletion heuristics of
the R∗-trees essentially employ a kind of local rebuilding
in the form of forced re-insertion simply strengthens our
argument. In the remaining part of this paper, we will
prove that our intuition is correct. Here, we must note
that the logarithmic method was—independently to this
work—employed in [12] in order to dynamize wp-trees, a
secondary memory generalization of kd-trees, quad-trees,
BBD-trees and the like, i.e. internal memory structures that
are built by a recursive decomposition of the space into
subspaces. The results presented in [12] involved: (i) a
‘pagination’ step, during which the nodes of the static, in-
memory structures are transferred (bulk-loaded) to the disk
using a top-down, breadth-first-like traversal; and (ii) the
dynamization step, which transforms the static structure into
a dynamic one; for this, they proposed the employment
of either the partial rebuilding technique for kd-trees and
quad-trees of [11] or the logarithmic method. The treatment
was theoretical, without any experimental evaluation. We
employ the logarithmic method to the context of R-trees,
which means confronting different challenges like the re-
insertion heuristic, while, additionally, we give carefully
designed experimental results for the first time.

3. R-TREES AND WR-TREES

Among the several R-tree variations, R∗-tree is considered
as the most prominent one. Based on a number of carefully
designed heuristics, it addresses the deficiencies of the
original R-tree algorithms. It capitalizes on the insertion
phase, since it is critical for query performance. R∗-tree
introduces the forced reinsertion technique, which avoids
splits by reinserting a fraction of the entries from an
overflowed node. Regarding node splitting, R∗-tree takes
several factors into account: overlap between nodes, node
perimeters and storage utilization. Also, it uses the plane-
sweep technique to separate the node entries. However,
deletion and searching are identical to the respective R-tree
algorithms.

THEOREM 2. A set S of n geometric items can be
accommodated in an R∗-tree using O(n/b) space so that a
search for an item has linear worst-case time complexity, an
insertion of an item can be served in O(logb n × b) worst-
case I/O time, while, given the location of an item, it can be
deleted in O(logb n × b) worst-case I/O time (b denotes the
node capacity or block size and I/O time refers to the number
of block retrievals).

Proof. It follows from the description in [3].

Here we must note that, in the past, several analytical
works for the query operations have appeared that are
characterized by limited generality (see, for example,
[13, 14, 15, 16].) More specifically, they simply derive
approximate estimates based on a number of assumptions
(e.g. uniformity of the underlying distribution, known aspect
ratio of MBRs, etc.).

In order to apply Theorem 1, we must have at our disposal
a semi-dynamic weak version of R-tree, which we will call
wR-tree from now on. An R-tree that is built properly, i.e.
which has no node capacity violations (neither overflows nor
underflows) and all the MBRs of the leaves and the index
nodes are correct, is called a legitimate instance.

DEFINITION 2. A wR-tree on a set S of items is defined
as an R-tree, which either is a legitimate created instance on
only the members of S, or is constructed from a legitimate
instance on members of a set S′ ⊃ S by deleting each
x ∈ S′ − S from the leaves so that: firstly, all MBRs of the
structure are correctly calculated; and, secondly, the tree
nodes are allowed to be under-utilized (i.e. they may store
less than m entries.)

The above definition reflects a situation arising when
deletions are allowed. During an insertion operation, a
number of elementary data structures are discarded and
replaced by a new, bulk-loaded data structure. Whenever
an element has to be deleted, this must be done quickly
but by preserving the upper levels MBRs at the same time.
The simplest way to achieve this is by, once the element
in question is located, just removing it from the lowest
level, adjusting the MBRs and ignoring the violation of the
utilization criterion that may result. This brute-force method
works correctly without any performance loss, as we will see
in Section 5. Typically, we have the following.

LEMMA 1. A wR-tree can store a set S of n items so that:
(i) it employs O(n/b′) space; (ii) it can search for items
with the same to R-trees linear worst-case time complexity;
and (iii) given the location of an item, it can delete it in
O(logb′ n) time (with b′ being the average minimum node
capacity during its lifetime).

Proof. Space and search complexity are immediate results
of the R-tree nature of the structure. As for the deletion
complexity bound, one has to observe that all that is needed
is climbing the path leading from the involved leaf to the root
and (probably) adjusting the respective MBRs.

