
Smart Messages: A Distributed Computing Platform
for Networks of Embedded Systems ∗

Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich Kremer, and Liviu Iftode
Department of Computer Science, Rutgers University, Piscataway, NJ 08854

{kangp, borcea, gxu, saxena, uli, iftode}@cs.rutgers.edu

Abstract

In this paper, we present the design and imple-
mentation of Smart Messages, a distributed comput-
ing platform for networks of embedded systems based
on execution migration. A Smart Message (SM) is
a user-defined distributed program which executes on
nodes of interest, named by their properties, and uses
an explicit lightweight migration to reach these nodes.
During migrations, an SM carries its code and execu-
tion state, and it self-routes at each intermediate node
between two nodes of interest. The nodes in the net-
work cooperate to support the SM execution by provid-
ing a virtual machine and a shared memory region ad-
dressable by names (tag space). To illustrate the flexi-
bility of SMs to program real world applications, we
describe EZCab, an application for booking cabs in
densely populated urban areas. We also present exper-
imental results to quantify the performance achieved
by the SM prototype.

1. Introduction

Following the rapid development of sensor net-
work technologies [12, 26–28, 32], networks of em-
bedded systems (NES) will become ubiquitous dur-
ing the next decade. We are already witnessing the
beginning of this new world in which cars, cam-
eras, cell phones, and even watches have wireless
network interfaces and are powerful enough to run
Linux [1]. NES offers the opportunity to program
a large spectrum of applications, ranging from sim-
ple data collection and data dissemination to com-
plex distributed applications such as remote object
tracking using robots equipped with video cameras

∗ This work is supported in part by the NSF grant ANI-
0121416

or inter-car collaboration to improve traffic safety
and fluidity.

To leverage the raw computing power provided
by NES into new distributed applications, we have
to overcome the scale, heterogeneity, and volatil-
ity that characterize these networks. Current ap-
proaches to NES programming are ad hoc and pro-
vide limited flexibility; they are designed for specific
classes of applications (e.g., querying the network
for certain data) and can hardly accommodate new
applications or services after the network has been
deployed. As NES applications diversify, there will
be an increasing demand for a common distributed
computing platform to support arbitrary applica-
tions over NES.

A distributed platform for NES have to support
simple development of new distributed applications.
It also has to allow applications to cope with the
uncertainty encountered in NES (e.g., the network
topology as well as the resources at nodes are un-
known a priori and can vary greatly over time). To
answer these requirements, we need new program-
ming abstractions since traditional message passing
does not work in highly dynamic network configu-
rations. This model includes a number of charac-
teristics that render it unusable in NES: end-to-end
data transfer between applications, fixed bindings
between names and node addresses, and fixed rout-
ing.

A first problem with end-to-end data transfers
is that they may complete very slowly, or may not
complete at all in volatile networks [58]. Since ap-
plications have no control over the network, they
are forced to wait indefinitely (or until the connec-
tion times out) each time something goes wrong in
the network. To be able to adapt quickly to network
volatility, applications would like to regain the con-
trol as soon as possible. Another problem with tra-
ditional end-to-end data transfer is that it does not
allow in-network processing in order to reduce the

size of data transferred by applications [26]. Reduc-
ing the amount of traffic in the network is impor-
tant in mobile ad hoc networks, such as NES, since
it leads to reduced bandwidth and energy consump-
tion. Therefore, NES applications would also like to
be capable of performing in-network processing.

The fixed bindings between names and node ad-
dresses assumed in the message passing model rep-
resent also a serious obstacle for NES applications.
After a fixed binding has been established during
the name resolution phase, an application is forced
to contact the same node each time it needs to ac-
cess a resource of the same type. Commonly, name
resolvers react slowly to network changes, and ap-
plications would try to contact a node long time af-
ter this node has become unreachable, even though
nodes with similar resources exist in the network.
To prevent such a situation, more flexible naming is
needed in NES. We believe that content-based nam-
ing [9, 30] can provide a solution because it allows
applications to contact any node has a certain re-
source.

Since content-based naming makes fixed ad-
dresses (e.g., IP) irrelevant, the routing and name
resolution should be integrated in NES. Addition-
ally, given the diversity of applications, no sin-
gle routing will provide good performance for
all applications. Therefore, similar to active net-
works [19, 40, 54], it would be desirable to let ap-
plications use the best-suited routing for their
needs.

In this paper, we present the design and im-
plementation of Smart Messages (SMs) [15], a
distributed computing platform for NES based
on execution-migration, content-based nam-
ing, and self-routing [14]. Instead of passing data
end-to-end between nodes, an SM application mi-
grates to nodes of interest named by content
and executes there. Each node has a virtual ma-
chine for SM execution and a name-based mem-
ory, called tag space. The SMs use the tag space for
content-based naming and persistent shared mem-
ory. An SM carries its own routing code and routes
itself at each node in the path toward a node of in-
terest. To perform routing, SMs store routing
information in the tag space at nodes.

SMs represent an attractive alternative to tra-
ditional distributed computing based on message
passing for four reasons. First, SMs allow applica-
tions to adapt to highly dynamic network condi-
tions. During migrations between nodes of interest,
the routing code can be instructed to return the
control to application as soon as a route cannot be

found or after an application-set timeout. Since ap-
plication’s code as well as its execution state are al-
ready at the same node, the SM can quickly adapt
to changes in the network. For instance, an SM can
change dynamically its routing or its destination.
Second, the content-based routing provides the flex-
ibility to reach a node that offers a certain property
in an application-controlled manner. Third, the SM
programming model eases the deployment of new
applications in the network after the network de-
ployment phase has ended. A user can inject ap-
plications at any node in the network, and conse-
quently the applications migrate their code at every
node where they need to execute. And fourth, SMs
can significantly reduce the amount of traffic gener-
ated by certain classes of applications (e.g., process
the data at the source for distributed image process-
ing).

Although the SM computing platform leverages
work from various research areas, notably from mo-
bile agents [22,33] and active networks [19,40,54], its
uniqueness comes from both the problem it solves,
programming distributed applications in NES, and
its design that allows rapid adaptation of applica-
tions to volatile network configurations. A detailed
discussion and comparison between SMs and other
work is presented in Section 10.

To validate the proposed architecture, we have
developed an SM prototype in Java by modify-
ing Sun’s Java KVM [2]. The prototype runs over
a testbed consisting of HP iPAQs equipped with
802.11 cards for wireless communication. This paper
presents the implementation and evaluation of our
SM prototype. It also describes an application de-
veloped over this prototype, called EZCab, for book-
ing cabs in densely populated urban areas.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the main SM concepts. The system
support provided by nodes is described in Section 3.
Section 4 discusses the SM API. The self-routing
mechanism is presented in Section 5. The basic se-
curity architecture is explained in Section 6. Sec-
tion 7 describes the implementation details of our
SM prototype, and Section 8 presents an evaluation
of this prototype. Section 9 describes the EZCab ap-
plication. We discuss the related work in Section 10
and conclude in Section 11.

2. Smart Messages Architecture

An SM is a component of a user-defined appli-
cation whose execution is distributed over a series
of nodes using execution migration. The nodes on

Node 1
(Node of interest)

Node 2
(Intermediate Node)

Node 3
(Node of interest)

Migration

Migration

Application

Routing

Application

CodeCode Code
CacheCache Cache

Tag
SpaceSpace

Machine MachineMachine
Virtual Virtual Virtual

Tag Tag
Space

Figure 1.DistributedComputingUsingSmart
Messages

which SM applications execute, called “nodes of
interest”, are named by content (tag names), dis-
covered using application-controlled routing, and
switched when the SM application calls for exe-
cution migration. The payload of an SM consists
of data “bricks”, explicitly identified in the appli-
cation, and execution control state. Code “bricks”
may also be transferred if the code is not cached
at destination. An SM can carry multiple data and
code bricks, and it can use them to create new SMs
during its execution. In this way, an application can
eventually generate multiple SMs although it has
started as a single SM.

The SM computing platform assumes a decen-
tralized architecture, where nodes in the network
act as peers. SMs do not make any assumptions
about the underlying network configuration, except
for a minimal system support provided by nodes: a
virtual machine, a name-based memory, called tag
space, and a code cache. The virtual machine of-
fers a hardware abstraction layer for SM execution,
which shields SMs from heterogeneous node config-
urations. The tag space offers a name-based mem-
ory, persistent across SM executions. It consists of
(name, data) pairs, called tags, which are used for
data exchange among SMs. Special I/O tags are
used as an interface to the host OS and I/O sys-
tem. Tags serve also to name the destination of
SM migrations and store routing information (rout-
ing tags). The code cache stores frequently accessed
code bricks in order to amortize the cost of trans-
ferring code over time. Figure 1 depicts the execu-
tion of an SM over three nodes. The SM applica-
tion code starts on Node1 and finishes on Node3.
The SM reaches Node3 by explicitly migrating from
node to node. Node2 is used as an intermediate hop,
where only the SM routing code executes.

To illustrate how NES are programmed using

// application data brick
int numCabs, i;
Location loc;
// application code brick
for(i=0; i<numCabs; i++){

migrate("FreeCab");
deleteTag("FreeCab");
writeTag("Location", loc);

}

Figure 2. Smart Message Code Example

SMs, we present a very simple example consisting of
an SM that books cabs in a densely populated city.
Let us consider a group of people attending a confer-
ence, who wants to return to the conference venue
after an “off-site” lunch. Instead of calling a cab
company or waiting on the street for a free cab, one
of them uses her handheld device to inject an SM in
the network to book a certain number of free cabs.
Each cab provides support for SM execution and is
identified by a FreeCab tag. The code for this appli-
cation is shown in Figure 2, and the SM execution
path through the network is depicted in Figure 3.
The SM migrates to free cabs, changes their sta-
tus from free to occupied (by removing the FreeCab
tag), and instructs them to come to the client’s lo-
cation (by writing to Location tag). The SM com-
pletes after booking the desired number cabs.

The key operation in the SM programming model
is multi-hop, content-based migration, which imple-
ments routing using tags. An SM names the nodes
of interest by tags, and then calls a high-level mi-
grate function to route itself to a node that has the
desired tags. In our example, migrate(“FreeCab”)
routes the SM to free cabs using the occupied cabs
as intermediate nodes. This high-level function uses
the low-level sys migrate primitive, provided by the
system, for one-hop migration. After a migration,
the SM resumes from the next instruction follow-
ing the migrate call. It is important to notice that
migration is explicit (i.e., the programmer calls mi-
grate when needed).

