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Abstract. Existing iterative compilation and machine-learning-based
optimization techniques have been proven very successful in achieving
better optimizations than the standard optimization levels of a compiler.
However, they were not engineered to support the tuning of a compiler’s
optimizer as part of the compiler’s daily development cycle. In this pa-
per, we first establish the required properties which a technique must
exhibit to enable such tuning. We then introduce an enhancement to the
classic nightly routine testing of compilers which exhibits all the required
properties, and thus, is capable of driving the improvement and tuning
of the compiler’s common optimizer. This is achieved by leveraging re-
source usage and compilation information collected while systematically
exploiting prefixes of the transformations applied at standard optimiza-
tion levels. Experimental evaluation using the LLVM v6.0.1 compiler
demonstrated that the new approach was able to reveal hidden cross-
architecture and architecture-dependent potential optimizations on two
popular processors: the Intel i5-6300U and the Arm Cortex-A53-based
Broadcom BCM2837 used in the Raspberry Pi 3B+. As a case study, we
demonstrate how the insights from our approach enabled us to identify
and remove a significant shortcoming of the CFG simplification pass of
the LLVM v6.0.1 compiler.

1 Introduction

Compilers are at the heart of software development. Their primary goal is to
increase software productivity. They are a key software engineering tool, au-
tomating the translation from high-level languages to machine code. This sets
a major challenge to compiler engineers as they have to support a vast num-
ber of architectures and programming languages and adapt to their rapid ad-
vances. To mitigate this, modern compilers, such as the LLVM [LA04, LLVc] and
GCC [GCCb] compilers, are designed to be modular. For example, they make
use of a common, target-independent optimizer across all the architectures and
programming languages supported. The common optimizer [Lat12], operates on
a target-independent Intermediate Representation (IR). Each supported pro-
gramming language is translated to this IR through a customized version of the
compiler’s front-end, and then the common optimizer can perform the generic
optimizations on the generated IR. Finally, the IR can be translated to the
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machine code of a supported architecture through the target-specific back-end.
Thus, all the supported architectures and programming languages can benefit
from the generic optimizations implemented in the common optimizer. In this
paper, we also refer to the LLVM’s IR optimizer as the “common optimizer”.

The common optimizer exposes to the software developer a large number
of available code optimizations via compiler flags. The LLVM optimizer has 58
transformation flags [LLVb], where a code transformation can apply an optimiza-
tion, or it can facilitate an IR structure which enables the application of other
optimizations. In the more mature GCC compiler, as of version 9.3.0 approxi-
mately 110 out of the 229 optimization flags [GCCa] control the passes operating
on the target-independent IR. The challenge then becomes to select and order
the flags to create optimization configurations that can achieve the best resource
usage possible for a given program and architecture. Due to the huge number
of possible flag combinations and their possible orderings, it is impractical to
explore the complete space of optimization configurations. Furthermore, many
of these optimizations are tunable, with their behavior dependent on a number
of heuristics and quantitative parameters. The selection of the actual heuristic
and the determination of the numerical values of parameters are in many cases
hidden from the compiler user, but are exposed to the compiler developers and
can be partially influenced by the selection of an overall optimization level, e.g.
in the case of the LLVM compiler toolchain. Thus, finding optimal optimization
configurations is still an open challenge.

To address this, compilers offer standard optimization levels, typically -O0,
-O1, -O2, -O3 and -Os which are predefined sequences of optimizations. These
sequences are tuned through each new compiler release to perform well on a
number of micro-benchmarks and a range of mainstream architectures. Starting
from the -O0 level, which has no optimizations enabled, and moving to level
-O3, each level offers more aggressive optimizations with the main focus being
performance, while -Os is focused on optimizing code size. New standard op-
timization levels are often introduced into modern compilers to address more
specific optimization needs and constraints, such as the -Oz optimization level
offered by the LLVM compiler, which tries to reduce code size even further than
-Os, and the -Og optimization level introduced by GCC, which aims at improv-
ing the debugging experience of optimized code. Still, such optimizations are
demonstrably not optimal, as iterative compilation and machine-learning-based
(MLB) approaches can find optimization sequences that offer better resource
usage than the standard optimization levels on a particular program and archi-
tecture [WO18]. The main idea of such approaches is to find good optimization
sequences by exploiting only a fraction of the optimization space [AKC+18].

Another dimension to the problem is the non-disclosure of hardware im-
plementation details by processor vendors. This has two serious implications.
Firstly, compilers are slow in adapting to architectural performance innovations.
Even worse, in some cases legacy optimization techniques which performed well
on previous hardware generations can actually perform poorly on newer hard-
ware (for example, see the potential interactions of if-conversion with branch
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prediction reported in Section 4.2). Secondly, programmers often have no clear
view of the architecture’s and compiler’s internals and thus may produce code
that is neither compiler- nor architecture-friendly.

The goal of this paper is to provide systematic means of exposing opti-
mization opportunities as part of the compiler’s daily development cycle. Any
methodology trying to achieve this should exhibit the following properties:

1. Portability : The technique should be easily and rapidly portable across new
versions of the same compiler and supported on all its target architectures.

2. Agility : The overhead introduced by the discovery stage of the approach
should be acceptable and contained within the day-to-day development cycle
of compilers; for example, as part of the nightly testing system of a compiler.

3. Versatility : To maximize productivity and outcome, it should be able to
expose optimization patterns that can benefit a large number of programs
and/or architectures rather than isolated cases.

4. Insightfulness: The approach should correlate the observed behaviors of in-
terest to their potential causes in a way that assists the compiler engineer
in easily locating, understanding and acting upon the detected optimization
opportunity.

Iterative compilation and MLB techniques primarily focus on a given com-
bination of application and compiler version to discover optimization sequences
that can outperform the standard optimization levels of a compiler [WO18]. In
their majority, they were not engineered to support the improvement of the
standard optimization levels during the daily development cycle of a compiler.

While random iterative compilation has proven very successful in finding
optimizations that can outperform the standard optimization levels [BKK+98,
FLSU18] for a selected application and architecture, it only complies with the
portability property; no major engineering is needed for porting to any modified
version of the same compiler. The technique fails to address the rest of the desired
properties since it is typically costly to run (hundreds to thousands of iterations
need to be tested), and the random nature of it disallows the systematic discovery
of optimization patterns and does not offer much information to assist the com-
piler developer in spotting the source of the optimization opportunities. On the
other hand, while MLB techniques are able to expose optimization patterns and
to some extent expose the underlying reasons for an optimization pattern, they
usually fail to address the first two desired properties. More specifically, they are
typically extremely costly to port to a new version of the same compiler, since
any modification that affects the compiler’s optimizer requires their expensive
training phase to be repeated [DJB+09]. Since this training phase would need to
be part of the daily compiler development cycle, they fail to exhibit the agility
property due to the associated overheads.

A nightly testing system repeatedly checks the ability of a compiler to opti-
mize programs by tracking the performance of a set of benchmarks, in terms of
execution time, code size, or even energy consumption, during the compiler’s de-
velopment phase. Mainstream compilers come with their own test suits, such as
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the LLVM Test Suite [LLVa], which include a collection of programs that can be
used as part of a nightly testing system. Nightly testing systems typically report
performance degradations for each tested benchmark and between successive
nightly testing sessions, but they provide no further means of identifying the
causes of these degradations. Thus, the compiler engineer needs to go through
a long discovery phase to find the changes that caused such degradations. More
importantly, the current nightly routine testing provides no means of exposing
new/hidden potential optimization opportunities, and of ranking these oppor-
tunities in terms of their potential impact. Since nightly testing is an essential
part of the compiler’s daily development cycle, it is the ideal place to provide
means of optimizing the standard optimization levels of a compiler. Thus, this
paper makes the following significant contributions:

– It proposes an enhanced nightly testing system that can help to tune the
standard compiler optimization levels of a target-independent common opti-
mizer to achieve better resource usage (execution time, energy consumption
and code size);

– It demonstrates how the newly introduced system can systematically expose
hidden architecture-dependent and cross-architecture optimization opportu-
nities (Section 4).