This approach is completely opposite to the time-
consuming treatment adopted by R∗-trees, according to
which, in order to strictly maintain the utilization, all
underflowed nodes on the search path are deleted and the
resultant ‘orphaned’ entries are compulsorily re-inserted into
the tree level to which they belong, resulting in O(log n×b)

performance in the worst case. It is important to note that
B+-trees follow a similar behavior in industrial applications,
i.e. they do not perform node mergings but only free nodes
when they are empty [17].
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4. DEFINITION, UPDATE AND QUERY
OPERATIONS OF LR-TREES

In this section we provide the formal definition of LR-
trees, as well as the algorithms for the update and the query
operations. Typically, an LR-tree is a collection of a varying,
yet bounded from above, number of wR-trees.

DEFINITION 3. An LR-tree on a set S of n items is defined
as a collection C = {T0, T1, . . .} of wR-trees on a partition
V = {V0, V1, . . .} of S into disjoint subsets (blocks), such
that:

(a) there is a ‘one-to-one’ correspondence Vj ↔
Tj between the subsets (blocks) and the elements
accommodated in the trees;

(b) (Bj−1 < |Vj | ≤ Bj+1)∨(|Vj | = 0), for some constant
B ≥ 2, which is called ‘base’; and

(c) |C| = O(logB n).

In the discussion that follows, we will assume that the root
nodes of the wR-trees are stored into an array named Root,
ordered by increasing sizes of their subtrees.

4.1. Insertion

As explained in Section 2, an insertion can be served by
finding the first wR-tree Tj that can accommodate its own
items, the items of all wR-trees to its left and the new item,
then destroying all wR-trees Tk , where k ≤ j , and finally
bulk-loading a new index Tj , which stores the items in the
discarded structures and the new element. The following
algorithm demonstrates these steps.

Algorithm INSERT(item p, array Root)
Input: The item p to be inserted and the main

memory array Root containing the root nodes
of sub-trees of LR-tree.

Output: The new instance of LR-tree accommodating p.

1. Find min j such that 1 + ∑j

k=0 |Root[k]| ≤ Bj+1

2. Destroy all Root[k], k ≤ j

3. Create Root[j ] with the contents of destroyed trees
plus the new point p using bulk-loading

4. N = N + 1 /* N represents the total # points */
end of INSERT

Figure 1 illustrates a comprehensive example, for base
B = 2 and node capacity b = 4: the LR-tree of Figure 1a
accommodates 11 items. Since the binary representation of
11 is 1011, items are partitioned into three blocks, namely
V0, V1 and V3. Each block Vi is stored into wR-tree Ti .
When the item L is inserted (Figure 1b), the cardinality of
the collection becomes 12, which equals 1100 in the binary
enumeration system. So, the first blocks V0, V1 must be
destroyed and replaced by a single block V3, consisting of
the elements of the set V0∪V1∪{L}. That change is reflected
in the LR-tree, by replacing the wR-trees T0 and T1 by a
single one T3.

4.2. Deletion

The deletion of an item p is a two-step operation: firstly,
one should locate the wR-tree in which the item resides, if
it actually does; and secondly, one must eventually delete p.
More typically, the following algorithm is employed.

Algorithm DELETE(item p, array Root)
Input: The item p to be deleted and the main memory

array Root containing the root nodes of
sub-trees of LR-tree.

Output: The new instance of LR-tree with p deleted.

1. Locate the wR-tree Root[jp] where p resides
2. if p does not exist
3. quit
4. else
5. delete p from Root[jp]
6. N = N − 1
end of DELETE

Because of the ‘weak’ nature of the underlying wR-
trees, a deletion either can be promoted to upper levels,
causing underflow(s), or may be restricted to the leaf level,
causing no further alterations to the data structure. Figure 2
exemplifies these two potential cases. If, from the instance
illustrated in Figure 1b, item H is deleted, then, firstly,
the respective page underflows, while the MBR R must
be recalculated to reflect the change. Figure 2b shows
the simple case of deleting item F, without causing either
structural or ‘quality’ changes to the LR-tree.

4.3. Range and nearest-neighbor search

A range query with query rectangle Q seeks for all items
whose MBRs share with Q common point(s), while a
nearest-neighbor query with point p asks for the item
closest to p. These two operations are treated by
querying the individual wR-trees and concatenating the
partial results trivially in O(1) time. Let RSEARCH(T ,Q)
and NNSEARCH(T , p) denote correspondingly the range
searching and the nearest-neighbor searching procedures on
a wR-tree T . Then we have the following algorithms.