Figure 3 emphasizes two major characteristics of
the SM programming model. First, the high-level,
content-based migration shields the application pro-
grammer from the routing details. Although the
routing code is executed at each node as the SM mi-
grates hop-by-hop through the network, migrate re-
turns the control to application only on nodes of in-
terest (i.e., free cabs). Second, the data transferred
during a migration is specified by the programmer
as data bricks; the variables numCabs, i, and loc are

Data Brick
Application Code
Routing Code

migrate("FreeCab") migrate("FreeCab")

i=1 i=2i=0i=0 i=1M
es

sa
ge

Sm
ar

t

sys_migratesys_migratesys_migrate sys_migrate

...

CabClient Occupied Free
Cab

Occupied
Cab

Free
Cab

Figure 3. Smart Message Execution Path

stored in a data brick and carried from node to node
during migrations (the figure shows how i is modi-
fied during execution).

From a user’s perspective, this model offers re-
silience to dynamic network configurations and sim-
ple deployment of new distributed applications in
the network. An application programmer can write
simple sequential programs that migrate to nodes
named by content and execute there, while ignoring
the routing which is embedded in migrate functions.
These are user-level functions, typically developed
by system programmers. Applications can choose
between multiple migrate functions and adapt to
dynamic network configurations by switching these
functions during execution.

To achieve good performance in networks com-
posed of resource constrained nodes, we have
decided against involving the VM in determin-
ing which data is needed across migrations. In our
architecture, the VM captures the minimal execu-
tion control state required for SMs to resume at the
instruction following a migration. Although this de-
cision puts clearly a burden on programmers,
it avoids the overhead of having the VM col-
lect the “live data” of SMs; many times this
operation is not only time consuming, but also col-
lects more data than necessary (i.e., conservative
approach), thus increasing the amount of traf-
fic in the network.

3. Cooperative Node Architecture

In order to execute SM-based applications, the
nodes must cooperate to support SM execution and
routing. The entire SM model is built under the as-
sumption that the node architecture must be kept
as simple and flexible as possible. Figure 4 shows
the system components of a cooperative node.

Virtual Machine. The virtual machine (VM)
executes VM-level threads generated by incoming
SMs. To migrate an SM, the VM captures the ex-

ecution state and sends it along with the code and
data bricks to the next hop. The VM at destination
resumes the SM at the instruction following the mi-
grate call.

Local Injector. The local injector allows the
users to start new SMs at the local node. A VM-level
thread is generated for each new SM. This thread is
stored in the SM ready queue and dispatched for ex-
ecution according to the scheduling policies.

Scheduler. The SM execution is non-
preemptive; other SMs can be accepted, but they
are not dispatched for execution before the cur-
rent SM completes. The non-preemptive scheduling
simplifies the implementation of inter-SM syn-
chronization and sharing. Additionally, we envi-
sion that the overhead introduced by more complex
scheduling will not be justified for NES appli-
cations, which typically have short execution
time.

Admission Manager. To prevent excessive use
of resources (e.g., processor cycles, tag space mem-
ory, runtime memory, bandwidth), the nodes have
to perform admission control on incoming SMs. The
admission control at nodes ensures the progress of
all SMs running in the network. It also prevents SMs
from migrating to nodes where they cannot achieve
anything due to resource constraints. SM s present
their resource requirements in a resource table. The
admission manager receives the resource tables, de-
cides whether to accept the SMs or not, and en-
queues the accepted SMs into the SM ready queue.
It also instructs an accepted SM to transfer only
the missing code bricks (i.e., the code bricks that
are not stored locally) and stores them in the code
cache upon reception.

The admission manager makes the admission de-
cision based on the current state of the node and the
SM’s resource requirements. This decision is based
on the admission policy in effect at that node. An
accepted SM is guaranteed non-preemptive execu-
tion as long as its resource usage does not exceed

Tag Space

Incoming SM Migrating SM
Network Network

SM Ready Queue

Injector

Cache

Manager Scheduler Virtual

Authorization

Application I/O

Code

Admission

Tags Tags

Machine

OS & I/O

Local

SM Platform

Figure 4. Cooperative Node Architecture

certain limits defined by the admission policy. For
instance, a node may run out of battery and decide
to accept only SMs for which it is a node of inter-
est, but reject all SMs that need to route through
it. If an SM is rejected, the migration call fails at
the source, and the SM regains the control.

Precise resource usage for SMs cannot be pre-
dicted in advance because their computations de-
pend not only on user-provided input data, but also
on data gathered from the network during execu-
tion. To be able to perform admission, the admis-
sion manager needs, however, at least approximate
information about SMs’ resource requirements. One
solution would be to specify upper bounds for the
resource requirements. We have dismissed this idea
for two reasons: computing relatively precise upper
bounds is as hard as predicting the actual resource
usage (i.e., we do not have knowledge about data
acquired at runtime), and large upper bounds may
lead to frequent rejections at nodes even though the
SM may consume significantly less resources during
its execution.

Our solution requires each SM to specify its lower
bounds for resource requirements. The program-
mers can set them before any one-hop migration,
and they define the minimum amount of resources
that may lead to SM completion or migration. The
programmers may use compiler support to derive
lower bounds for resource requirements. The decla-
ration of these lower bounds serves two purposes:
protect SMs from migrating to a node that cannot
offer enough resources for any semantically accept-
able result, and protect the resources at the node

from being wasted on such SMs. Based on the ad-
mission policy, the system may grant more resources
to SMs that have exceeded their lower bounds dur-
ing execution. If no more resources could be granted,
the system raises an exception which, by default,
terminates the SM. The SM is allowed, however,
to catch this exception, to save data of interest in
data bricks, and to migrate. A limited amount of
resources is reserved during admission for the ex-
ception handler. To ensure a successful migration
for this case, the SM has to declare, during admis-
sion, the maximum amount of data it plans to carry
to the next hop.

Tag Space. The tag space provides a name-
based memory and a unique interface to the local
OS and I/O system. It consists of a collection of tags
that can be divided into two categories: (1) appli-
cation tags which are created by SMs and used for
inter-SM communication and synchronization, and
(2) I/O tags which belong to nodes and allow SMs
to access system resources. The structures of these
tags are shown in Figure 5. Each tag has a name
(unique at a node, but not globally unique) which
is similar to a file name in a file system. SMs use
this name for content-based naming.

Application tags are commonly used for data ex-
change among SMs because their data portion can
store application-specific data. For instance, an SM
can build a routing table in a tag, and other SMs
can subsequently read the routes from this tag. Each
application tag has a lifetime that specifies the du-
ration after which the tag expires and its memory
is reclaimed by the node.

Name Data Lifetime OwnerID Name ACL I/O Handler

I/O TagApplication Tag

 SM Blocked QueueFamilyID ACL

Figure 5. Application and I/O Tag Structures

I/O tags act as a gateway between SMs and the
underlying OS and I/O system. Usually, each I/O
tag is associated with an external process, which
communicates with the VM through a standard in-
terface. Each time an I/O tag is accessed by an SM,
its associated external process interacts with the lo-
cal resources and returns a response to the SM.

The access to tag space is protected using an ac-
cess control list (ACL). The application tags have
also ownership information (i.e., OwnerID and Fam-
ilyID). We defer the description of the protection
mechanism to Section 6.

Similar to existent solutions [3,4], we use names-
paces to avoid naming conflicts; a tag name is pre-
ceded by a namespace (i.e., namespace:tagname).
The I/O tags have a pre-defined namespace, ions,
which is known by any SM. The namespaces for ap-
plication tags, on the other hand, are defined by the
SMs that create them. Each SM has a unique de-
fault namespace which is used when a reference to a
tag name is not preceded by a namespace. The sys-
tem where the SM is injected generates this unique
namespace, and every SM created dynamically in-
herits it from its parent SM.

An SM may use other namespaces to cooperate
with SMs that do not belong to its family. Access-
ing tags in other namespaces does not create prob-
lems because the access is subject to access control.
Creating new tags, however, may lead to naming
conflicts. For instance, two different SMs may cre-
ate two tags with the same name, but with different
semantics. A solution to this issue is to ensure that
conflicting namespaces are extremely rare in prac-
tice (e.g., a namespace is a long random string of
bits). The developers that need to cooperate can ex-
change these namespaces off-line.

Although simple, this solution is not bullet-proof.
If an SM needs to ensure that conflicts are avoided,
it has to use secure namespaces (i.e., by definition,
a secure namespace is preceded by the keyword se-
cure). At the compilation time, the compiler builds
the list of secure namespaces used in tag creation
invocations throughout each code brick. The com-
piler has to be able to generate the list of names-
paces (i.e., the namespaces are either directly spec-
ified, or the compiler is able to determine them us-
ing static analysis); if the compiler is not able to find

at least one possible namespace for a tag, the com-
pilation fails.

At injection time, the SM must present a capa-
bility for each namespace in the compiler-generated
list. Therefore, the developer of a code brick (or
the developer of an SM) has to acquire these ca-
pabilities such that each code brick of an SM has
an associated list of capabilities. During SM injec-
tion, the system verifies the capabilities and cre-
ates a list of namespaces for each code brick. This
list together with the default namespace is main-
tained in the SM structure and cannot be modified
over time. A child SM inherits the list of names-
paces for the code bricks that compose it. If an SM
does not present a capability for every namespace
in the list generated by the compiler, it will be re-
jected during the injection phase.

A central authority (CA) keeps track of all secure
namespaces and their owners. Each time a names-
pace owner decides to allow a code brick to create
tags within that namespace, she associates a capa-
bility, digitally signed by the CA, with this code
brick; the capability contains the hash value of the
code brick. Similar to ANTS [19], this value is ob-
tained by applying a hash function on the code it-
self. Each node has the public key of the CA and
the common hash function. During SM injection,
the VM uses the CA’s public key and the capabil-
ity to verify that the code bricks are authorized to
use the secure namespaces.