In [GBXdSE18], we demonstrated that by performing fewer of the optimiza-
tions available in a standard compiler optimization level such as -O2 while pre-
serving their original ordering, significant savings can be achieved in both ex-
ecution time and energy consumption. This observation has been validated on
embedded processors, namely the Arm Cortex-M0 and the Arm Cortex-M3, us-
ing two different versions of the LLVM compilation framework; v3.8 and v5.0.
In this paper, we leverage the technique introduced in [GBXdSE18] to devise a
methodology which can enhance the nightly routine testing to enable the sys-
tematic tuning of the standard optimization levels and which exhibits all four
desired properties defined earlier in this section: portability, agility, versatility
and insightfulness.

To further evidence that the technique is easily portable to new versions of
the same compiler and to new architectures, and thus, that it accommodates
the portability property, the technique was ported to a new version of the LLVM
compiler, namely the LLVM 6.0.1, and applied to a broader class of architec-
tures beyond the deeply embedded processors initially tested, i.e. the Intel i5-
6300U X86-based architecture popular in desktop and laptop PCs, and the Arm
Cortex-A53, an Armv8-A 64-bit based architecture frequently used in mobile de-
vices (see Section 2). Both the compiler- and architecture-related porting were
completed within an hour of engineering.

While it is well known that optimization configurations better than the ones
offered by standard optimization levels do exist in the complete optimization
space [WO18], we are interested in tuning the standard optimization levels.
Thus, it is important to examine if tuning opportunities can consistently be
found within the optimization space that the technique from [GBXdSE18] ex-
ercises. This space consists of prefix subsequences of the optimization sequences
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applied by standard optimization levels. A formal definition of these optimiza-
tion sequences is given in Section 2. Although we made an implicit choice of
using only user-visible transformation passes of the optimizer for exploiting the
optimization space, our approach is also capable of exposing the impact of pass
parametrization, as demonstrated in Section 4.2.

Experimental evaluation with 42 benchmarks belonging to the LLVM test
suite [LLVa] demonstrated performance gains for at least half of the bench-
marks, with an average of 11.5% and 5.1% execution time improvement over the
standard optimization level -O3 for the i5-6300U and the Cortex-A53 processors,
respectively. These findings confirm that the technique can detect optimization
opportunities beyond deeply embedded architectures, like the Cortex-M0 and
Cortex-M3 examined in [GBXdSE18], and across multiple versions of the LLVM
compiler: namely the LLVM 3.8 and LLVM 5.0 used in [GBXdSE18] and the
LLVM 6.0.1 used in this paper.

The execution time for all the exploited configurations was in the range of
several hours for each architecture. This is because only 64 and 66 configurations
need to be tested for each benchmark for the Intel i5-6300U X86 and the Arm
Cortex-A53 processors, respectively. As the introduced overhead is acceptable
for a nightly regression system, our approach also exhibits the agility property.

Our enhanced nightly testing then classifies the benchmarking results through
a post-analysis that exposes architecture-dependent and cross-architecture opti-
mization patterns, which fulfils the versatility property. This enhanced system,
demonstrated in Section 4, directly pinpoints behaviors common across multi-
ple benchmarks and architectures and reveals their possible causes, and thus,
fulfils the insightfulness property. Using only a selection of the information col-
lected during the tests, we demonstrate the value of the enhanced system by
exposing two significant cross-target shortcomings of the LLVM common opti-
mizer, two distinct opportunities for target-aware heuristics adjustments and a
possible direction for improving the support of advanced hardware branch pre-
diction at compiler level. As a proof of concept, in Section 4.4, we implemented
and tested one of the discovered tuning opportunities using the guidance pro-
vided by the enhanced nightly regression system. More specifically, by adding
basic loop awareness to the CFG simplification pass of the LLVM optimizer, we
were able to unlock the potential execution time reductions over the standard
optimization level -O3 for the majority of the relevant test cases, and without
affecting the performance of the rest of the benchmarks used.

The rest of the paper is organized as follows. Section 2 gives a brief overview of
the common optimizer exploitation technique that was introduced in [GBXdSE18]
and the adjustments needed for the architectures used in this paper. Our bench-
marking experimental evaluation results are presented and discussed in Section 3.
Section 4 introduces the enhanced nightly testing system and demonstrates how
it can guide compiler engineers to tune the common compiler optimizer. Section 5
critically reviews previous work related to ours. Finally, Section 6 concludes the
paper and outlines opportunities for future work.
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2 Exploiting Standard Optimization Levels

Figure 1 demonstrates the process used to evaluate the effectiveness of the differ-
ent optimization configurations to be explored. Each configuration is a sequence
of flags used by the LLVM optimizer to drive the analysis and transformation
passes. An analysis pass can identify properties and expose optimization oppor-
tunities that can later be used by transformation passes to perform optimiza-
tions. A standard optimization level (-O1, -O2, -O3, -Os, -Oz) can be selected
as the starting point. Each optimization level represents a list of transformation
and analysis flags. The order of these flags defines the order in which the trans-
formation and analysis passes will be applied to the code under compilation. A
new flag configuration is obtained from the current list of flags by removing the
last transformation flag together with all preceding analysis flags up to but not
including the next found transformation flag. Then the new optimization con-
figuration is being applied to the unoptimized IR of the program, obtained from
the Clang front-end. In this way, the program’s unoptimized IR only needs to be
generated once by the Clang front-end; it can then be used throughout the ex-
ploration process, thus saving compilation time. The optimized IR is then passed
to the LLVM back-end and linker to generate the executable for the architecture
under consideration. Note that both the back-end and linker are always called
using the optimization level selected for exploration, in our case -O3. The ex-
ecutable’s resource usage is measured and stored for each tested configuration.
The exploration process finishes when the current list of transformation flags
is empty. This corresponds to the optimizer applying no optimizations, i.e. the
IR is left unoptimized. A more detailed explanation of the technique is given
in [GBXdSE18].

More formally, the generation of the optimization configurations can be de-
fined as follows:

Let S be the sequence of optimization flags obtained from the selected stan-
dard optimization level

S = 〈F1, F2, ..., Fn〉. (1)

S includes flags Fi, 1 ≤ i ≤ n, with n being the total number of flags appearing
in the selected optimization level. Let FT denote the set of transformation passes
and FA the set of analysis passes, with FT ∩ FA = ∅. Thus, each flag in S is
either a transformation pass, Fi ∈ FT , or an analysis pass, Fi ∈ FA. The set of
generated optimization configurations, G, is defined as:

G = {Ŝ0, Ŝ1, ..., Ŝt} (2)

where t is the total number of transformation flags appearing in S. Ŝ0 represents
the configuration where no transformation or analysis passes are being applied
by the common optimizer, and {Ŝ1, ..., Ŝt} is the set of all prefixes Ŝi of S,
0 < i ≤ t, that end in an optimization flag, i.e.

{Ŝi v S | Ŝi = 〈F1, ..., Fk〉 ∧ Fk ∈ FT }. (3)



Lost in translation: Exposing hidden compiler optimization opportunities 7

  

Opt.
Criteria

Generate
Optimization Config.

Programs

Resource Usage
 Measurement

Yes

LLVM Back-End

No

Best
Config.

LLVM Optimizer

Clang Front-End

Results

Configuration
Selection

Finished?

Control Data

Fig. 1: Compilation and evaluation process (modified from [GBXdSE18]).

This method of generating the optimization configurations ensures by con-
struction that all configurations are prefixes of the standard optimization level
targeted for tuning. This has the following three advantages:

1. The new configurations do not trigger the LLVM optimizer’s pass manager to
enable additional transformation passes. This is because within the generated
prefix configurations of a standard optimization level, the knowledge built
into the optimization level regarding effective pass orderings is preserved. We
have manually verified this by using the -debug-pass=Executions flag while
running the LLVM optimizer, which emits the sequence of passes executed
by the common optimizer.

2. Using optimization configurations that are prefixes of the standard optimiza-
tion levels should result in the generation of valid executables, because the
standard optimization levels of each new version of a compiler are typically
heavily tested to ensure the production of functionally correct executables.
If not, this might be an indication of a bug in the optimizer.

3. The systematic generation of optimization configurations, as opposed to us-
ing random selection, results in a meaningful relation of the generated con-
figurations to the exploited standard optimization level. This is critical for
exposing optimization patterns and enables the discovery and understand-
ing of the potential optimization causes, as demonstrated in Section 4. Thus,
both, versatility and insightfulness from Section 1 can be achieved.