Algorithm RANGESEARCH(rect Q, array Root)
Input: The query rectangle Q and the main memory

array Root containing the root nodes of
sub-trees of LR-tree.

Output: All items lying into Q.

1. QS = {Root[i] |Root[i] ∩ Q 
= ∅}
2. Answer = ⋃

T ∈QS RSEARCH(T ,Q)
end of RANGESEARCH

Algorithm
NEARESTNEIGHBORSEARCH(point p, array Root)
Input: The query point q and the main memory array

Root containing the root nodes of sub-trees of
LR-tree.
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FIGURE 1. Insertion of item L in an LR-tree with B = 2. (a) The number of elements before insertion equals 11 = 10112, so the blocks
V0, V1, V3 are implemented as wR-trees T0, T1, T3, respectively. (b) After insertion we have 12 = 11002 items and therefore destruction of
trees T0, T1 and replacement by a single tree T2.

Output: The nearest neighbor of p.

1. QS = {Root[i] |Root[i] 
= ∅}
2. S = ⋃

T ∈QS NNSEARCH(T , p)
3. Answer = min{x|x∈S} distance(x, p)

end of NEARESTNEIGHBORSEARCH

The above NEARESTNEIGHBORSEARCH algorithm can
be easily extended so that the k > 1 nearest neighbors of a
query point p can be detected: firstly, one queries the first
m ≥ 1 wR-trees for the k nearest neighbors, with m being
the smallest number of wR substructures needed so that a
‘seed’ collection S of k points is formed. Then one gradually

refines the answer set S by exploring, one by one, the other
wR-trees for potentially closest points.

5. PERFORMANCE STUDY

This section presents the performance evaluation of the
examined indexes, namely, LR-tree and R∗-tree. Although
we focus on dynamic indexing methods, for purposes
of comparison, we include in our measurements the
performance of the bulk-loaded R-tree, which represents the
case of a static data structure and can be considered as a
lower bound for the performance of the dynamic indexes.

We examine the query execution cost with respect to
similarity search queries (i.e. range and k-nearest-neighbor
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FIGURE 2. Two instances of item deletion. (a) Deletion of H causes (i) MBR shrinkage and (ii) node underflow. (b) Deletion of F is
restrained to the leaf level.

queries). Update cost is examined for the insertion and
deletion operations, whereas the impact of deletion on query
performance (since deletion is a weak operation in LR-tree)
is examined separately, for a mixture of operations. Finally
we examine the scale-up with respect to the dataset size.
We point out the examination of the performance of other
operations (e.g. join query) as future work.

Our results illustrate that LR-tree clearly outperforms
R∗-tree and achieves a search query execution cost that
is comparable to that of bulk-loaded R-tree. Regarding
dynamic update operations, LR-tree presents comparable
performance with R∗-tree. Therefore, LR-tree is a dynamic
index structure which combines the advantages of the bulk-

loaded R-tree, with respect to search queries, and R∗-tree,
with respect to dynamic updates.

5.1. Theoretical bounds

As explained in Section 3, there are no general analytical
formulae about the query performance of R-trees, except the
trivial worst-case linear behavior, which can be exhibited
with particular datasets. So, we find our first evidence
about the applicability of the logarithmic method to R-
trees assuming the worst-case behavior of R-trees; in the
following sections, we will see that, in practice, one can
expect much better performance characteristics.
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THEOREM 3. Let S be a set of n geometric items and T
be an R∗-tree on S with worst-case query time complexity
Qo(n), o ∈ {nearestNeighbor,rangeSearch,spatialJoin},
worst-case insertion time I(n) and worst-case deletion
time D(n). Then, S can be accommodated in an
LR-tree achieving worst-case query time Qo(n), o ∈
{nearestNeighbor,rangeSearch,spatialJoin}, worst-case in-
sertion time I(n)O(logB n/b) and average deletion time
O(logB n + D(n)/b) (b being the node capacity or page
size).

Proof. It follows by applying Theorem 1 to the results of
Theorem 2 and Lemma 1.