Synchronization Mechanism. Given the non-
preemptive SM execution, we have devised a simple
update-based synchronization mechanism for inter-
SM communication. An SM can block on an appli-
cation tag until another SM performs a write on
that tag. A blocked SM SM is appended to the SM
blocked queue and yields the processor (this is the
only exception to our run-to-completion model of
execution). After an SM SM blocks, the scheduler
may dispatch other SMs for execution. When an SM
writes to an application tag with a non-empty SM
blocked queue, all SMs in the queue are woken up
and made ready for scheduling. To prevent infinite
blocking, if no write operation takes place within a
given timeout, SMs are unblocked and made ready
for scheduling.

Category Primitives
createSMFromFiles(code files);
createSM(code bricks, data bricks);
spawnSM();

Smart Messages sys migrate();
blockSM(tag name, timeout);
setResources(resources);
createTag(tag name, lifetime, data);
deleteTag(tag name);

Tag Space readTag(tag name);
writeTag(tag name, data);

Table 1. SM API

4. Smart Messages API

The SM API is presented in Table 1. SMs are al-
lowed to create new SMs dynamically, migrate one-
hop to neighbor nodes, access the tag space, set
lower bounds for resource requirements and syn-
chronize on tags. Also, the SMs can use the uniform
interface provided by the tag space to execute sys-
tem calls on the local host (i.e. through I/O tags).

SM Creation. Initially, an SM is injected at a
node as a program file, and it calls createSMFrom-
Files with a list of program file names to create a
new SM structure. An SM may use createSM to as-
semble a new, possibly smaller SM using some of
its code and data bricks. A createSM call is com-
monly used to build an SM that cooperates with
the current one (e.g., a route discovery SM). An ap-
plication that needs to clone itself calls spawnSM
(similar to the fork system call in Unix). Typically,
spawnSM is invoked when the current SM needs to
migrate a copy of itself to nodes of interest while
continuing the execution at the local node. A new
SM generated by createSM or spawnSM is sched-
uled for execution at the local node.

SM Migration. The sys migrate primitive im-
plements one-hop migration. It captures the execu-
tion state, sends the resource table for admission,
transfers the accepted SMs, and resumes these SMs
at destination. The sys migrate is used by high-level
migrate functions to route SMs to nodes of interest.
More details about the SM self-routing mechanism
are presented in Section 5.

Synchronization. The blockSM primitive allows
SMs to block on a tag pending a write by another
SM. Typically, an SM uses this primitive to wait
for a route. For instance, an SM can create a route
discovery SM and block on a routing tag until the
route discovery SM returns (i.e., the route discov-
ery SM writes to the routing tag, and thus wakes

up the blocked SM).
SM Resource Requirements Programmers

invoke setResources each time they need to set
new lower bounds for resource requirements. Typi-
cally, this primitive is called once per high-level mi-
gration invocation and specifies two categories of
lower bounds: resources needed for routing, and re-
sources needed for computation at the node of inter-
est (i.e., the target of migration). The resources are
implementation specific, but they include at least:
number of VM cycles, amount of runtime memory,
amount of tag space memory and the duration for
which this memory is needed, I/O tags to be ac-
cessed, and maximum number of bytes that would
be generated when migrating this SM to another
node. An SM is not required, however, to set the re-
source requirements. In such a case, the admission
is based only on the size of the SM, but the node
does not provide any type of guarantees (i.e., the
SM can be terminated or asked to migrate at any
moment). Our current prototype, described in Sec-
tion 7, uses this very simple solution.

Tag Space Access. An SM can create, delete, or
access application tags. As mentioned in Section 3,
the tags are accessed subject to authorization. The
same interface is used to access the I/O tags: SMs
can issue commands to I/O devices by writing into
I/O tags, or can get I/O data by reading from I/O
tags (an SM cannot create or delete I/O tags).

5. Self-Routing Mechanism

Similar to most mobile ad hoc networks, the dis-
tinction between hosts and routers disappears in
NES. In our approach, there is no support for rout-
ing at nodes. Each application has to include at least
one routing brick among its code bricks. An applica-
tion can control routing in two ways: select its rout-
ing algorithms, or change the routing during exe-

1 // routing data brick
2 String tag, routeToTag;
3 int timeout;
4 // routing code brick
5 boolean migrate(String tagName, int timeOut){
7 // use parameters to set tag, routeToTag, and timeout in data brick
6 while(readTag(tag) == null){
7 Address nextHop = readTag(routeToTag);
8 if (nextHop != null)
9 sys_migrate(nextHop);

10 else{
11 createSM(RouteDiscoverySM, tag);
12 if (blockSM(routeToTag, timeout) == TIMEOUT)
13 return FALSE;
14 }
15 }
16 return TRUE;
17 }

Figure 6. Migration Example Using Simple On-demand Routing

intermediate node

SM uses routing2

Timeout
SM uses routing2

SM uses routing1 SM uses routing1

node of interest

Reached region

Change of routing due to network conditions Change of routing due to application requirements

node where routing changes

Figure 7. Dynamic Change of Routing

cution. Each routing brick defines a user-level mi-
grate function, which contains the routing code and
is commonly provided as a library implementation.
The programmers, however, are free to implement
their own migrate functions. Any arbitrary condi-
tion on tag names and tag values can be used in
migrate to define a node of interest. For instance, a
simple implementation of migrate takes a list of tag
names as parameter and migrates the SM to a node
that contains all those tags. To cope with network
volatility, migrate can take a timeout as parameter.
If a timeout occurs (i.e., the routing algorithm has
not been able to find a node of interest during the
given period), the application regains the control at
an arbitrary node on the path between two consec-
utive nodes of interest. Consequently, it may decide
to change the routing or the destination of migra-
tion.

Our current prototype provides two pre-defined

routing algorithms, a content-based on-demand
routing (similar to AODV [46]) and a geograph-
ical routing (similar to GPSR [35]). SMs imple-
ment routing using tags and the sys migrate (4)
primitive. Since tags are persistent across SM ex-
ecutions, the routing information can be shared
by SMs with similar interests, thus amortiz-
ing the route discovery effort. Given the volatility
of NES, most of the routing information will have a
short lifetime. Thus, the amount of tag space con-
sumed for storing routing information will be lim-
ited. To improve the scalability for networks with
many different tags, we have designed an al-
gorithm which maintains approximate informa-
tion about tags in the network using Bloom fil-
ters [11,14].

Figure 6 shows a simplified version of our mi-
grate function implemented using on-demand rout-
ing. If a next hop toward a node of interest is avail-

able, the entire SM migrates there (lines 8-9). Oth-
erwise, a route discovery SM is created, and the cur-
rent SM blocks waiting for a route (lines 11-12). The
SM is woken up when the discovery SM returns with
a route and writes the routing tag. If no route is ac-
quired during an application-set timeout, migrate
returns the control and informs the application that
it could not find a node of interest. A problem gen-
erated by content-based routing is how to ensure
that an application does not end up on a node al-
ready visited. We have used two solutions; either in-
struct migrate to discover an un-visited node each
time it is called, or let the application record the vis-
ited nodes of interest and pass this list to migrate.

A single routing algorithm might not always
reach a node of interest in the presence of highly dy-
namic network configurations. Therefore, the use of
multiple routing bricks during the lifetime of an SM
can help an application complete in adverse network
conditions. The completion time of an SM can also
be improved by using multiple routing algorithms.
Two factors can determine a dynamic change of
routing: a significant modification in the network
configuration, or specific application requirements.

Figure 7 illustrates both factors. In the first ex-
ample, the SM needs to visit a number of nodes
of interest, but it cannot complete because its cur-
rent routing (suitable for dense and relatively static
networks) cannot find a route when the network be-
comes sparse and mobile. The SM, however, has in-
structed migrate to return the control after a cer-
tain timeout. At this time, the SM regains the con-
trol at an arbitrary node and calls another migrate
function, which implements a routing suitable for
the new network conditions (e.g., content-based on-
demand routing). Using the new routing, the SM is
able to make further progress.

The second example depicts a change of rout-
ing determined by the application requirements. An
SM needs to visit several nodes of interest located
in a given geographical region (the circular region).
Therefore, an SM may have two routing bricks, a ge-
ographical routing used to reach the region, and an
on-demand content-based routing used to discover
the nodes within that region. In this situation, the
SM changes the routing when it reaches the region
of interest.

6. Security Architecture

One of the traditional pitfalls of existing systems
based on mobile code is security. Similar to mobile
agents, there are three main issues that have to be

Others

Owner

Origin

Code

Family

Figure 8. SM Protection Domains for Tag
Space Access

solved: (1) protecting recipient hosts from SMs, (2)
protecting SMs from each other, and (3) protect-
ing SMs from malicious hosts. These problems be-
come more severe for SMs due to the volatile na-
ture of NES. Unlike traditional mobile agents for
relatively stable IP-based networks, the SMs have
to overcome the lack of an infrastructure or a cen-
tral authority, specific to mobile ad hoc networks,
which increases significantly the difficulty of key au-
thentication and group management.

In this section, we present a basic security ar-
chitecture for SMs, which focuses on providing pro-
tected access to the tag space. This security archi-
tecture offers protection against malicious SMs un-
der the assumption that the SM system software at
nodes is trusted (i.e., we do not protect SMs against
compromised hosts). To protect against compro-
mised systems, we plan to develop a distributed
trust mechanism [17], which helps a node assign
trust values to its one-hop neighbors; a node deemed
untrusted is simply removed from the list of neigh-
bors. Optionally, an SM may ask to be migrated in
an encrypted form between neighbor nodes. To sup-
port this, each node carries a pair of public/private
keys.

6.1. Access Control

A unique characteristic of SMs is that no di-
rect access is allowed to system resources (i.e., the
SMs access both their data and system resources
through the tag space). The advantage of this design
is that the tag space is a single point of access con-
trol, which can be implemented and enforced uni-
formly. Compared to mobile agent systems [23], the
tag space simplifies greatly the control mechanisms.
The SM creating a tag, called tag’s owner, deter-
mines the access control policy and delegates the
host to enforce this policy on its behalf. Protect-

r=

r=

r

3N

(c) Code-based Cooperation

1(C ,C)1

SM

SM

{Code=(C), rw}{Origin, rw}{Family, rw}

(b) Single Originator Cooperation(a) Family Cooperation

2
N

SM

2SM1N5N
2SM

1SM1SM

2SM2N

3N

4N

1N

1SM
1

2(C ,C)
2N

1N
1SM

2SM

4

5N

N3

N2

N

SM2

4

N5

SM1

SM2

T T T

Figure 9. Three Access Control Scenarios for SM Group Cooperation (Ni are Nodes, SMi are Smart
Messages, and T is a Tag)

ing the application tags ensures that SM executions
do not interfere with each other, and therefore, pro-
vides a secure channel for SM cooperation.