In [GBXdSE18], the primary focus was deeply-embedded processors, typi-
cally used in Internet of Things (IoT) applications, and thus, we demonstrated
the technique’s effectiveness on the Arm Cortex-M0 [Cora] and the Arm Cortex-
M3 [Corb] processors. In this paper, the technique is being ported to two more
complex processors, namely the Intel i5-6300U and the Arm Cortex-A53. Port-
ing to a new architecture is not time-consuming since the technique treats an
architecture as a black box. This is feasible because no resource models are re-
quired, neither for execution time nor for energy consumption. Instead, physical
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measurements of such resources can be used to assess the effectiveness of a new
optimization configuration on a program.

Similarly, the technique treats the compiler as a black box. It only uses the
compilation framework to exercise the different optimization configuration sce-
narios extracted from a predefined optimization level on a particular program.
In contrast, machine-learning-based techniques typically require a heavy train-
ing phase for each new compiler version or when a new optimization flag is
introduced [ABP+17, BRE15]. Considering the range of the LLVM versions the
technique was applied to, a total of two years of compiler developments between
LLVM versions v3.8, used in [GBXdSE18], and v6.0.1, used in this paper, we
can safely assume the portability of the technique across different versions of
the same compiler. In fact, we can argue that our technique can be ported to
any compiler optimizer, provided that its optimization process depends on se-
quences of optimization passes, and that it exposes means of controlling these
subsequences. Overall, the porting to the new architectures and the new version
of the LLVM compiler was completed within an hour.

The Collective Knowledge (CK) [FLSU18, cTu], a framework for collabora-
tive research that supports compilers’ optimization auto-tuning, was used for
evaluation. CK includes a variety of benchmark suites for the training and
the evaluation of auto-tuning techniques for compiler optimization, such as
iterative-based and ML-based techniques. One of them is the Milepost-GCC-
Codelet benchmark suite, which was used in the seminal work on ML-based
compiler optimization, MilePostGCC [FKM+11]. These benchmarks represent
hot spots extracted together with there datasets from several real software
projects [FLSU18]. These benchmarks are also part of the LLVM compiler test-
suite, under the MiBench benchmark suite [LLVa]. Both the Milepost-GCC
and its benchmark suite are now integrated into the CK framework and are
often used as the baseline to compare the effectiveness of new auto-tuning tech-
niques [FLSU18, ABP+17, BRE15]. Thus, this paper also uses the Milepost-
GCC-Codelet for evaluation. Although these benchmarks can be considered
small, with between 20 and 270 lines of source code, using small benchmarks
is evidently sufficient to spot potential optimization opportunities, as demon-
strated later on in Section 4. This has two major advantages: it simplifies the
understanding of the performance variations across different executables of the
same benchmark, and, in addition, the compilation, measurement and validation
cycles are kept short.

The Resource Usage Measurement box that is part of our compilation and
evaluation process, shown in Fig. 1, can be used to determine the execution time,
energy consumption and code size for each executable generated. Various mea-
surement or estimation techniques can be utilized as part of our framework in a
plug-and-play approach to address different hardware platforms and optimiza-
tion requirements. For this work, we focus on the execution time and code size
since there is no on-chip energy measurement support for the CortexA-53 pro-
cessor under test. As demonstrated in [GBXdSE18], the technique is capable of
accounting for energy consumption, when sufficiently accurate energy measure-
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ments or estimations are available. The code size can be obtained by examining
the size of the “.text” section of the executable.

For execution time measurements we use the CK’s built-in execution time
measurement framework. The framework has a calibration process that is needed
prior to measurement to determine the number of times a benchmark should be
executed in a loop while measuring to obtain a representative average execution
time for each benchmark. In addition, we repeated the evaluation process ten
times and excluded the two highest and two lowest execution time values for
each benchmark. This minimizes the impact of other events on the benchmark’s
execution time, such as Dynamic Voltage and Frequency Scaling (DVFS) and
noise from the operating system or other applications running on the machines
under test. In the case of the Intel i5-6300U, the above procedure was adequate
to provide stable and trustworthy results. In the case of the Arm Cortex-A53, as
used in a Raspberry Pi 3B+ board, the measurements were still not sufficiently
stable.

Further investigation showed that the overclocking functionality of the pro-
cessor that allows it to go beyond its maximum specified factory frequency, from
1200MHz to 1400MHz, is counterproductive as the board has no means of proper
cooling and was frequently overheating, reaching temperatures above those in
its specifications. This was causing the processor to throttle and exhibit un-
stable behavior. Restricting the maximum frequency to 1200MHz, we repeated
our measurements, allowing DVFS. The measurement variation was now within
a [-4.5%, 4.5%] range. Although this variation is acceptable and the compiler
optimization effects can be identified in most cases, we decided to follow the
official LLVM guidelines for benchmarking compilers, which suggest disabling
DVFS and modules external to the processor [Ben]. This helps to isolate the
effect of the compiler optimizations on performance from other artefacts that
can affect the execution time, such as DVFS. Hence, DVFS was disabled, fixing
the processor’s frequency to 1200 MHz, and the wireless communication (WiFi
and Bluetooth) modules were also disabled. Finally, the mean was obtained over
the remaining six out of ten measured execution time values; all of the six val-
ues were within the [-1%,1%] range from the mean value. We also evaluated a
faster approach in which only five repeated measurements were taken, the two
extreme values being discarded, and the arithmetic mean of the remaining three
measurements was used as the representative value. The retained values were
contained within the [-1.5%, 1.5%] range from the arithmetic mean for 99% of
all tested configurations, and the potential throughput of the test platform was
doubled compared to the ten-fold repetition of measurements.

CK has a built-in self-test mechanism that detects and reports when a gen-
erated executable is invalid, i.e. it does not provide the expected results. We
modified this mechanism to check the benchmark’s results for each optimization
configuration against those of the -O0 compilation with no optimizations en-
abled. This is because compiled unoptimized programs are considered reference
models that act as intended by the programmer.
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3 Benchmark Evaluation

The 42 benchmarks from the CK Milepost-GCC-Codelet benchmark suite, listed
in Table 2c, were used for both the Intel i5-6300U and the Arm Cortex-A53
processors to facilitate the discovery of potential cross-architecture compiler op-
timizations. For each benchmark, Figure 2 (Figure 2a for the i5-6300U and Fig-
ure 2b for the Cortex-A53) demonstrates the biggest performance gains achieved
by the proposed technique compared to the standard optimization level under
investigation, -O3. In other words, this figure represents the resource usage re-
sults of the optimization configuration which achieved the best performance
gains among the configurations exercised by our technique, when compared to
-O3 for each benchmark. A negative percentage represents an improvement on
a resource, e.g., a result of -20% for execution time represents a 20% reduction
in the execution time obtained by the selected optimization configuration when
compared to the execution time of the reference -O3 optimization configuration.

The code size improvements are also given for the selected configurations to
demonstrate that our technique can affect code size. However, code size is only
relevant for embedded architectures, and, thus, is not investigated further in this
paper. When dealing with deeply embedded architectures, such as the Cortex-
M0 and Cortex-M3 examined in [GBXdSE18], code size is often the first resource
targeted for optimization due to the limited memory of the processor. In such
cases, our optimization exploitation can use the -Os or -Oz optimization levels as
a starting point; both aim to achieve smaller code size. The optimization criteria,
and thus the optimization level used as a starting point, can be altered according
to the resource requirements for a specific application. Energy consumption can
be another resource to be exploited whenever accurate energy measurements are
available for the processor under investigation.

For the i5-6300U processor, we observed an average reduction in execution
time of 11.5%, with 26 out of the 42 benchmarks seeing execution time improve-
ments over -O3 ranging from around 1% to 71%. For the Cortex-A53 processor,
we observed an average reduction in execution time of 5.1%, with 26 out of the 42
benchmarks seeing execution time improvements over -O3 ranging from around
1% to 28%.