5.2. Experimental setup

We have implemented all examined methods in C, using
the same components for the common tasks among the
methods. All experiments were performed on a machine
with a Pentium III processor at 1.6 GHz, with 128 MB
main memory and with a 30 GB hard-drive. We used
both real and synthetic data sets. We present results for
the LB data set, which contains 53,000 two-dimensional
points representing postal addresses at Long Beach, and the
NE data set, which contains 123,593 points representing
postal addresses of three metropolitan areas (New York,
Philadelphia and Boston). Both the aforementioned data sets
have been used as benchmarks in prior work (e.g. [4]). For
synthetic data sets we present results for two-dimensional
100,000 points following a uniform and zipfian distribution.4

Based on the approach of Beckmann et al. [3], we used
a default page size equal to 1 kB (other page sizes gave
analogous results). We tried several values for the base B

of the LR-tree. Henceforth we use B equal to 10, because
this value led to the best performance results.

The implementation of the wR-trees was based on
common components with the implementation of the R∗-
trees. We used the k-nearest-neighbor algorithm that is
described in [18]. For the bulk-loading method we used
the algorithm of [4]. It first scans the points that will be
inserted and sorts them according to their Hilbert value. In
the following, the algorithm groups points into leaf nodes
(each leaf is entirely filled) and stores them on disk. When
all leaf nodes are stored, their MBRs are formed and stored
at the upper level. The procedure continues up to the root
node and then terminates. Following [4], we perform the
sorting of Hilbert values in main memory. However, it is
easy to extent this procedure to consider external sorting, if
necessary. We address the latter as an issue of future work.

For convenience, we follow the approach of prior work
and we consider square-shaped range queries, characterized
by the size of the square. We are interested in the relative
performance of the examined methods; therefore, we use a
path-buffer (containing the current path from root to leaf) but
no other buffer space, to clearly examine the behavior of the
methods regardless of the effect of buffering.

4For each dataset, all point coordinates were normalized in the range
[0, 1024].

5.3. Experimental results

Our first experiment considers range search queries. We
consider both real and synthetic data sets. As a performance
measure we use the number of page accesses. Since the sizes
(number of points) of the data sets are not equal, we present
the normalized results, i.e. the page accesses of the LR-tree
and R∗-tree are normalized by the page accesses of the bulk-
loading method. This way, the relative performance of the
examined methods is more clearly presented for the different
data sets. Figure 3 illustrates the results with respect to the
range query size. The size of the query (square) for this
measurement is given in terms of the percentage (%) of the
work space.

Focusing on the real data sets, we see in Figures 3a
and 3b that LR-tree clearly outperforms R∗-tree in most
cases. Only for small queries do the algorithms have
similar performance, with the R∗-tree presenting a slight
improvement. For medium and large queries, the LR-tree
performs similarly to bulk-loaded R-tree. However, the
bulk-loaded R-tree is a static index, whereas the LR-tree
offers the advantages of a dynamic index during updates.
Analogous conclusions can be drawn from the synthetic data
set with uniformly distributed points. For the synthetic data
set with points following a Zipf distribution, the LR-tree
compares favorably to the R∗-tree. The LR-tree presents
an improvement of a factor of about three with respect to
the R∗-tree and its performance is very close to the bulk-
loaded tree. This can be explained because the zipfian data
set is more demanding, since the distribution of the points
(and the queries also) is very skewed. Thus, the better
organization achieved by LR-tree clearly pays off in this
case.

Next, we examined the k-nearest-neighbor queries. We
present results for the two real data sets (the results for
the synthetic data sets are analogous and are omitted for
brevity). As in the case of range queries, the page accesses
are normalized with respect to the bulk-loading method and
are given in Figure 4 (due to the difference in the data sets’
sizes, we examine different numbers of searched nearest
neighbors in each case). Evidently, analogous conclusions
can be stated as in the case of range queries. For queries
requiring the finding of less nearest neighbors, the R∗-tree
performs slightly better than the LR-tree. However, for
queries requiring the finding of more nearest neighbors the
R∗-tree clearly loses out. As previously, for such queries, the
performance of LR-tree is comparable to that of the bulk-
loaded R-tree.