A tag incorporates the ID of its owner, the ID of
its owner’s family, the address of the node where its
owner’s family originated, and its ACL (access con-
trol list). SMs are uniquely identified by the node
address where they originated and the time of their
creation. We define a family of SMs as all SMs origi-
nated from an SM injected in the network by a user.
The family ID is the ID of the original SM. Since
an SM can migrate or spawn new SMs at intermedi-
ate nodes, its family information can be used to en-
force access control for an entire family of SMs. The
ACL is a matrix of subjects and their access permis-
sions to tags, read(r) or write(w). The ACL con-
tains five protection domains: Owner, Family, Ori-
gin, Code, and Others.

Each time an SM tries to execute an operation
on a tag, the VM performs the authorization pro-
cess. Based on the credentials presented during ad-
mission and the currently executing code brick, the
SM is associated with at least one protection do-
main. A user or the SM itself cannot forge an SM’s
identification information because this information
is set automatically by the system. The request is
granted if the SM has the necessary permissions to
access the tag in any of the protection domains it
has been associated with.

6.2. Protection Domains

The Owner and Others protection domains de-
fine the access permissions for the SM that owns
the tag and for any SM, respectively. The group
concept, defined as an arbitrary relation over SMs,
supports more flexible cooperation, but also requires
high overhead of managing the group membership
on-the-fly. Currently, our architecture does not sup-
port dynamic cooperation among totally indepen-
dent SMs. Instead, we define three protections do-

mains that allow cooperation among well-defined
groups of SMs (i.e., Family, Origin, Code). Figure 8
shows that an SM can be associated with multi-
ple protection domains for a tag. In the following,
we present three scenarios that illustrate the pro-
tection domains for group cooperation.

Family cooperation. In Figure 9(a), all coop-
erative SMs originate from a common SM ancestor.
For instance, SM1 is created on N1 and migrates
to N2. At this node it creates a child, SM2, which
migrates and creates a tag T on node N5. To al-
low SM1 to access this tag, SM2 sets the ACL to
{Family, rw} (i.e., the familyID of T is the same as
the family ID of SM1).

Single originator cooperation. Figure 9(b)
shows the scenario when the group of cooperative
SMs originate from a common node. SM1 and SM2

are created on node N1 and migrate to a target node
N5 via different paths. SM1 arrives at N5 before SM2

and creates a tag T. It also sets the ACL as {Origin,
rw} such that SM2 will be able to access T (i.e., the
unique IDs of SM1 and SM2 contain the same ori-
gin ID). This scenario is very likely to be encoun-
tered since many nodes are small devices, such as
PDAs or cell phones, owned by a single user.

Code-based cooperation. In addition to the
simple groups described before, the SM group co-
operation can be coordinated more flexibly based
on code bricks. To ensure cooperation among SMs
that are aware of the code used for data sharing or
data exchange, each tag has a list of associated hash
values for certain code bricks. These hash values de-
fine the members of the Code group (they may or
may not belong to the owner of the tag). By defini-
tion, an SM is a member of the Code group if the
hash value of its currently executing code brick be-
longs to this list. For instance, SMs using the same
routing brick can add the hash value correspond-
ing to this brick to the tag’s list of hash values in
order to facilitate route sharing among them. Fig-
ure 9(c) presents such an example. SM1 creates a tag

T and sets the ACL to {Code=(Cr), rw} to grant ac-
cess to all the other SMs using the Cr routing brick.
Hence, SM2 has the permissions to use T.

7. Implementation

To leverage on the existing user base, we have im-
plemented our SM prototype in the Java program-
ming environment over Linux. Specifically, we have
modified Sun Microsystem’s KVM (Kilobyte Vir-
tual Machine) [2] because its source code is available
and has a small memory footprint (i.e., it is suitable
for resource constrained devices such as those en-
countered in NES). The SM API is encapsulated in
two Java classes: SmartMessage and TagSpace. For
efficiency, we have implemented the API as Java na-
tive methods. Besides the KVM interpreter thread,
we have introduced two additional threads for ad-
mission control and local code injection. The design
of the SM computing platform is not specific to any
hardware or software environment. It can be im-
plemented on any virtual machine (e.g., Mate [37],
Scylla [56]), programming language, or underlying
operating system.

In the rest of this section, we describe the most
important components of our prototype implemen-
tation: the primitives for SM creation, the mem-
ory management mechanism which ensures thread-
safety in KVM, the lightweight migration mecha-
nism, the code caching, and the I/O tags. Currently,
the admission manager is very simple; it accepts
any SM as long as the destination node has enough
memory to accommodate this SM.

7.1. Creating New Smart Messages

New SMs can be created at a node by the local
injector or the VM interpreter. Each SM in the sys-
tem is associated with a VM-level thread. The ad-
mission manager can also create VM-level threads
for SMs arriving from the network.

A user can inject a new SM by passing a Java
class name and a list of arguments to the local in-
jector. The injector attempts to load, link, verify,
and initialize the class file. Upon successful initial-
ization, the injector creates a new VM-level thread
with an initial stack frame for the main method
of the class and inserts the thread into the ready
queue. The arguments passed by the user are pushed
onto the stack as arguments of the main method. At
this point, the VM-level thread has no associated
SM structure. When the VM-level thread starts its
execution, it has to call createSMFromFiles to asso-
ciate itself with a new SM structure.

The interpreter thread also creates new VM-level
threads in response to createSM and spawnSM invo-
cations. When an SM calls createSM, the data bricks
of the new SM are cloned from the current SM, and
the code bricks of the new SM refer to the verified
code bricks in the code cache. The spawnSM call is
similar to createSM, except that the new SM starts
its execution from the next bytecode after spawnSM.
To implement this primitive, the execution stack
frame associated with the VM-level thread of the
original SM is duplicated onto the VM-level thread
of the new SM.

7.2. Memory Management

The garbage collector in KVM is designed for a
single-threaded environment. Since any of the three
threads in SM prototype (i.e., interpreter, local in-
jector, admission manager) could allocate memory
from the dynamic heap, we protect the garbage col-
lector data structures using a heap lock and re-
strict the garbage collection to a limited number
of locations (i.e. GC Points [10]). We have modi-
fied the mark-sweep garbage collector in KVM such
that garbage collection is performed by the inter-
preter only during context switches (i.e., the inter-
preter has a single GC Point). The interpreter trig-
gers a garbage collection during a context switch if
the available memory falls below a threshold. Be-
fore performing garbage collection, the VM ensures
that the admission manager and the local injector
threads have reached their GCPoints (defined as the
regions where all valid memory references are reach-
able from the garbage collector’s root set). The GC
Points of the three VM threads are demarcated us-
ing a single read-write lock. During garbage collec-
tion, the interpreter thread holds the write lock. The
admission manager and the injector hold the read
lock to protect the critical regions from garbage col-
lection.

7.3. Lightweight Migration

One of the main obstacles in implementing an ef-
ficient execution migration arises from the strong
coupling between the execution entity and the host.
For example, traditional process migration needs to
deal with sockets and file descriptors during migra-
tion. Two key features in the design of our system
helped us circumvent the problem of strong cou-
pling.

First, the tag space shields the SMs from di-
rect coupling with the underlying OS. The read and
write operations on tags are complete and atomic

Admission
Manager

Stack
ControlCB2 DB2DB1

CB1
CB2
...

...

Code Cache

T
ag

 S
pa

ce

CB1 CB2

Running SM

DB1 DB2Queue
SM Ready

Admission
Manager

CB1

...

...

Code Cache

T
ag

 S
pa

ce

CB3

Queue
SM Ready

Running SM

DB3 DB4CB1 CB3

Node1

Stack

VM

Send SM (4)

Send Resource
Table (1)

Missing = CB2 (3)
Ack

VM

Stack

Check
Cache (2)

Add CB2 (5)

Enqueue SM (6)

Node2

InterpreterInterpreter
sys_migrate

Figure 10. Smart Message Transfer (Main Operations)

transactions; no state of the underlying OS re-
sources is kept in the SM structure. Hence, an SM
can be completely extracted from its execution en-
vironment, migrated, and resumed at destination.

Second, an SM program never creates a commu-
nication endpoint directly since it is based on exe-
cution migration, not message passing. Communica-
tion channels are managed implicit by the underly-
ing system. In contrast, traditional message passing
programs create communication channels explicitly
to transfer data. Hence, SM programs do not have
any reference to OS network descriptors.

Our migration is lightweight in the sense that we
do not migrate the complete memory referred to by
SMs. Instead, we migrate data bricks which are ex-
plicitly identified in the SM. To simplify the task
of programmers, we migrate, however, the this self-
reference for non-static methods. Therefore, these
methods can use object member variables safely af-
ter migration.

For clarity of exposition, we will describe the SM
migration mechanism as three logical phases: SM
capture, SM transfer and SM resumption.

7.3.1. SM Capture Phase An SM enters into
this phase when it invokes sys migrate directly or
as part of a routing library. In this phase, we con-
vert the SM into a machine-independent represen-
tation. The code bricks are already in the machine-
independent Java class format, and therefore, only
the data bricks and execution stack frames need to
be converted.

Data Brick Capture. To implement this con-
version, we have developed a simple object seri-
alization mechanism (i.e., KVM does not provide
one). Each data brick is serialized into values and

types representing its internal structure recursively.
During serialization, we also generate a temporary
structure which provides a unique identifier for each
data brick reference. The unique identifiers of a
data brick object and its sub-objects are determined
solely by the structure of the data bricks.

Execution Control State Capture. The exe-
cution control state of an SM is represented by the
execution stack frames of its associated VM-level
thread. Each stack frame is serialized into a tuple of
six values: current offset of instruction and operand
stack pointers, method name, signature name, class
name, and a flag indicating whether the method is
non-static. For non-static methods, we also encode
the machine-independent identifier for the this self-
reference.