Figure 3 demonstrates the effect of each optimization configuration, exer-
cised by our exploitation technique, on the two resources (execution time and
code size), for the consumer-jpeg-c-src-jchuff-9-1 benchmark on the i5-6300U
processor. Similar figures were obtained for all the 42 benchmarks and for both
of the processors. As in Figure 2, a negative percentage represents a reduction
(thus, an improvement) in the usage of the given resource compared to the one
achieved by standard -O3 optimization. The horizontal axis of the figures shows
the flag at which compilation stopped together with the total number of flags
included up to that point. This represents an optimization configuration that
is a prefix of the -O3 optimization sequence. For example, the best optimiza-
tion configuration for performance for the benchmark in Figure 3 is achieved
when the compilation stops at flag number 9, sroa (static replacement of aggre-
gates). This means that the optimization configuration includes the first nine
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(a) Results for the i56300U processor and the LLVM v6.0.1 compilation framework.

(b) Results for the Cortex-A53 processor and the LLVM v6.0.1 compilation framework.

ID Benchmark Name ID Benchmark Name

1 automotive-basicmath-cubic-3-1 2 automotive-basicmath-isqrt-1-1

3 automotive-qsort1-src-qsort-1-1 4 automotive-susan-e-src-susan-10-1

5 automotive-susan-e-src-susan-2-1 6 automotive-susan-s-src-susan-1-1

7 consumer-jpeg-c-src-jcdctmgr-13-1 8 consumer-jpeg-c-src-jchuff-9-1

9 consumer-jpeg-c-src-jfdctint-2-1 10 consumer-lame-src-fft-2-1

11 consumer-lame-src-newmdct-10-1 12 consumer-lame-src-newmdct-3-1

13 consumer-lame-src-psymodel-17-1 14 consumer-lame-src-quantize-7-1

15 consumer-lame-src-quantize-pvt-6-1 16 consumer-lame-src-takehiro-16-1

17 consumer-lame-src-takehiro-5-1 18 consumer-mad-src-layer3-5-1

19 consumer-mad-src-layer3-6-1 20 consumer-tiff2rgba-src-tif-predict-4-1

21 consumer-tiffdither-src-tif-fax3-8-1 22 consumer-tiffdither-src-tif-fax3-9-1

23 consumer-tiffdither-src-tiffdither-1-1 24 consumer-tiffmedian-src-tiffmedian-1-1

25 consumer-tiffmedian-src-tiffmedian-3-1 26 consumer-tiffmedian-src-tiffmedian-4-1

27 consumer-tiffmedian-src-tiffmedian-5-1 28 consumer-tiffmedian-src-tiffmedian-6-1

29 network-dijkstra-src-dijkstra-large-5-1 30 office-ghostscript-src-gdevpbm-1-1

31 office-rsynth-src-nsynth-5-1 32 office-rsynth-src-nsynth-9-1

33 security-pgp-d-src-mpilib-1-1 34 security-pgp-e-src-mpilib-1-1

35 security-pgp-e-src-mpilib-3-1 36 security-pgp-e-src-mpilib-4-1

37 telecomm-adpcm-c-src-adpcm-1-1 38 telecomm-adpcm-d-src-adpcm-1-1

39 telecomm-fft-fftmisc-5-1 40 telecomm-fft-fourierf-3-1

41 telecomm-gsm-src-rpe-4-1 42 telecomm-gsm-src-short-term-2-1

(c) The GCC-Milepost benchmarks used for evaluation.

Fig. 2: Best achieved execution time improvements over the standard optimiza-
tion level -O3. For the best execution time optimization configuration, code size
improvements are also given. A negative percentage represents a reduction of
resource usage compared to -O3.
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Fig. 3: Optimization-performance example on the i5-6300U. For each optimiza-
tion configuration tested by the proposed technique, the execution time and
code size improvements over -O3 are given. A negative percentage represents a
reduction of resource usage compared to -O3. Each element of the horizontal
axis has the name of the last flag applied and the total number of flags used.
A description of the optimization flags used can be found at [LLVb]. The con-
figurations are prefixes of the -O3 optimization sequence, starting from -O0 and
adding optimization flags in order of occurrence till reaching the complete -O3
sequence of flags.

flags of the -O3 configuration with their original ordering preserved. The opti-
mization configurations include both transformations and analyses passes. The
-O0-custom configuration is the split version of the -O0 optimization level where
the compilation is explicitly decomposed into the front-end, common optimizer
and back-end, as described in Section 2. Its results are not equivalent to the
normal -O0 compilation, since the back-end is driven by the -O3 optimization
level.

The number of optimization configurations exercised in each case depends
on the number of transformation flags included in the -O3 level of the version of
the LLVM optimizer used. Note that we are only considering the transformation
passes visible to the compiler user [LLVb] and do not explore the features that
are explicitly hidden from the user, such as various transformation parameters.
Using this approach, 64 and 66 different configurations are being automatically
detected and tested by our technique for the Cortex-A53 and the i5-6300U pro-
cessors, respectively. The difference for the -O3 optimization level in terms of
optimization flags between the two processors is probably an attempt by the
compiler engineers to better address the performance characteristics of the two
architectures. Overall, more analysis passes are used for the i5-6300U proces-
sor. Many of the transformation passes are applied multiple times in a standard
optimization level, but because of their different position in the configuration
sequence they may have a different effect. Thus, we consider each repetition as
an opportunity to create a new optimization configuration. Furthermore, note
that more, hidden to the user, transformation passes exist in the LLVM opti-
mizer, but typically, these are passes that have implicit dependencies on the
passes that are exposed via compilation flags. The methodology of creating a
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new optimization configuration, explained in Section 2, does not affect such im-
plicit dependencies. This is because the LLVM pass manager ensures that such
dependencies are always met.

It is time-consuming to identify any optimization patterns across multiple
benchmarks, by manually inspecting the compilation profiles obtained for all
the benchmarks, similar to the ones presented in Figure 3. In the next section,
we show how the benchmarks can be automatically clustered based on their com-
pilation profiles. We then demonstrate the value of such clustering as part of a
nightly testing system, as it can expose potential hidden architecture-dependent
and cross-architecture optimizations. Moreover, it can pinpoint optimizations
that degrade performance.

4 Exposing Hidden Optimization Opportunities

Retargetable compiler frameworks achieve their generality by abstracting target
architecture properties and by relying on cross-target heuristics in the front- and
middle-end compilation passes. The abstract properties may be parametrized by
quantitative characteristics of each actual target used, but the decision heuristics
and the actual sequence of optimizations are often defined by experimentation
and, once established, are seldom questioned in subsequent releases of the com-
piler framework. Therefore, evaluating the pertinence and the quality of the
heuristics used in a compiler may provide valuable insights into the quality of
the current compiler configuration and its potential for further improvement.

The standard approach to tuning a compiler’s common optimizer remains
the repetitive testing of the compiler on a variety of benchmarks and main-
stream architectures. This approach is typically called nightly routine testing,
and it mainly aims at validating benchmark results in terms of correctness and
improving performance (or, in some application domains, code size). The out-
put of a nightly testing session is typically a report with information about the
compilation time, execution time and the correctness of the output for each test.
These results are then compared to a reference point, usually the result of a
previous nightly testing run that passed all the validation tests and exhibits the
best achievable execution and compilation times so far. The purpose of nightly
testing is to constantly monitor the quality of the modifications in a compiler
towards the release of a new version.

All observed regressions (either correctness failures or significant degrada-
tions in the execution time of a benchmark relative to its reference point) have
to be investigated by a compiler engineer. However, the detection of a regression
does not offer any insights into what actually caused it and requires the engineer
to manually examine and track the source of the problem. Depending on the en-
gineer’s experience and the complexity of the issue, the identification of the root
cause of a regression can be an extremely time-consuming task. Furthermore, a
standard nightly testing system will only report regressions or improvements for
individual tests, but will not directly pinpoint behaviors common across multiple
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benchmarks and architectures that can indicate hidden optimization opportuni-
ties.

In this section we propose an enhancement of the classic nightly testing
that utilizes the technique explained in Section 2 to extract recurring behav-
iors of the compiler. By exposing and quantifying the effect of successive opti-
mizations across all tested benchmarks and supported target architectures of a
compiler, the enhanced nightly testing approach enables the discovery of unex-
ploited cross-architecture and architecture-dependent optimization opportuni-
ties and the identification of optimization passes that have a negative impact on
target resource utilization (execution time, energy consumption, or code size).
The insights gained in this way can drastically improve the process of tuning
the compiler’s common optimizer, even without detailed knowledge of the target
architecture.