Our next experiments examine update operations. As
performance main measure we use the wall-clock time.
Update operators involve sorting, plane-sweeping of node
entries (during R*-tree split), finding the entries to be
reinserted (during R*-tree reinsertion), sorting entries for
bulk-loading (during LR-tree construction phase) and other
operators which require non-negligible CPU cost, additional
to the I/O cost (which is not the case for search queries,
where I/O cost is the dominant one). Therefore, wall-clock
time considers both these two cost factors.
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FIGURE 3. Range query. (a) Long Beach real data set. (b) North East real data set. (c) Synthetic uniform data set. (d) Synthetic zipfian
dataset.
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FIGURE 4. k-nearest-neighbor query. (a) Long Beach real data set. (b) North East real data set.

First, we focus on insertion. We present results for the
Long Beach data set (the other data sets gave results that
led to the same qualitative conclusions). We examined all
methods by initially inserting a number of points from the
data set and measuring the insertion time (in seconds) with
respect to the number of remaining points. The number
of inserted (i.e. remaining) points is given as a percentage
of the total number of points in the data set. We omit
the results for the case of the bulk-loaded R-tree, since it

is a static index and cannot handle dynamic insertions.5

Figure 5a illustrates the results. As depicted, the R∗-
tree has the best performance. However, LR-tree presents
comparable performance. Therefore, LR-tree achieves the
property of a dynamic index structure by efficiently handling
dynamic insertions. For this experiment we also give, in

5By using bulk-loading for each insertion, we found that the bulk-loaded
R-tree requires time that is two orders of magnitude larger than the other
methods.
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FIGURE 5. Update operations. (a) Insertions. (b) Deletions.

TABLE 1. Page accesses (normalized) for the insertion operation.

Inserted
points (%) LR-tree R∗-tree

10 0.72 1
20 0.61 1
30 0.64 1
40 0.61 1
50 0.62 1
60 0.65 1

Table 1, separately the number of page accesses. The
page accesses for the LR-tree are normalized with respect
to those of the R∗-tree. As shown, the LR-tree requires
less page accesses during insertion, since it avoids the
reinsertion procedure of the R∗-tree. However, it involves
the construction of subtrees, which uses a sorting procedure
that requires a significant CPU cost. This is the reason why
the measurement of the wall-clock time of Figure 5a reveals
the actual cost for the dynamic insertion of points.

We also examined the execution time required by the
dynamic deletion operation. Figure 5b illustrates the results
with respect to the number of deleted points (for the
reasons described earlier, we do not examine the bulk-
loading method). Focusing on LR-tree, it performs better
than R∗-tree, since it does not use reinsertion (as explained
in Section 3). Therefore, LR-tree can efficiently handle
dynamic deletions. It has to be mentioned that execution
times for the LR-tree deletion are expected to be much less,
if the location of the object to be deleted is maintained in a
B+-tree (see Section 5.5).

The deletion is a weak operation in LR-tree. Therefore,
we examined its impact on query execution. We used a
mixture of deletion, insertion and range queries to simulate
a typical workload. Initially, half of the dataset points were
inserted and no deletion was performed. For the remaining
points, the ratio, C, of the number of inserted points to

the number of deleted points is a parameter6 (deletions
are performed by removing previously inserted points).
Interleaved with insertions and deletions, range queries
were performed and the average number of disk accesses
required by the range queries was measured. Figure 6a
illustrates the results with respect to C for the LB dataset
(the results for the bulk-loaded R-tree are omitted due
to very long execution times for the mixture of dynamic
operations). As shown, for larger values of C (i.e. when the
number of deletions is much smaller than that of insertions),
LR-tree clearly outperforms R∗-tree. This result is in
accordance with the previously described ones, since the
impact of deletion is small. Focusing on smaller values
of C (i.e. when the impact of deletions is significant), LR-
tree still outperforms R∗-tree.7 This result indicates that
the performance of LR-tree is not affected by the weak
deletion operation, due to the good properties achieved
by the insertion operations, which organize the LR-tree
contents and eliminate any possible effects of the weak
deletion operations. For the above experiment, this is also
verified by the node utilization (ratio of fanout to maximum
node capacity) achieved by the LR-tree. Even for lower
values of C (i.e. more deletion operations), the average
utilization was constantly higher than 95%, whereas for
larger C values, the average was close to 98%. This is due to
the kind of rebuilding applied by LR-tree, which packs the
node contents.