7.3.2. SM Transfer Phase Using the data brick
and stack information sizes obtained during the
capture phase, the interpreter initiates a three-
way handshake protocol with the destination node.
The operation of this protocol is shown in Fig-
ure 10. If the SM is accepted, the admission man-
ager sends back a list of missing code bricks as part
of the acknowledgment. Otherwise, the admission
just drops the request. Upon the receipt of the ac-
knowledgment, the source node sends the complete
SM, which consists of missing code bricks, serialized
data bricks, and execution control state. To simplify
the implementation, we have used TCP for reliable
single-hop communication between neighbors. For
better performance, we plan to change it into a re-
liable single-hop protocol over 802.11.

7.3.3. SM Resumption Phase After the admis-
sion manager successfully received the code bricks,
data bricks, and execution control information from

Unix Pipes
GPS GPS

Device

Read Command

Handler

Interpreter

Tag Space

Serial (/dev/ttyS)

I/O Handler

Location ACL

Location l = readTag("Location");

Location Object

Figure 11. I/O Tag Example (Using GPS to Get the Current Location)

a source node, a new VM-level thread and its as-
sociated SM structure are constructed. The missing
code bricks sent from the source node are verified
by the KVM verifier and stored in the code cache by
the admission manager. We have modified the ex-
isting KVM class loader to search the code cache
each time the VM needs a class. During data brick
de-serialization, the admission manager constructs
a temporary structure (similar to the structure con-
structed during the data brick capture at the source
node) which maps a unique identifier to each data
brick reference. The execution stack frames are re-
constructed using the tuples sent from the source.
Finally, the interpreter thread is notified if it is cur-
rently idle.

7.4. Code Caching

Each code cache entry consists of the Java class
file of a code brick, a reference count, and a refer-
ence to the internal VM class representation. The
original class format is stored for future migrations
to nodes that do not have it cached. The reference
count keeps track of the number of SMs currently
referring to this code brick. Each time an SM refer-
ring to this code brick migrates or terminates, the
reference count is decremented. When the reference
count becomes zero, the code cache entry is moved
to a free list. Should the same code brick be refer-
enced by a new SM, the cache entry is resurrected
from the free list. The memory associated with free
list entries is reclaimed according to an LRU pol-
icy. When a cache entry is evicted, the code brick
memory is freed, and the corresponding internal VM
class representation is unloaded (since KVM does
not have a class unloading capability, we have im-
plemented our own class unloading mechanism).

7.5. I/O Tags for Interaction with the
OS and I/O System

An application uses the readTag and writeTag
primitives to access an I/O tag. It is up to the sys-
tem to define the source of the data, but readTag
typically translates to an OS call. A writeTag trans-
lates to an OS call which sets certain parameters for
an I/O device. Example of I/O tags currently avail-
able in our prototype can be found in Table 5.

Since each I/O tag requires specific native code,
adding new I/O tags involves adding new native
code to the node. We have identified three possi-
ble solutions for this issue. The first option is to
statically link the native code into the VM. This is
not viable because adding new I/O tags would in-
volve shutting down the VM. The second option is
to implement new I/O tags as dynamic shared li-
braries. This is not viable because we cannot as-
sume that every node supports dynamic linking.
The third option is to implement new I/O tags as
external processes which communicate with the VM
using a standard interface. We have chosen the third
alternative since it enables users to dynamically ex-
tend the I/O tags without requiring the VM to be
shut down or the host to support dynamic shared
libraries. For efficiency, a few basic I/O tags (e.g.,
free memory and system time) are implemented and
linked permanently into the VM executable.

Commonly, an I/O tag is associated with an ex-
ternal program, termed handler, which incorporates
the code for reading and writing this I/O tag. When
the VM receives a request to add a new I/O tag, it
creates a new Unix process for this handler. We use
Unix pipes for communication between VM and the
handler process. Figure 11 shows the interaction be-
tween an SM and a handler process for a GPS de-
vice. When the SM issues a read request for the Lo-
cation tag, the interpreter sends a read command to
the handler and blocks waiting for an answer. Once

the handler has obtained the data from the GPS
device (connected on the serial port in our exam-
ple), the handler encodes the data and sends it back
to the VM. The VM de-serializes the results into a
Java Object and returns it to the SM. A write op-
eration is performed similarly.

Certain SMs may have a user interface (in the
form of an external process) which allow users to
interact with SMs via special I/O tags, termed UI
tags. Unlike regular I/O tags, a UI tag behaves sim-
ilar to a producer-consumer circular buffer. Each UI
process can communicate with multiple SMs. This
communication is done through a pair of UI tags: a
write tag for passing data to SMs, and a read tag
for receiving data from SMs. These tags persist for
the entire duration of the UI process.

8. SM Prototype Evaluation

To evaluate the performance of our prototype, we
have measured the cost of the SM primitives: cre-
ating new SMs, migrating SMs between two nodes,
and accessing the tag space. Our testbed consists of
HP iPAQ 3870 running Linux 2.4.18. Each iPAQ
contains an Intel StrongARM 206Mhz processor,
32MB flash memory, and 64MB RAM memory. For
communication, we use Orinoco 802.11b Silver PC
Cards.

8.1. Cost of SM Creation

createSMFromFiles. This primitive allows a
user to inject a new SM at a node. After an in-
vocation, the VM loads the class files from the local
file system, unless the classes are already in the VM
code cache, and creates a new SM structure. To eval-
uate its cost, we have performed two series of experi-
ments. In the first, we invoke createSMFromFiles for
an un-cached class of different sizes while keeping
the data brick size constant (53 bytes). Then, we re-
peat the same experiment with the class cached. In
both experiments, we have used 1KB class files and
we varied the number of class files used to create an
SM. Table 2 shows that the cost of createSMFrom-
Files almost doubles (when the code is not cached)
as we double the size of the code brick. These re-
sults show that the cost of class loading dominates
the cost of creating a new SM structure. The cost of
creating a new SM structure is essentially the cost
measured when the code is cached.

createSM and spawnSM. Table 3 shows the
costs of spawnSM and createSM for different data
brick sizes. The code brick and stack size are fixed at

Time(ms)Size(KB)
Uncached Cached

1 2.622 0.032
2 5.112 0.034
4 9.953 0.042
8 20.151 0.063

Table 2. Effect of Code Brick Size on cre-
ateSMFromFiles

Time(ms)Size(KB)
spawnSM createSM

2 0.270 0.243
4 0.367 0.326
8 0.508 0.469
16 0.913 0.822

Table 3. Effect ofDataBrick Size on spawnSM
and createSM

1527 and 131 bytes, respectively. Typically, an SM
has a mixture of static and non-static call frames.
Therefore, we consider a stack consisting of two
stack frames, one for a static method and the other
for a virtual method call. Although these two prim-
itives are similar, the results show that the cost of
spawnSM is slightly higher than the cost of cre-
ateSM. The difference is the time spent to dupli-
cate the execution stack frames for spawnSM.

8.2. Cost of SM Migration

The most significant factors that determine the
cost of our migration are the data brick serialization,
the SM transfer, and data brick de-serialization.

Data Brick Serialization and De-
Serialization. Since the code bricks need not
be serialized, we perform this operation only on
data bricks and execution stack frames. Our mea-
surements indicate that the serialization cost
for the execution stack frames is small com-
pared to the cost of data brick serialization; it
varies from 0.204ms to 0.567ms as we vary the ex-
ecution stack from 2 to 15 frames. To study the
effect of data brick serialization, we vary the
data brick size from 2KB to 16KB, while us-
ing a fixed size code brick (1197 bytes) and two
fixed size stack frames (131 bytes).

Figure 12. Cost of Data Brick Serialization

Figure13.CostofDataBrickDe-Serialization

Commonly, the data bricks in an SM consist of
a mixture of objects and primitive types. We use
two types of data bricks in this evaluation: an array
of integers, and an array of objects. The serializa-
tion costs for these two data bricks provide practical
lower and upper bounds for the cost of data brick
serialization. The object array represents an upper
bound since each of its elements causes a call to the
top level VM serialization method. The integer ar-
ray represents a lower bound since it involves only
one call to the top level VM serialization method.

Figure 12 shows that the serialization cost is be-
low 6ms for data bricks as large as 16KB. Com-
monly, the SMs process data at its source, and
therefore, they carry small size data. The applica-
tions that we have developed carry less than 2KB,
which costs less than 1ms to serialize. Figure 13
presents the de-serialization cost for the same data

Figure 14. Effect of Code Brick Size on Single
Hop Migration

Figure 15. Effect of Data Brick Size on Single
Hop Migration

bricks. We observe that de-serialization cost is as
much as 30% higher than the cost of serializa-
tion due to memory allocation during object de-
serialization.

SM Transfer. The variation of execution con-
trol state size is small compared to that of code
bricks and data bricks. Thus, we only consider the
effect of code bricks and data bricks in the sub-
sequent experiments. We have performed two sets
of experiments to evaluate the cost of migration
(serialization, transfer, de-serialization) for differ-
ent code brick and data brick sizes. In the first set,
we vary the code brick size while keeping the data
brick size and stack frame size fixed at 53 bytes
and 131 bytes, respectively. In the second experi-
ment, we vary the data brick size while keeping the
code brick size and stack frame size fixed at 1197

Operation Time(µs)
createTag 101.781
deleteTag 75.071
readTag 34.548
writeTag 50.289
blockSM 59.844

Table 4. Cost of Tag Space Primitives for Ap-
plication Tags

bytes and 131 bytes. Figures 14 and 15 show the re-
sults of these two experiments.

The values in Figure 14 represent the total time
for single hop migration in two situations: the code
is not cached, and the code cached. The time to
transfer the SM when the code is cached is constant
and represents the overhead of the three-way hand-
shake protocol. Figure 15 shows that the data brick
size contributes significantly to the total cost of mi-
gration. Thus, it is important to have a serialization
scheme with minimal space overhead.

8.3. Tag Space Operations

Table 4 shows the cost of the tag space operations
for application tags. The readTag primitive has the
lowest cost since it performs the least number of op-
erations; when an SM reads a tag, the interpreter
acquires a lock, performs a lookup in the tag space,
verifies the access rights, and returns the data to
the SM. The writeTag operation costs slightly more
since the interpreter has to check for and unblock
any SMs blocked on the tag. The blockSM operation
costs more than both readTag and writeTag since
it also needs to append the SM to the SM blocked
queue and suspend the VM-level thread. The delete-
Tag primitive has the second highest cost since the
interpreter needs to wake up all SMs blocked on the
tag, remove the timer for the tag lifetime, and re-
move the tag structure from the tag space, while the
createTag primitive has the highest cost since it in-
volves additional steps to register a timer for the tag
lifetime and create access control data structures.