To demonstrate this, we will use the results obtained by our technique on
the Milepost-GCC benchmarks, as described in Section 3. Milepost-GCC bench-
marks are an excellent candidate for this exercise as they are also part of the
LLVM compiler’s test suite (under the MiBench subsuite [LLVa]). From Fig-
ure 2, we already know that significant performance gains can be achieved using
the proposed technique across both architectures. A compiler engineer will need
to focus first on the cases where the same optimizations appear across multiple
benchmarks. These repeating patterns indicate potential optimization opportu-
nities that can benefit a wider group of programs and/or architectures. To this
end, the benchmark results are first classified to expose common optimization
behaviors which are then analyzed in more depth.

4.1 Classification of nightly testing results

Figure 4 shows the outcome of the initial result classification. Figure 4a and
Figure 4b are the new proposed reports for a compiler’s nightly testing sys-
tem for the i5-6300U and the Cortex-A53 processors, respectively. The reports
include all the benchmarks where our technique achieved an execution time re-
duction of more than 3%. This threshold can be adjusted by compiler engineers
to allow them to focus on the cases for which they consider that the execution
time reduction is sufficient to warrant further investigation. The benchmarks are
then grouped in terms of their observed optimization behavior. The first level of
grouping is done on the First Config. Better than -O3 column, which represents
the first optimization configuration that outperformed the -O3 (e.g., pass sroa 9
in Figure 5a), and on the Config. Removing Gains column, which represents the
configuration in which those achieved gains were lost by the addition of more
optimization flags (e.g., pass simplifycfg 34 in Figure 5a). The second grouping
appears on the Best Overall Config. column which represents the configuration
that achieved the best performance against -O3. Finally, the benchmarks within
groups are sorted based on their achieved performance gains over -O3, in de-
scending order. This is also the case for any benchmarks that do not belong to
any group, e.g., the last 8 benchmarks in Figure 4b. The reports presented in
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Figure 4 will be used in the later sections to demonstrate how they can guide
the tuning of the compiler’s optimizer.

The comparison of performance figures achieved after each optimizing trans-
formation gives a direct insight into that transformation’s effectiveness, relative
both to preceding and subsequent optimizations, and to the “best optimization
level” baseline. Our experiments demonstrate that for many compute kernels the
best overall performance is achieved at an intermediate step of the optimization
process, indicating that certain transformations applied at later optimization
stages are in fact counter-productive.

The number of cases where an intermediate optimization configuration leads
to a substantially better performance than the reference “best” optimization
level -O3 is significant: 21 out of 42 benchmarks on the i5-6300U platform, and
20 out of 42 benchmarks on the Arm Cortex-A53 core achieve a performance
gain of at least 3%, and in some cases up to 71% wrt. using optimization level
-O3. For these benchmarks, simply stopping the optimization process at the
appropriate intermediate stage provides a directly exploitable gain.

The analysis of performance degradations between consecutive transforma-
tions provides a means of improving the overall quality of the optimizations
constituting the -O3 level. Each such degradation may be an artefact of a pass
which opens up opportunities for subsequent optimizations. In that case the
degradation should be reversed by a later transformation. However, when the
degradation is not recovered later in the optimization process, it becomes a di-
rect indication of an inadequate transformation behavior. Additionally, if the
performance before degradation is better than when using the reference -O3
optimization level, it indicates a missed improvement opportunity.

ID Opportunity Category Target and Benchmark ID Location in Repository [Z. ]

1 If-conversion heuristics GI
i5-6300u — 8

A53 — 31

results/i5/benchmark-8

results/A53/benchmark-31

2 Dead code in unrolling GI
A53 — 9

A53 — 18

results/A53/benchmark-9

results/A53/benchmark-18

3 Tuning of unrolling parameters TA
A53 — 9

A53 — 18

results/A53/benchmark-9

results/A53/benchmark-18

4 Store-vs-recompute tradeoffs TA A53 — 10 results/A53/benchmark-10

5 Explicit conversion instructions TS
A53 — 7

A53 — 42

results/A53/benchmark-7

results/A53/benchmark-42

6 Better-predicted branch conditions TS
A53 — 17

A53 — 36

results/A53/benchmark-17

results/A53/benchmark-36

Categories: GI: General Improvement, TA: Target-Aware heuristic tuning, TS:
Target-Specific optimization refinement

Table 1: Selected compiler improvement opportunities with locations of example
target code in [Z. ].

In the following sections we illustrate one possible approach to analyzing the
data produced by optimization-enhanced nightly testing. The list of findings in
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Benchmark ID First Config. Better than -O3 Config. Removing Gains Best Overall Config. Execution Time Reduction %

8 sroa - 9 simplifycfg - 34 instcombine - 33 -70.98

2 sroa - 9 simplifycfg - 34 instcombine - 33 -40.98

37 sroa - 9 simplifycfg - 34 instcombine - 33 -32.34

23 sroa - 9 simplifycfg - 34 instcombine - 33 -24.76

13 sroa - 9 simplifycfg - 34 sroa - 9 -12.53

25 sroa - 9 simplifycfg - 34 sroa - 9 -8.82

7 sroa - 9 simplifycfg - 34 sroa - 9 -5.11

42 sroa - 9 simplifycfg - 34 ipsccp -20 -31.61

35 sroa - 9 simplifycfg - 34 instcombine - 221 -21.05

24 sroa - 9 simplifycfg - 90 functionattrs - 39 -50.79

34 instcombine - 33 lcssa - 83 instcombine - 33 -6.25

33 instcombine - 33 lcssa - 83 instcombine - 33 -3.13

29 no pattern no pattern jump-threading - 130 -50.00

38 sroa - 9 instcombine - 60 instcombine - 33 -31.53

40 sroa - 9 loop-rotate - 87 ipsccp -20 -26.51

9 loop-unroll - 217 after simplifycfg -249 mem2reg - 24 -25.00

5 no pattern no pattern loop-simplify 138 -17.82

6 sroa - 9 globaldce - 229 loop-rotate - 87 -6.00

41 reassociate - 78 indvars - 103 loop-rotate - 87 -4.76

27 sroa - 9 lcssa - 101 ipsccp -20 -3.92

26 loop-rotate - 87 instcombine - 98 loop-rotate - 87 -3.17

(a) Advanced nightly testing report for the i5-6300U processor.

Benchmark ID First Config. Better than -O3 Config. Removing Gains Best Overall Config. Execution Time Reduction %

10 sroa - 8 instcombine - 27 sroa - 8 -17.18

36 sroa - 8 instcombine - 27 sroa - 8 -11.35

42 sroa - 8 instcombine - 27 sroa - 8 -10.48

31 sroa - 8 instcombine - 27 sroa - 8 -6.25

7 sroa - 8 instcombine - 27 sroa - 8 -3.23

5 loop-rotate - 73 jump-threading - 109 instcombine - 80 -10.82

22 loop-rotate - 73 jump-threading - 109 instcombine - 80 -10.71

21 loop-rotate - 73 jump-threading - 109 memcopyopt - 100 -10.71

39 loop-rotate - 73 instcombine - 80 loop-rotate - 73 -7.14

26 loop-rotate - 73 instcombine - 80 simplifycfg - 76 -4.92

13 loop-unswitch - 75 instcombine - 80 loop-unswitch - 75 -5.16

23 loop-unswitch - 75 instcombine - 80 simplifycfg - 76 -3.07

9 loop-rotate - 145 loop-unroll - 186 loop-simplify - 182 -27.72

18 loop-rotate - 145 no pattern strip-dead-prot - 194 -24.68

17 sroa - 8 loop-rotate - 73 ipsccp - 19 -16.23

8 sroa - 8 instcombine - 80 globalopt - 20 -11.38

38 sroa - 8 instcombine - 53 sroa - 8 -9.22

3 no pattern no pattern licm - 192 -4.00

14 sroa - 8 indvars - 86 functionattrs - 33 -3.85

4 no pattern no pattern strip-dead-prot - 194 -3.07

(b) Advanced nightly testing report for the Cortex-A53 processor.