We tested the scale-up properties of each method with
respect to the dataset size, using synthetic datasets (points
following uniform distribution). Figure 6b depicts the results
for the range search query for an increasing number of points
in the dataset (given in thousands). It has to be noted that the
size of the LR-index in this measurement ranged from 5 MB

6The absolute number of insertions is constant, i.e. the 50% of the total
number of points is inserted during the mix-operation phase. The absolute
number of deletions can easily be derived, for example, when C = 3, it is
one-third of the number of insertions.

7Disk accesses decrease with decreasing C because a smaller C value
corresponds to more deletions and to fewer points in the tree, hence less disk
accesses are required by the queries. Nevertheless, we are only interested
in the relative performance of LR-tree and R∗-tree for the different values
of C.
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FIGURE 6. Performance with respect to (a) mixed operations and (b) scale-up.
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FIGURE 7. The heuristic adjustment. (a) Insertions. (b) Range queries.

(for 100,000 points) to 50 MB (for 1,000,000 points). As
shown, LR-tree presents very good scalability, significantly
outperforming R∗-tree. In fact, LR-tree performance is
comparable to that of bulk-loaded R-tree, which shows the
best performance among the examined methods.

5.4. Heuristic adjustment

Finally, we examined a variation to the approach of wR-
trees, called heuristic adjustment. The heuristic adjustment
allows for a number of splits (user parameter) within a
block during insertions. Assume that Vi is the block
that can accommodate a new point during its insertion, as
described in Section 2. Instead of destroying all previous
data structures (i.e. all Dj wR-trees for j ≤ i) and building
a new one, the heuristic adjustment postpones the latter
procedure. To handle the accommodation of the new point in
the Di structure, the heuristic adjustment may resort (when
necessary) to the standard node splitting used by R-trees.
Thus, blocks in this case are not strictly semi-dynamic data
structures.

The aforementioned approach corresponds to a kind
of lazy rebuilding, deferring the costly operation of
destroying blocks and building a new one, without degrading
performance. Evidently, following this approach, the time

required for the insertion is expected to improve and,
moreover, the performance of query processing will not be
impacted significantly.

To verify the above statements, we performed measure-
ments on the insertion time and query performance of the
heuristic adjustment. We used a threshold value of 20 splits
that are allowed before the destruction/rebuilding phase. For
brevity we report results on the Long Beach real data set.
Figure 7a depicts the insertion time with respect to the
number of inserted points (given as a percentage of the total
number of points in the data). In this figure, LR-tree w/
denotes the LR-tree with heuristic adjustment and LR-tree
w/o the one without. As expected, the LR-tree with heuristic
adjustment presents improved insertion times, since less
rebuildings are required. Thus, it outperforms R∗-tree and
LR-tree without the heuristic adjustment.

Figure 7b depicts the results for the range query with
respect to the query size (the query size is given in terms
of percentage of the work space). Similar to the results
in Figure 3, the results are the normalized page accesses
with respect to the bulk-loading method. As shown, the
performance of the LR-tree with the heuristic adjustment
(LR-tree w/) is analogous to that of the LR-tree without
this approach. Therefore, for medium and larger ones,
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LR-trees (with and without the heuristic adjustment) clearly
outperform R∗-tree and their performance is close to that of
the bulk-loading method.

5.5. Discussion

The presented results can be directly explained using
Theorem 3. According to this, the insertion procedure is
bounded by O(logB n logb n) plus the search time for leaf
detection; thus, it is a logB n/b factor worse than that of
R∗-trees. However, with the heuristic adjustment, insertion
times for LR-tree are improved significantly, outperforming
R∗-tree. Deletion is clearly logarithmic plus the time for
item location and certainly better than that of R∗-trees,
whose time is a b factor larger due to forced re-insertions.
In fact, if the correspondence between blocks and wR-trees
is maintained using a B+-tree B, in which each element
of S is kept along with a pointer to the specific wR-tree
where it resides, deletion time can be strictly logarithmic,
since the involved points can be located without any calls
to the underlying wR-tree search procedure at the expense
of increased storage requirements; this trade-off can be
decided by considering the performance requirements that
the corresponding application poses.

Finally, the various queries exhibit a performance that is
not worse than R∗-tree; actually, it is proven to be better,
achieving percentage improvements of up to 27% for range
searching, up to 23% for k-nearest-neighbor queries and up
to 25% when it scales up. This performance is comparable
to that of the static bulk-loaded indices, just as anticipated
due to the ‘tight’ nature of the subtrees corresponding to the
blocks. Here we must note that the static bulk-loaded R-
trees are effectively the lower bound, since they exhibit a
performance which is about 20% worse than the theoretical
optimum on average [15].