Table 5 presents the access time to several I/O
tags that are currently implemented in our proto-
type: GPS location query, neighbor discovery, cam-
era image capture, light sensor, and system status
inquiry (battery lifetime, system time, and amount
of free memory). The gps location is updated by a
user-level process which reads from the GPS se-
rial interface. The location of the neighbors along

Tag Name Time(ms)
gps location 0.20
neighbor list 0.34
image capture (32 Kb) 341.23
light sensor 0.11
battery lifetime 25.63
system time 0.09
free memory 0.12

Table 5. Cost of Reading I/O Tags

with their identifiers are returned by reading the
neighbor list tag. This tag is typically used by geo-
graphical routing algorithms carried and executed
by SMs. To get the information about neighbor
nodes, we have implemented a neighbor discovery
protocol which maintains a cache of known neigh-
bors. For the image capture tag, the I/O handler
converts the image received from camera in YUYV
format to RGB format before returning it to the
SM. All the other tag values are obtained directly
from Linux using system calls.

9. Case Study: EZCab

We envision that the use of embedded devices in
cars will soon become a reality [41, 44]. To demon-
strate the feasibility of the SM computing platform
for real-world applications, we have developed EZ-
Cab, an application for locating and booking free
cabs in densely crowded traffic environments (like
Manhattan, where looking for a free cab can be
an annoying experience). Instead of calling a cab
company or merely “gesturing” to negotiate a cab
for her destination, a client can simply inject an
SM through her handheld device to perform seam-
lessly the same action. Unlike the existing solutions
for inter-car communication that are based on cer-
tain infrastructures (which are expensive, cannot be
deployed on every road, and provide only limited
information), EZCab uses a peer-to-peer approach
whose key benefits are scalability and practicality.
The minimal infrastructure needed by EZCab is the
availability of the SM support in the cabs, a loca-
tion service (e.g., GPS), and wireless connectivity.

The main component of EZCab is an SM that mi-
grates to a cab identified by a FreeCab tag, negoti-
ates the price according to a client-established limit,
let the cab know the identity of the client, and in-
structs the cab to go to the client’s location. The
booking is complete after the cab sends a message
with its identification to the client, and the client ac-

Figure 16. Route Discovery

knowledges this message. When the cab arrives at
the client’s location, a validation process takes place
to ensure that the client gets her booked cab (and
the cab takes the client that booked it). In the fol-
lowing, we present a brief description of the basic
operations in EZCab: (1) discovering the routes to
free cabs, (2) booking a free cab, and (3) perform-
ing the validation between the cab and the client.
We conclude the section with an analysis of our ap-
plication based on experimental results.

9.1. Route Discovery

The EZCab application starts at the client node
and takes as parameter the radius of the circular ge-
ographical region to be covered (the maximum num-
ber of hops, maxHops, for which any EZCab SM is
allowed to migrate is computed based on this ra-
dius and the transmission range of nodes). To reach
a free cab, the SM uses routing tables that spec-
ify the next hop as the probability to reach a free
cab from the current node (similar to probabilis-
tic routing [50]). If the probability to find a free
cab using the existing routes is too low, or there
are no routes at all, the SM creates a route discov-
ery SM and blocks waiting for routes (Figure 16 il-
lustrates this process). The code for route discovery
is presented in Figure 18. At each node, the discov-
ery SM spawns and blocks (lines 9-11), while the
child SM migrates to all the neighbor nodes (line
15). Each SM migrates through the network until it
arrives at a node already visited by another discov-
ery SM (i.e., it ends its execution) or it reaches the
maximum number of hops that it is allowed to mi-
grate. Once this threshold is reached, the SM mi-
grates back one hop and reports its current infor-
mation (lines 19-28). This is a recursive process that

Figure 17. Cab Booking

builds the routing tables at nodes. We have chosen
to wait for replies for a given period of time because
it is difficult to wait for a fixed number of replies in
a volatile network (i.e., those replies may never ar-
rive).

9.2. Cab Booking

Booking a cab is a three-way handshake proto-
col. If a node has routes to free cabs, the application
creates a booking SM to find a free cab and blocks
for a certain amount of time. If the cab is not free,
the booking SM chooses the next neighbor greed-
ily (i.e., using the greatest probability in the rout-
ing table), as shown in Figure 17. Once a free cab
is found, the SM removes the FreeCab tag, writes
the client’s location in the Location tag, and cre-
ates a reporting SM to confirm the booking with the
client. Then, it blocks at the cab waiting for an ac-
knowledgment from the client.

The reporting SM migrates to the client’s loca-
tion using geographical routing to improve the effi-
ciency. Once it has informed the client that a cab is
on its way, it returns to the cab with an acknowl-
edgment to let the cab know that the handshake
has succeeded. If no reply is received from a cab af-
ter a timeout, EZCab will re-start with a new best
route. Consequently, the booking SM waiting at the
cab times out and re-creates a FreeCab tag to reflect
the change in the cab’s status.

9.3. Validation

Upon reaching the client’s location, the valida-
tion mechanism is initiated. To make the validation
possible, the booking SM carries the public key of

1 int probability, status = 0, nHops = 0; // stored in data bricks
2 Address parent, nextHop, source; // stored in data bricks
3 source = SmartMessage.getLocalAddress();
4 while (nHops < maxHops){
5 if (tagExists("Visited"))
6 System.exit();
7 nHops++;
8 parent = SmartMessage.getLocalAddress();
9 if (SmartMessage.spawnSM()){

10 TagSpace.createTag("Visited", Lifetime, null)
11 TagSpace.blockSM("Discovery", DiscoveryTimeout);
12 break;
13 }
14 else
15 SmartMessage.sys_migrate(AllNeighbors);
16 }
17 if (tagExists("FreeCab"))
18 status = 1;
19 if (nHops == maxHops)
20 probability = status/2;
21 else{
22 if (parent.equals(source))
23 return;
24 probability = (status + maxProbabilityReported("routingTable"))/2;
25 }
26 nextHop = SmartMessage.getLocalAddress();
27 SmartMessage.sys_migrate(parent);
28 addEntry("routingTable", nextHop, probability);

Figure 18. Route Discovery Code

the client to the cab, and the reporting SM car-
ries the public key of the cab to the client. To vali-
date the client, the cab broadcasts a challenge in the
zone by encrypting a text using the client’s public
key. The client, upon receiving the encrypted text,
decrypts it using its private key. In turn, it uses the
cab’s public key to encrypt the text again and send
it to the cab. If the reply text is identical, the client
is validated.

9.4. Analysis

For EZCab, it is of particular importance to eval-
uate its completion time given realistic configura-
tions. In the following, we present an analysis which
demonstrates that EZCab can cover a circular area
up to 1km radius around the client’s location, and
the user-perceived response time is less than 2 sec-
onds. Figure 19 shows our EZCab prototype.

The first part of our evaluation tries to deter-
mine the maximum distance at which two moving
cars can communicate and the time for which the
topology is relatively stable. Using two HP iPAQs
with 802.11 cards for communication, and various
mobility scenarios (as much as 170km/h relative
speed between two cars moving in opposite direc-
tions), we have experienced a substantial increase

in the packet loss rate for distances bigger than
60m. We consider this distance feasible for our tar-
get networks (we have also experimented with exter-
nal antennas and amplifiers to increase to range as
much as 400m). Given this distance, two cars are in
the communication range of each other for approx-
imately 2 seconds at a relative speed of 120km/h
(i.e., typical speed for two cars moving in oppo-
site directions in a crowded city). Therefore, our ap-
plication should complete faster than that in order
to reduce the effects of mobility on the established
routes.

The second part of our evaluation tries to see if
EZCab can finish using this time bound, and how
big the geographical region covered by our applica-
tion is (i.e., a bigger region increases the probabil-
ity to locate a free cab). The response time for EZ-
Cab is defined as the time spent until the client re-
ceives a confirmation from the cab. The design of
EZCab makes it easy to bound this response time.
All the main operations (route discovery, booking a
cab, and reporting a booked cab) are bounded by
a timeout. Therefore, the maximum response time
for a successful booking is the sum of the timeouts
for route discovery and booking a cab.

We compute the timeouts for each SM gener-
ated by EZCab as the products of the round trip

Figure 19. EZCab Prototype

Figure 20. Estimated Completion Time for
EZCab

time of each SM between two nodes (RTT) and
the maximum number of hops traveled by an SM
(maxHops). We further assume that all cabs have
the code cached. SMs transfer only small size data
bricks and execution control state when the code is
cached. Hence, the measured values of the RTTs
for the three SMs are almost identical (24.3ms,
25.4ms, 25.1ms). To include the costs of SM exe-
cution and wireless contention, we consider, conser-
vatively, a value three times greater. Since booking
a cab and reporting back to the client do not in-
volve any broadcast, we just double the minimum
timeout value for booking a cab and reporting back
to the client.

Figure 20 shows the response time as a function
of the size of the covered region. The results indi-

cate that EZCab can finish in less than 2 seconds
for a region radius of approximately 1km even if it
needs to perform a route discovery. As determined
by the first part of our evaluation, we expect the
network topology to be relatively stable during this
time period. Therefore, we conclude that SMs of-
fer the flexibility to program the EZCab application
without any infrastructure, and the analysis of the
actual SM implementation demonstrates the feasi-
bility of EZCab for densely populated cities.

10. Related Work

The SM platform shares the idea of execution
migration with process migration [7, 39, 43], mobile
agents [22,33], and active networks [19,40,54].

Unlike process migration which has been used to
increase performance or availability in stable net-
works, the main goal of the SM platform is to pro-
vide flexible support for programming distributed
applications over highly dynamic NES. Addition-
ally, process migration and SM migration differ in
two aspects. First, the SM migration is explicit (i.e.,
the programmer decides when and where to mi-
grate), while process migration is implicit (i.e., the
system decides when and where to migrate a pro-
cess). Second, the SM architecture avoids one of the
most difficult problems in process migration: trans-
ferring the kernel state (e.g., sockets, file descrip-
tors). The SM platform does not transfer any kernel
state because SMs interact with local hosts through
atomic operations performed on the tag space, and
they do not open explicitly communication chan-
nels.