Fig. 4: Advanced regression reports using our technique on the Milepost-GCC
benchmarks. The colors represent benchmarks’ grouping based on their opti-
mization behavior. The first level of grouping is done on the First Config. Better
than -O3 column, which represents the first optimization configuration that
outperformed -O3 (e.g., pass sroa 9 in Figure 5a), and on the Config. Removing
Gains column, which represents the configuration in which those achieved gains
were lost by the addition of more optimization flags (e.g., pass simplifycfg 34
in Figure 5a). The second grouping appears on the Best Overall Config. column
which represents the configuration that achieved the best performance against
-O3. Finally, the benchmarks within groups are sorted based on their achieved
performance gains over -O3, in descending order.
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this illustrative study is by no means exhaustive and additional compiler im-
provement opportunities could be identified by further exploring the collected
data. We begin the analysis with the identification of recurring sources of un-
tapped optimization potential on the i5-6300U and Cortex-A53 platforms. We
then review the reasons for the potential gains and the ways in which the poten-
tial is canceled. We mainly focus on the Cortex-A53 architecture which exhibits
a more diverse range of performance and code size artefacts, and we only use
the i5-6300U case for demonstrating potential cross-architecture optimization
opportunities.

The findings are grouped into three categories corresponding to compiler
reengineering tasks with increasing levels of knowledge and understanding of the
target architectures: generic optimization improvements, target-aware heuristic
tuning, and target-specific optimization refinement (Table 1). Generic optimiza-
tion improvements are expected to be applicable to all targets, or to large classes
of targets sharing a common feature such as predicated instructions or advanced
branch predictors. Target-aware heuristic tuning is intended to help better ex-
ploiting the target architectures without modifying the common optimizer of
a compiler. Finally, findings falling into the target-specific optimization refine-
ment category identify the interactions between architectural mechanisms and
compiler technology which cannot be easily captured in a common optimizer.

For each case discussed below, a set of supporting IR and object files is
available in repository [Z. ] at the location indicated in the corresponding entry
of Table 1. Each set contains matching IR and target object files corresponding
to:

– the state of optimization immediately before and after the transformation
that introduces the better-than-O3 performance;

– the state of optimization immediately before and after the transformation
that discards the corresponding gains;

– the outcome of the standard -O3 optimization flow.

4.2 Identifying recurring patterns of optimization potential

As shown in Figure 4, there is potential for improvement over the -O3 perfor-
mance baseline across recurring ranges of optimization passes. The number of
benchmarks sharing a given “opportunity range” is a direct indication of the rele-
vance of that range, and can be directly used to focus the compiler re-engineering
effort. For each such range, the first configuration which exhibits the potential
gains helps identify the unexploited feature, whereas the configuration which
cancels the potential improvement points directly to the counter-productive op-
timization. Since our enhanced nightly testing system stores all IR files, the cor-
responding object files, and the executables for all configurations being tested,
the compiler engineer can start the analysis process by reviewing the IR files
generated before and after the passes that delimit each opportunity range.

The largest cluster of optimization configurations offering hidden optimiza-
tion potential on the i5-6300U architecture involves 9 benchmarks with potential
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(a) Impact of pass simplifycfg 34 in benchmark 8 on i5-6300U

(b) Impact of pass instcombine 27 in benchmark 10 on Cortex-A53

(c) Interaction of passes loop-rotate 145 and loop-unroll 186 on Cortex-A53.

Fig. 5: Selected examples of better-than-O3 optimization potential. Note these
figures are similar to Figure 3 but with the first 3 configurations (-O0, -O0-
custom, simplifycfg) removed. These configurations were significantly slower than
-O3, and thus, they were obfuscating the rest of the configurations’ results.
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performance gains of up to 71% (cf. Figure 4a). The corresponding opportunity
range begins at the first application of the static replacement of aggregates pass
(sroa 9) and ends with the subsequent application of the control flow graph
simplification pass (simplifycfg 34), which removes the potential gains in 10
out of 21 benchmarks.

The analysis of the detailed performance report, the IR files and the gener-
ated target code for benchmark 8 on i5-6300U (Figure 5a) shows that the trans-
formation pass simplifycfg 34 is too aggressive in applying the conversion of
conditional control flow to predicated instructions (called also if-conversion) in-
side the two core loops of the benchmark. The simpler of the two affected loops
has the following structure:

1 c1 = -1;

2 v = 1000000000L;

3 for (i = 0; i <= 256; i++)

4 {

5 if (freq[i] && freq[i]<=v)

6 {

7 v = freq[i];

8 c1 = i;

9 }

10 }

At each iteration, the assignment statements in source lines 7 and 8 above
are only executed if several conditions are met at once (source line 5); if not,
program execution advances to the next iteration. The machine code obtained
after stopping the IR optimization process at pass instcombine 33 (Figure 6a)
is characterized by the presence of early conditional branches to the loop latch
block at address 0xa0 and which handles the termination of the current iteration.
These early branches shorten the actual critical path of many iterations resulting
in a very fast execution of the benchmark. Figure 6b shows the assembly code
generated after pass simplifycfg 34 has also been applied. The application of
the simplifycfg 34 pass removes the early conditional branches and produces
a single basic block with a unique conditional branch placed after the loop latch
code which now starts at address 0xbc (Figure 6b). The assignments from source
lines 7 and 8 are now implemented using predicated assignment instructions at
addresses 0xb4 and 0xb8; the branch condition is computed using predicated
assignments at addresses 0xa7 and 0xae and a Boolean instruction at address
0xb1. The computation of the loopback condition introduces a very long critical
path which is taken in all iterations. As a result, the average execution time of the
complete benchmark increases three-fold, thus cancelling almost the entire gain
potential available upon entering pass simplifycfg 34. Clearly, this behavior
calls for a careful revision of if-conversion strategies in the compiler and is a
natural opportunity for a generic optimization improvement that could benefit
multiple targets, categorized as case 1 in Table 1. Furthermore, in Section 4.4
below we provide an example case study which illustrates the improvements
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81: mov

$0xffffffff ,%r10d
87: xor %eax ,%eax

89: mov

$0x3b9aca00 ,%r11d
8f: cmp $0x100 ,%eax
94: jbe

ab <astex_codelet__9 +0xab >

96: jmp

d0 <astex_codelet__9 +0xd0 >

98: nop

... ...

9f: nop

a0: add $0x1 ,%rax
a4: cmp $0x100 ,%eax
a9: ja

d0 <astex_codelet__9 +0xd0 >

ab: mov

(%rdi ,%rax ,8),%rbx

af: test %rbx ,%rbx

b2: je

a0 <astex_codelet__9 +0xa0 >

b4: cmp %r11 ,%rbx

b7: jg

a0 <astex_codelet__9 +0xa0 >

b9: mov %rbx ,%r11

bc: mov %eax ,%r10d

bf: jmp

a0 <astex_codelet__9 +0xa0 >

... ...

(a) Optimization stopped after pass
instcombine 33

81: mov

$0xffffffff ,%r15d
87: xor %r14d ,%r14d

8a: mov

$0x3b9aca00 ,%r10d
90: cmp $0x101 ,%r14d
97: jae

c9 <astex_codelet__9 +0xc9 >

99: nop

... ...

... ...

9f: nop

a0: mov

(%rdi ,%r14 ,8),%rax

a4: test %rax ,%rax

a7: sete %r11b

ab: cmp %r10 ,%rax

ae: setg %bl

b1: or %r11b ,%bl

b4: cmove %rax ,%r10

b8: cmove %r14d ,%r15d

bc: add $0x1 ,%r14
c0: cmp $0x101 ,%r14d
c7: jb

a0 <astex_codelet__9 +0xa0 >

... ...

(b) Optimization stopped after pass
simplifycfg 34

Fig. 6: Machine code impact of pass simplifycfg 34 on the first innermost loop
of benchmark 8 on i5-6300U.
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achievable with a simple modification of the simplifycfg transformation pass
discussed above.

The largest cluster of similarly behaving benchmarks on the Cortex-A53
(see Figure 4b) consists of benchmarks 10, 36, 42, 31, and 7. Its correspond-
ing opportunity range starts with the first “static replacement of aggregates”
(sroa 8) pass and ends with the first application of the instruction combiner
(instcombine 27) pass. The instruction combiner pass removes many of the
explicit conversion instructions and performs selective if-conversion. A deeper
analysis of the IR files and the generated target code for the benchmarks of the
cluster leads to a broad range of findings:

– In benchmark 31, the source of the hidden performance potential is the
presence of explicit conditional control flow with unbalanced workloads in
the “true” and “false” paths. The instruction combiner pass replaces the
explicit conditional control flow structure with predicated instructions, thus
aligning the critical path of the resulting code on the longest of the critical
paths of the original control flow structure. Like in the case of i5-6300U and
the simplifycfg 34 pass, this issue signals a deficiency of the if-conversion
strategy and is an example of a general optimization improvement which can
benefit all targets. The similarity with the case of benchmark 8 on i5-6300u
suggests that the two deficiencies of if-conversion may have to be addressed
in conjunction, and have therefore been grouped together as case 1 in Table 1.