6. CONCLUSION

We have presented a new scheme, called LR-tree, for the
dynamic manipulation of large datasets, which offers the
performance characteristics of bulk-loaded indices. The
update operations as well as the basic geometric queries
are theoretically investigated and thoroughly tested with
carefully designed experiments, since there is truly a
difficulty about expressing a non-trivial upper bound for R-
tree-like spatial data structures. In order to achieve this, we
employed the known logarithmic dynamization technique,
from the area of main memory data structures, carefully
adjusted to the demanding context of the R-trees, giving
solutions to a number of issues like, for example, the
definition of weak deletions or the multiplicity of activated
search paths.

Independently to this work, the logarithmic method has
also been used in [12] to accommodate—in conjunction to
pagination—to the secondary memory the wp-trees, provid-
ing theoretical upper bounds without further experimental
treatment. We, in addition to theoretical bounds, give for
the first time experimental data for the logarithmic method,

which is mandatory for the effective evaluation in real-
world applications. The experimental results provide clear
evidence of the superiority of LR-trees.

We believe that our work can be further improved in the
following two ways. (a) The logarithmic block method
actually bases its applicability on the constant amortized cost
of the carry propagation. That is, when we insert a new
point to the structure, the actions that follow are equivalent
to adding one to the cardinality of the accommodated set
of elements. There are redundant integer representation
systems [19, 20] with the property that adding one involves
constant worst-case carry propagation. In the context of
the LR-tree this means that only O(1) subtrees are involved
in bulk-loading in the worst case. (b) Since the insertion
procedure involves discarding a number of subtrees and
bulk-loading from scratch the accommodated elements, one
can hope to accelerate the whole process if it would be
possible to exploit the ‘order’ the elements already possess.
In other words, it would be quite interesting if one could
merge R-trees in O(n) or o(n log n) time, since bulk-
loading has O(n log n) time complexity. We believe that this
problem, having additional applications, is interesting on its
own.

REFERENCES

[1] Guttman, A. (1984) R-trees: a dynamic index structure
for spatial searching. In Proc. 1984 ACM Int. Conf. on
Management of Data (SIGMOD’84), Boston, MA, June 18–
21, pp. 47–57. ACM Press, New York.

[2] Manolopoulos, Y., Theodoridis, Y. and Tsotras, V. (1999)
Advanced Database Indexing. Kluwer Academic Publishers,
Boston, MA.

[3] Beckmann, N., Kriegel, H.-P., Schneider, R. and Seeger, B.
(1990) The R∗-tree: an efficient and robust access method
for points and rectangles. In Proc. 1990 ACM Int. Conf. on
Management of Data (SIGMOD’90), Atlantic City, NJ, May
23–25, pp. 322–331. ACM Press, New York.

[4] Kamel, I. and Faloutsos, C. (1994) Hilbert R-tree: an
improved R-tree using fractals. In Proc. 20th Int. Conf. on
Very Large Data Bases (VLDB’94), Santiago de Chile, Chile,
September 12–15, pp. 500–509. Morgan Kaufmann, San
Francisco.

[5] Leutenegger, S., Lopez, M. and Edgigton, J. (1997) STR: a
simple and efficient algorithm for R-tree packing. In Proc.
13th Int. Conf. on Data Engineering (ICDE’97), Birmingham,
UK, April 7–11, pp. 497–506. IEEE Computer Society,
Piscataway, NJ.

[6] Bercken, J., Widmayer, P. and Seeger, B. (1997) A generic
approach to bulk loading multidimensional index structures.
In Proc. 23rd Int. Conf. on Very Large Data Bases (VLDB’97),
Athens, Greece, August 25–29, pp. 406–415. Morgan
Kaufmann, San Francisco.

[7] Arge, L., Hinrichs, K., Vahrenhold, J. and Vitter, J. (1999)
Efficient bulk operations on dynamic R-trees. In Proc. Int.
Workshop on Algorithm Engineering and Experimentation,
(ALENEX’99), Baltimore, MD, January 15–16, pp. 328–348.
Springer, Berlin.
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