SMs are influenced by the design of mo-
bile agents. Similar to a mobile agent, an SM may
be viewed as an application that explicitly mi-
grates between nodes of interest. Mobile agents,
however, name nodes by fixed addresses and com-
monly know the network configuration a priori,
while SMs name nodes by content and discov-
ers the network configuration dynamically. In
contrast to mobile agents, SMs are responsi-
ble for their own routing at each node in the path
between two nodes of interest. This feature al-
lows SMs to adapt quickly to changes that may
occur both in the network topology and the avail-
ability of resources at nodes. Furthermore, the SM
system architecture is suitable for resource con-
strained devices since it defines a lightweight
system support at nodes, with most of the “intelli-
gence” incorporated into SMs.

Although the SM computing platform (especially

the self-routing mechanism), shares some of the de-
sign goals and leverages work done in active net-
works (AN), it differs from AN in several key fea-
tures. A first difference comes from the problems
they try to solve: AN target improved performance
for end-to-end data transfer in relatively stable net-
works, while the SM platform helps the development
of distributed applications on top of a new comput-
ing infrastructure which is significantly under-used
due to the lack of programmability support. Un-
like AN, we define a computing model whereby sev-
eral SMs can cooperate, exchange data, and syn-
chronize with each other through the tag space. In
terms of migration, AN do not transfer the execu-
tion state from node to node whereas the SM model
does. The migration of the execution state for SMs
trades off overhead for flexibility to react “on-the-
spot” to adverse network conditions.

Sensor networks represent the first attempt to-
ward deploying large scale NES. Most of the
research in this area has focused on hard-
ware [32, 49], operating systems [28], or net-
work protocols [12, 27, 30]. Even though sen-
sor networks act primarily as huge distributed
databases [13, 38], more sophisticated applica-
tions might be needed in the future. Toward this
end, SensorWare [16] and Mate [37] have pro-
posed solutions for network re-programmability.
The SM architecture takes one step further and pro-
poses a distributed computing model that is flexible
enough to be implemented for nodes with very lim-
ited resources such as those encountered in sensor
networks.

Among many projects that target the pro-
grammability of ubiquitous computing environ-
ments [8, 24, 48, 51], one.world [24] is similar to
our work in the sense that both consider migra-
tion as an essential mechanism to adapt to highly
dynamic computing environments. Each applica-
tion in one.world has at least one environment
that contains tuples (similar to application tags
in SM platform), application’s components, and
other nested environments. When needed, a migra-
tion moves a checkpointed copy of an environment
to another node. A significant difference be-
tween SMs and one.world is that our work proposes
a computing model based on execution migra-
tion, while one.world uses migration just as a
mechanism to adapt to changes (i.e., in their pro-
gramming model, the applications reside on nodes
and communicate through remote event pass-
ing). Another difference is that the SM architecture
is more suitable for resource constrained de-

vices whereas one.world is designed for more pow-
erful nodes.

Smart Message is the underlying platform for
Spatial Views, a high-level programming model for
networks of embedded systems, targeting its dy-
namic, space-sensitive and resource-restrained char-
acteristics. The core of the model is iterative pro-
gramming over a dynamic collection of nodes iden-
tified by the physical spaces they are in and the ser-
vices they provide. Hidden in the iteration is execu-
tion migration, as the main collaboration paradigm,
constrained by user specified limits on resource us-
age such as response time and energy consumption.
A Spatial Views prototype has been implemented
and first results are reported in [42]. A Spatial Views
compiler with Smart Messages as its target is cur-
rently being implemented.

The tag space bears some similarity with tuple
spaces [18, 36]. While both offer persistent shared
memory for applications, the essential difference is
that the tag space is local to each node. Also, un-
like tuple spaces, the tag space provides SMs with
I/O tags for interaction with the local OS and I/O
subsystem. The concept of I/O tags share the same
goal with Linux Procfs [5] which allows user-level
programs to access certain kernel information.

Content-based naming has been recently pre-
sented for both the Internet [9, 25, 57] and sen-
sor networks [26]. SMs use content-based migra-
tion to reach the nodes of interest. This high-level
migration function implements routing algorithms
which leverage work done for mobile ad hoc net-
works [31,35,46].

Although the security for both mobile agents [23,
34] and ad hoc networks [29, 47] have been exten-
sively studied, we have faced a new and more dif-
ficult problem: how to define a security architec-
ture for a system based on execution migration over
mobile ad hoc networks? Given the complexity of
this problem, our current architecture provides solu-
tions for protecting the hosts against SMs and SMs
against each other. It is much harder, however, to
prevent an SM from being tampered by a malicious
host. Since SMs have to execute at any host, end-to-
end authentication based on digital signatures or en-
crypting the entire message are not possible. Hard-
ware solutions [6, 45] represent an option, but they
involve extra-costs. Complete software solutions are
not known yet, but code confusion and encryption
techniques have been investigated [20,53] in the con-
text of mobile agents.

Coupled with security comes the issue of ad-
mission control at nodes. A significant amount

of research has been done to solve this prob-
lem for real time systems [52, 55] and active net-
works [21, 40]. Given that we did not want to
limit the expressibility of the programming lan-
guage (e.g., SNAP [40]), our solution is based
on user-provided lower bounds for resources and
non-preemptive execution. Each node has the flex-
ibility to implement its own scheduling and re-
source allocation policies which are typically inte-
grated. These policies guarantee enough resources
to satisfy the lower bounds and let the SM mi-
grate in case no more resources are allocated. A
problem that remains to be solved is how to pro-
tect the network, as a whole, against malicious SMs
that waste network resources, but respect the ad-
mission contract at each node. TTL-based [19]
or market-based [23] schemes offer possible solu-
tions.

11. Conclusions

In this paper, we have presented the Smart Mes-
sages (SMs) platform for distributed computing in
networks of embedded systems (NES). SMs are dis-
tributed applications which overcome the scale, het-
erogeneity, and volatility encountered in NES by
migrating the execution to nodes of interest, using
application-controlled routing, instead of using end-
to-end communication among nodes. The main fea-
ture of the SM programming model is its high flexi-
bility in the presence of dynamic network configura-
tions. The experimental results as well as the anal-
ysis of our real world application (EZCab) indicate
that the SM computing platform can be a feasible
solution for programming NES.

Acknowledgments

The authors would like to thank Deepa Iyer for
her contribution in developing the SM prototype,
and Chalermek Intanagonwiwat for our useful dis-
cussions regarding the SM design. We would also
like to thank the anonymous reviewers which helped
us improve this paper.

References

[1] Linux Devices. http://www.linuxdevices.com.

[2] K Virtual Machine.
http://java.sun.com/products/cldc/.

[3] XML. http://www.w3.org/XML/.

[4] JavaSpaces.
http://wwws.sun.com/software/jini/specs
/jini1.1html/js-title.html.

[5] Linux Kernel Procfs.
http://www.kernelnewbies.org/documents/kdoc
/procfs-guide/intro.html.

[6] Trusted Computing.
http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html.

[7] Accetta, M., Baron, R., Bolosky, W., Golub,
D., Rashid, R., Tevanian, A., and Young, M.
Mach: A new kernel foundation for unix develop-
ment. In Proceedings of the USENIX 1986 Summer
Conference (Atlanta, GA, July 1986), pp. 93–113.

[8] Adhikari, S., Paul, A., and Ramachandran, U.
D-Stampede: Distributed Programming System for
Ubiquitous Computing. In Proceedings of the 22nd
International Conference on Distributed Comput-
ing Systems (ICDCS 2002) (Vienna, Austria, July
2002), pp. 209–216.

[9] Adjie-Winoto, W., Schwartz, E., Balakrish-
nan, H., and Lilley, J. The Design and Imple-
mentation of an Intentional Naming System. In Pro-
ceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP 1999) (Charleston, SC,
1999), ACM Press, New York, NY, pp. 186–201.

[10] Agesen, O. GC Points in a Threaded Environment.
Tech. Rep. SMLI TR-98-70, Sun Microsystems Lab-
oratories, Palo Alto, CA, December 1998.

[11] Bloom, B. Space/time trade-offs in hash coding
with allowable errors. Communication of the ACM
13, 7 (July 1970), 422–426.

[12] Blum, B., Nagaraddi, P., Wood, A., Abdelza-
her, T., Son, S., and Stankovic, J. An En-
tity Maintenance and Connection Service for Sen-
sor Networks. In Proceedings of the First Interna-
tional Conference on Mobile Systems, Applications,
and Services (MobiSys 2003) (San Francisco, CA,
May 2003), pp. 201–214.

[13] Bonnet, P., Gehrke, J. E., and Seshadri, P.
Querying the Physical World. IEEE Personal Com-
munications 7, 5 (October 2000), 10–15.

[14] Borcea, C., Intanagonwiwat, C., Saxena, A.,
and Iftode, L. Self-Routing in Pervasive Comput-
ing Environments using Smart Messages. In Pro-
ceedings of the 1st IEEE International Conference
onPervasive Computing andCommunications (Per-
Com 2003) (Dallas-Fort Worth, TX, March 2003),
pp. 87–96.

[15] Borcea, C., Iyer, D., Kang, P., Saxena, A., and
Iftode, L. Cooperative Computing for Distributed
Embedded Systems. In Proceedings of the 22nd
International Conference on Distributed Comput-
ing Systems (ICDCS 2002) (Vienna, Austria, July
2002), pp. 227–236.

[16] Boulis, A., Han, C., and Srivastava, M. De-
signandImplementationofaFramework forEfficient
and Programmable Sensor Networks. In Proceed-
ings of the First International Conference on Mobile

Systems, Applications, and Services (MobiSys 2003)
(San Francisco, CA, May 2003), pp. 187–200.

[17] Cahill, V., and et al. Using trust for secure col-
laboration in uncertain environments. In Pervasive
Computing, IEEE (2003), vol. 2(3), pp. 52–61.

[18] Carriero, N., and Gelernter, D. Linda in con-
text. Communications of theACM32, 4 (April 1989),
444–458.

[19] D. Wetherall. Active Network Vision Reality:
Lessons from a Capsule-based System. In Proceed-
ings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP 1999) (Charleston, SC, De-
cember1999),ACMPress,NewYork,NY,pp. 64–79.

[20] F.Hohl. Time Limited Blackbox Security: Protect-
ing Mobile Agents from Malicious Hosts. In Mo-
bile Agents and Security, G. Vigna, Ed., vol. 1419 of
LectureNotes inComputer Science. Springer-Verlag,
London, UK, 1998, pp. 92–113.