– In benchmark 10 (Figure 5b, case 4 in Table 1), the presence of an explicit
conversion instruction forces the recomputation of a value which would oth-
erwise require an additional register. The corresponding reduction in register
pressure increases the performance and reduces both memory traffic and the
actual code size. This case can lead to target-aware heuristic tuning of store-
vs.-recompute tradeoffs.

– The presence of explicit conversion instructions enables the recognition of
complex instruction patterns involving explicit conversions (multiply-accumulate
in benchmark 42 and addition/subtraction with operand shift in benchmark
7, case 5 in Table 1) and the use of seemingly faster branch instructions (con-
ditional branches on signed rather than unsigned comparison conditions in
benchmark 36, case 6 in Table 1). These three cases are linked to the specific
instruction set and the microarchitectural behavior of the target architecture
and belong to the category of target-specific optimization refinements.

The opportunity ranges opened on Cortex-A53 by loop rotate passes (loop-rotate
73 and loop-rotate 145) are associated with loop transformations. Optimiza-
tion opportunities offered by the second loop rotation pass (loop-rotate 145,
cf. Figure 5c) are more significant and illustrate a changing behavior of the com-
piler regarding the interactions between loop vectorization and loop unrolling.

In benchmark 9 (upper graph of Figure 5c), pass loop-rotate 145 vectorizes
the original loop, yielding an outer loop with only two iterations and a perfor-
mance improvement of 27.7% over the code generated using the standard -O3
optimizations. The subsequent unrolling of the outer loop in pass loop-unroll
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186 fully unrolls the loop body producing code that is fully sequential but twice
as large, and the corresponding performance loss may be caused by instruction
cache thrashing artefacts.

In contrast, in benchmark 18 (lower graph of Figure 5c) a similar performance
gain is achieved through loop vectorization, but it is not canceled by a subsequent
loop unrolling of the vectorized loop. This difference in behavior is explained
by the fact that quantitative settings of the loop-unroll pass depend on the
optimization flag used when invoking the optimizer. Our optimization sequences
start from level -O0 and therefore, the loop unrolling passes use the default loop
unrolling threshold value applied at optimization levels lower than -O3.

On the other hand, the standard optimization sequence of the -O3 level uses
a default unroll threshold value which is twice as large, enabling the unrolling
where our partial optimization sequences prevent it. This artefact raises the
importance of target-aware heuristic tuning (case 3 in Table 1) which requires
significant understanding of the target architecture, but may be needed to utilize
the target architecture at its best. It also demonstrates that the compiler should
actively leverage the information about the current target architecture instead
of relying on heuristically determined target-independent threshold values.

In Figure 5c, the final loop unrolling pass (loop-unroll 186) not only im-
pacts performance, but also cancels the potential for code size reduction observed
in benchmarks 9 and 18. The increase in code size caused by this optimization
pass is linked to the introduction of additional “catch-up” loops intended to han-
dle the cases where the actual number of iterations is not known beforehand and
might not be a multiple of the unrolling factor. However, in the tested bench-
marks the loop has a constant number of iterations and once vectorized, it is
fully unrolled to linear code. This means that the catch-up loops are redundant
and should be removed, yet they are actually left in the code calling for a generic
optimization improvement (cf. case 2 in Table 1).

As a last example, the analysis of the behavior of benchmark 17 on Cortex-
A53 leads to a potential target-specific optimization refinement (case 6 in Ta-
ble 1): the loss of performance potential during the first loop-rotate pass (loop-rotate
73) corresponds to the inversion of conditional branch conditions in the bench-
mark core loop, with all other instructions of the core loop remaining identical.
The associated 16.2% decrease in code performance hints at a branch prediction
artefact that could be related to the findings of benchmark 36 (described above)
in which the benchmark performance is directly linked to the relative execution
times of signed vs. unsigned conditional branch instructions.

4.3 Leveraging the identified optimization opportunities

The example findings described in the preceding section suggest that our ap-
proach of testing the quality of partial optimization configurations in compilers
can benefit the compiler technology community, industrial users and developers
of compilers, as well as hardware architects. Ideally, our approach should be
integrated into the compiler development flows so that the findings can be sys-
tematically collected, reviewed and dispatched according to their scope. Generic
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optimization improvement opportunities, once identified, should be reported to
compiler maintainers and the compiler technology community at large. The re-
sulting improvements in the given compiler will benefit all developers and users
of that compiler on a wide range of platforms.

Target-aware heuristic tuning opportunities are of particular importance to
developers and maintainers of industrial compilers who focus on the best possi-
ble utilization of their target architectures. The findings can help selecting the
most appropriate values of quantitative parameters of transformations, if these
parameters can be controlled by the user (such as the loop-unrolling threshold),
and can identify the cases where new parameters should be introduced.

The performance potential identified in nightly routine tests can then be eas-
ily made available to users, e.g. by supplying sets of parameter options tuned
for the different configurations of the target architecture. In addition, the per-
formance of the generated code can be finely matched to the target platforms
without affecting the basic principle of a common optimizer and without having
to modify the optimizer code (with all the quality risks this would imply.)

Finally, target-specific optimization refinements identify subtle interactions
between architectural mechanisms and compiler technology which may require a
coordinated effort of the hardware and compiler communities. This category of
findings requires by far the deepest levels of hardware architecture and compiler
technology knowledge. Findings regarding the behavior of branch predictors, for
example, can simultaneously provide useful feedback to hardware architects and
to compiler developers. The former can gain additional awareness of the ways
the branch prediction is behaving on compiler-generated code, and the latter
will be able to review the flow of predictor-aware code generation. We have seen
in the previous section that branch prediction and code generation may interfere
in significant ways.

In order to assess the actual impact of these interactions, the static analysis of
generated code may prove insufficient, requiring detailed information about the
behavior of specific micro-architectural features of the target platform, e.g. in the
form of data from hardware performance counters [Opr]. The use of performance
counters requires a good understanding of the target architecture, making them
a tool aimed primarily at expert compiler engineers.

However, once the correlation between specific hardware events, the readings
of the performance counters and the effects of a given optimization has been
established, the monitoring of the relevant hardware events can be integrated
into the nightly routine tests as an additional metric to be tracked in addition
to execution time, code size or energy consumption.

4.4 Case Study: Improving the SimplifyCFG Pass of LLVM

Based on the findings of Section 4.2 we modified the implementation of pass
simplifycfg of LLVM 6.0.1 release compiler to better leverage loop-related in-
formation. The operation of the simplifycfg pass was modified so that when-
ever the basic information about loops is known, the pass skips the if-conversion
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of conditionals which may result in an early termination of the current loop iter-
ation. This ensures that the fast execution path is not merged with slower paths
containing speculatively executed instructions, making it possible for branch pre-
dictors to exploit the short path much more efficiently. The corresponding patch
is available in repository [Z. ] under path code/llvmorg-6.0.1-simplifycfg-opt.patch.

We evaluated this modification on both the i5 and the Cortex-A53 platforms.
Table 2 summarizes the results for the six benchmarks which on the i5 platform
exhibited the largest performance degradations associated with the application
of pass simplifycfg as reported in Figure 4a. The other benchmarks were not af-
fected by this modification in any significant manner. For benchmark 8 which was
the most severely affected one on the i5 platform, the modification unlocked the
entire latent improvement potential leading to a 2.5-fold performance increase.
On Cortex-A53 the modification also led to a major improvement, in excess of
the potential identified in the nightly testing campaign. On both platforms, the
changed behavior of pass simplify 34 enabled a more effective code generation
in the compiler backend. In benchmark 24, the i5 performance improvement
potential remains now unaffected by the successive applications of the modi-
fied simplifycfg pass. However, the potential two-fold increase in performance
available after pass simplify 34 is now cancelled by the application of pass
loop-rotate 87, indicating that this specific pass should become the subject of
a new in-depth investigation. Finally, the modification of the simplifycfg pass
appears to unlock additional improvement potential in the initial application of
the pass at the beginning of the optimization process (simplifycfg 7). While
in benchmark 35 the relative reduction in overhead observed at pass simplify

34 is not reflected in the performance at optimization level -O3, in benchmarks
37 and 42 our modification leads to a 2.1% and 5.4% improvement over -O3
performance, respectively.