[21] Galtier, V., Mills, K., Carlinet, Y., Bush, S.,
and Kulkarni, A. Predicting resource demand in
heterogeneous active networks. In Military Commu-
nications Conference, 2001 (MILCOM 2001). Com-
munications forNetwork-CentricOperations: Creat-
ing the Information Force (Washington, D.C., Octo-
ber 2001), pp. 905–909.

[22] Gray, R., Cybenko, G., Kotz, D., and Rus, D.
Mobile Agents: Motivations and State of the Art.
In Handbook of Agent Technology, J. Bradshaw, Ed.
AAAI/MIT Press, 2002.

[23] Gray, R., Kotz, D., Cybenko, G., and Rus, D.
D’Agents: Security in a multiple-language, mobile-
agent system. In Mobile Agents and Security, G. Vi-
gna, Ed., vol. 1419 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, London, UK, 1998, pp. 154–
187.

[24] Grimm, R., and et al. Systems Directions for Per-
vasive Computing. In Proceedings of the 8th Work-
shop on Hot Topics in Operating Systems (HotOS-
VIII) (Elmau/Oberbayern, Germany, May 2001),
IEEE Computer Society, Washington, DC, pp. 147–
151.

[25] Gritter, M., and Cheriton, D. An Architecture
for Content Routing Support in the Internet. In Pro-
ceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems (USITS 2001) (San Fran-
cisco, CA, March 2001), pp. 37–48.

[26] Heideman, J., Silva, F., Intanagonwiwat, C.,
Govindan, R., Estrin, D., and Ganesan, D.
Building Efficient Wireless Sensor Networks with
Low-Level Naming. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP
2001) (Banff, Canada, October 2001), ACM Press,
New York, NY, pp. 146–159.

[27] Heinzelman, W. R., Kulik, J., and Balakrish-
nan,H. AdaptiveProtocols for InformationDissem-
ination in Wireless Sensor Networks. In Proceedings

of the Fifth annual ACM/IEEE International Con-
ference onMobileComputing andNetworking (Mobi-
Com 1999) (Seattle,WA,August 1999),ACMPress,
New York, NY, pp. 174–185.

[28] Hill, J., Szewczyk, R., Woo, A., Hollar, S.,
Culler, D., and Pister, K. System Architecture
Directions for Networked Sensors. In Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-IX) (Cambridge,MA,November
2000), ACM Press, New York, NY, pp. 93–104.

[29] Hu, Y., Perrig, A., and Johnson, D. Ariadne: a
secure on-demand routing protocol for ad hoc net-
works. In Proceedings of the 8th annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom2002) (Atlanta,GA,Septem-
ber 2002), ACM Press, New York, NY, pp. 12–23.

[30] Intanagonwiwat, C., Govindan, R., and Es-
trin, D. Directed Diffusion: A Scalable and Ro-
bustCommunicationParadigmforSensorNetworks.
In Proceedings of the Sixth annual ACM/IEEE In-
ternational Conference on Mobile Computing and
Networking (MobiCom 2000) (Boston, MA, August
2000), ACM Press, New York, NY, pp. 56–67.

[31] Johnson, D., and Maltz, D. Dynamic Source
Routing in Ad Hoc Wireless Networks. T. Imielin-
ski and H. Korth, (Eds.). Kluwer Academic Publish-
ers, 1996.

[32] Juang, P., Oki, H., Wang, Y., Martonosi, M.,
Peh, L., and Rubenstein, D. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In Proceed-
ings of the Tenth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS-X) (San Jose, CA, Oc-
tober 2002), ACM Press, New York, NY, pp. 96–107.

[33] Karnik, N., and Tripathi, A. Agent Server Ar-
chitecture for the Ajanta Mobile-Agent System. In
Proceedings of the 1998 International Conference
on Parallel and Distributed Processing Techniques
and Applications (PDPTA’98) (Las Vegas, NV, July
1998), pp. 66–73.

[34] Karnik, N., and Tripathi, A. Security in the
Ajanta Mobile Agent System. Software Practice and
Experience 31, 4 (January 2001), 301–329.

[35] Karp, B., and Kung, H. Greedy Perimeter State-
less Routing for Wireless Networks. In Proceedings
of the Sixth annual ACM/IEEE International Con-
ference onMobileComputing andNetworking (Mobi-
Com 2000) (Boston,MA,August 2000),ACMPress,
New York, NY, pp. 243–254.

[36] Lehman, T., Cozzi, A., Xiong, Y., Gottschalk,
J.,Vasudevan,V.,Landis, S.,Davis,P.,Khavar,
B., and Bowman, P. Hitting the distributed com-
puting sweet spot with tspaces. Computer Net-
works: The International Journal of Computer and
TelecommunicationsNetworking 35, 4 (March2001),
457–472.

[37] Levis, P., and Culler, D. Mate: A Virtual Ma-
chine for Tiny Networked Sensors. In Proceedings
of the Tenth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS-X) (San Jose, CA, October
2002), ACM Press, New York, NY, pp. 85–95.

[38] Madden, S., Franklin,M.,Hellerstein, J., and
Hong, W. The Design of an Acquisitional Query
Processor for Sensor Networks. In Proceedings of
the 2003ACMSIGMOD international conference on
Management of data (San Diego, CA, June 2003),
ACM Press, New York, NY, pp. 491–502.

[39] Milojicic, D., Douglis, F., Paindaveine, Y.,
Wheeler, R., and Zhou, S. Process migration.
ACM Computing Surveys 32, 3 (September 2000),
241–299.

[40] Moore, J., Hicks, M., and Nettles, S. Practical
Programmable Packets. In Proceedings of the 20th
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2001) (An-
chorage, AK, April 2001), pp. 41–50.

[41] Morris, R., Jannotti, J., Kaashoek, F., Li, J.,
and Decouto, D. CarNet: A Scalable Ad Hoc
Wireless Network System. In Proceedings of the 9th
ACM SIGOPS European Workshop (Kolding, Den-
mark, September 2000), ACM Press, New York, NY,
pp. 61–65.

[42] Ni, Y., Kremer, U., and Iftode, L. Spatial
Views:space-awareprogramming fornetworks of em-
bedded systems. In Proceedings of the 16th Inter-
national Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003) (College Station,
TX, October 2003).

[43] Ousterhout, J., Cherenson, A., Douglis, F.,
Nelson, M., and Welch, B. The sprite network
operating system. IEEE Computer 21, 2 (February
1988), 23–36.

[44] P. Koopman. Critical Embedded Automotive Net-
works. IEEE Micro 22, 4 (July-August 2002), 14–18.

[45] Palmer, E. An Introduction to Citadel - A Secure
Cypto Coprocessor for Workstations. In Proceed-
ings of IFIP SEC’94 Conference (Curacao, Dutch
Antilles, May 1994).

[46] Perkins, C., and Royer, E. Ad Hoc On Demand
Distance Vector Routing. In Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 1999) (New Orleans, LA,
February 1999), pp. 90–100.

[47] Perrig, A., Szewczyk, R., Wen, V., Culler,
D., and Tygar, J. SPINS: Security Protocols
for Sensor Netowrks. In Proceedings of the 7th an-
nual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom 2001)
(Rome, Italy, July2001),ACMPress,NewYork,NY,
pp. 189–199.

[48] Ponnekanti, S., Lee, B., Fox, A., Hanrahan,
P., and Winograd, T. ICrafter: A Service Frame-
work for Ubiquitous Computing Environments. In

Proceedings of the Third International Conference
on Ubiquitous Computing (Ubicomp) (Atlanta, GA,
September 2001), Springer-Verlag, London, UK,
pp. 56–75.

[49] Priyantha, N., Miu, A., Balakrishnan, H., and
Teller,S.TheCricketCompass forContext-Aware
Mobile Applications. In Proceedings of the 7th an-
nual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom 2001)
(July 2001), ACM Press, New York, NY, pp. 1–14.

[50] Rhea, S., andKubiatowicz, J. ProbabilisticLoca-
tion and Routing. In Proceedings of the 21th Annual
Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM’02) (New York,
NY, June 2002), pp. 1248–1257.

[51] Roman, M., and Campbell, R. GAIA: En-
abling Active Spaces. In Proceedings of the 9th
ACM SIGOPS European Workshop (Kolding, Den-
mark, September 2000), ACM Press, New York, NY,
pp. 229–234.

[52] Rosu, D., Schwan, K., and Yalamanchili, S.
Fara - a framework for adaptive resource allocation
in complex real-time systems. In Proceedings of
the Fourth IEEEReal-TimeTechnology andApplica-
tions Symposium (Denver, CO, May 1998), pp. 79–
84.

[53] Sander, T., and Tschudin, C. Protecting Mobile
Agents against Malicious Hosts. In Mobile Agents
and Security, G. Vigna, Ed., vol. 1419 of Lecture
Notes in Computer Science. Springer-Verlag, 1998,
pp. 44–60.

[54] Schwartz, B., Jackson, A., Strayer, W., Zhou,
W., Rockwell, R., and Partridge, C. Smart
packets: Applying active networks to network man-
agement. ACM Transactions on Computer Systems
18, 1 (2000), 67–88.

[55] Stankovic, J., and Ramamritham, K. The spring
kernel: A new paradigm for real-time systems. IEEE
Software 8 (May 1991), 62–72.

[56] Stanley-Marbell, P., and Iftode, L. Scylla:
A smart virtual machine for mobile embedded sys-
tems. In 3rd IEEE Workshop on Mobile Comput-
ing Systems and Applications, WMCSA2000 (Mon-
terey, CA, December 2000), pp. 41–50.

[57] Vahdat, A., Dahlin, M., Anderson, T., and Ag-
garwal, A. Active Names: Flexible Location and
Transport of Wide-Area Resources. In Proceedings
of the Second USENIX Symposium on Internet Tech-
nologies and Systems (USITS 1999) (Boulder, CO,
October 1999), pp. 151–164.

[58] Wan, C., Campbell, A., and Krishnamurthy,
L. PSFQ: A Reliable Transport Protocol For Wire-
less Sensor Networks. In Proceedings of the 1st
ACMinternationalworkshoponWireless sensornet-
works and applications (WSNA 2002) (Atlanta, GA,
September 2002), ACM Press, New York, NY, pp. 1–
11.