Benchmark ID

Intel i5-6300U Arm Cortex-A53

After pass simplifycfg34 -O3 After pass simplifycfg34 -O3

Without patch With patch With patch Without patch With patch With patch

2 -2.33% -2.33% -2.33% -2.15% -2.15% 0.00%

8 -11.53% -60.51% -61.36% -30.99% -45.72% -36.07%

24 -47.83% -50.00% -2.17% 1.39% 1.29% 0.87%

35 64.29% 57.14% 0.00% 15.75% 15.77% 0.10%

37 11.15% 7.69% -2.12% -2.11% -2.30% 0.04%

42 14.86% 12.16% -5.41% 8.77% 9.17% -0.45%

Table 2: Relative change of performance of code compiled using LLVM 6.0.1
with and without the proposed simplifycfg patch applied to the optimization
configuration stopping after the simplifycfg34 pass, and when using -O3 with
the proposed patch (baseline used is the performance of code compiled using the
unpatched optimizer and the -O3 optimization level). Negative values indicate
improvement, and positive values indicate degradation.
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5 Related Work

Auto-tuning of compiler optimizations has emerged in the last decade, taking two
main forms; iterative and machine-learning-based (MLB) compilation [WO18,
AKC+18]. Typically, the aim is to find new optimization sequences that can out-
perform what the standard compiler optimization levels can achieve in terms of
effective resource usage for a particular program and architecture; the resource of
interest being execution time, energy consumption or memory usage (code size).
The motivation for automatic tuning is that the possible optimization configura-
tion space is too large to be explored in practice, and thus, hidden optimization
opportunities can exist within that space. For example, GCC v4.7 has 282 pos-
sible optimization combinations [PHB15], not counting the possible values of
quantitative parameters. The concept of common architecture-independent op-
timizers, while helping compiler developers in supporting more programming
languages and more architectures, has the adverse effect of preventing high-level
optimizations from matching target architectures’ quantitative characteristics.
This can produce suboptimal executables in terms of efficiently using a specific
architecture’s resources.

Iterative compilation typically randomly samples the optimization configu-
ration space until finding a configuration that outperforms a predefined opti-
mization level [ABP+17]. The technique has in many cases proven to provide
significant performance gains [BKK+98, FLSU18], but typically a large number
of optimization configurations, in the order of hundreds to thousands, need to be
evaluated before reaching any performance gains over standard optimization lev-
els. Thus, iterative compilation has been traditionally used as a baseline to assess
the performance of MLB compiler auto-tuning techniques [FKM+11, ABP+17,
BRE15]. MLB techniques aim to beat the performance of iterative compilation
by finding a better optimization configuration in a shorter time. Thus, MLB tech-
niques try to strategically sample the optimization configuration space based on
the models built during their training phase. These models are being trained on
either static code features [FKM+11] or profiling information [CFA+07], such
as performance counter values that characterize the programs in the training
set, and a performance metric for the dependent variable. An example of such a
performance metric is the execution time of programs when applying a specific
optimization configuration.

Typically, these techniques require a large training phase [OPWL17] to cre-
ate the predictive models they rely on. Furthermore, they are hardly portable
across different compilers, different versions of the same compiler, or different
architectures. Even if a single flag is added to the set of a compiler’s existing
flags, the whole training phase has to be repeated. Moreover, extracting some of
the metrics that these techniques depend on, such as static code features, might
require a significant amount of engineering [WO18]. Thus, MLB techniques are
inadequate for systematic testing and improvement of compilers.

While iterative compilation and MLB approaches can assist software devel-
opers in improving an application’s resource usage by auto-tuning the compiler
settings, they offer limited value to the compiler engineer on how to improve the
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compiler’s common optimizer. This is because they typically offer limited infor-
mation in regards to the potential causes of their achieved gains over a standard
optimization level. Moreover, MLB approaches only provide predictions of good
optimization sequences based on an application’s features. These might or might
not work well for applications unseen by the machine-learning training phase.
Compiler engineers need more concrete evidence to guide their efforts of tuning
the compiler’s common optimizer.

Our enhanced nightly testing system, introduced in Section 4, offers a dif-
ferent approach which can assist the compiler engineer to “debug” the compiler
optimization sequences in terms of their effectiveness in a systematic way. This
is due to: a) the ability of our technique to attribute the optimization effects ob-
served to specific transformation passes exercised in an optimization sequence,
and b) the technique offering concrete data to drive the tuning of the common
optimizers, instead of MLB predictions.

Although a number of the existing approaches are able to provide some in-
sights to the compiler engineer in regards to the effectiveness of optimization
configurations, they were not designed to support this as part of the daily de-
velopment cycle of compilers. For example, in [DJB+09], the authors devise a
MLB approach which can account for micro-architecture features and perfor-
mance monitoring counters, and thus, the technique is portable across micro-
architectures. Although, the technique was able to quantify the effectiveness of
optimization flags through a posthoc analysis, porting the approach to a new
version of the compiler would require retraining their expensive machine learning
model, seven million training points plus cross-validation.

The Combined Elimination technique introduced in [PE06] was shown able
of exposing optimization tuning opportunities with an acceptable overhead for a
nightly testing system, i.e. within the range of hours for the tested architectures.
The technique deploys heuristics to disable flags of the -O3 standard optimiza-
tion level of the GCC 3.3.3 compiler, to find the optimization flags that degrade
performance. Although it can be argued that the technique exposes optimization
patterns and their sources, disabling optimization flags was performed without
validating that the compiler was indeed behaving as instructed. Both LLVM and
GCC compilers have mechanisms to automatically enable optimization and anal-
ysis passes when an optimization configuration does not meet all the required
dependencies. Thus, the outcome of disabling a specific optimization might be
related to other side-effects of the compiler trying to recover broken dependen-
cies that were caused by the eliminated optimization. Furthermore, the paper
mentions no validation of the correctness of the generated executables.

Energy consumption of computing is becoming critically important for eco-
nomic, environmental, and reliability reasons [EGLG+16, GXE18]. In [GBXdSE18],
the technique also used in this paper for exploring the standard optimization
levels, was able to accurately account for energy consumption through physical
hardware measurements on deeply embedded devices. In future work, we will
explore if energy profilers [INT] can achieve the same for platforms with higher-
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end architectures that do not allow for processor’s direct energy measurements,
such the ones explored in this paper.

6 Conclusion and Future Work

In this paper, we first define the four properties a technique should exhibit to
support the tuning of a compiler’s optimizer as part of the compiler’s daily de-
velopment cycle: portability, agility, versatility, insightfulness. The majority of
the traditional auto-tuning techniques, such as iterative compilation and MLB
approaches, are mainly engineered to provide better optimizations than the stan-
dard optimization levels for a specific application, rather than to support the
compiler engineer in tuning a standard optimization level. These techniques tend
to require a new expensive training phase at each compiler update, or need to
run for thousands of iterations. Furthermore, with few exceptions, such as the
combined elimination technique [PE06], they fail to expose optimization patterns
and their possible causes. Thus, they fail to exhibit all four required properties,
and in practice, they are of limited value to the compiler engineer.

We, therefore, propose a new take on the classic nightly testing system of com-
pilers, which exhibits all four required properties. The system is enhanced with
statistics that can systematically expose the behavior of the standard compiler
optimization levels wrt. performance. To achieve this, we adopt the technique
proposed in [GBXdSE18], i.e. we exploit prefix subsequences of the standard
optimization levels rather than arbitrary permutations of optimizations. Thus,
in contrast with iterative compilation or MLB techniques, our approach offers
compiler engineers an intuitive way of correlating performance variations with
the internal structure of the optimizer. To the best of our knowledge, our ap-
proach is the first that focuses on providing a systematic means of tuning the
compiler’s standard optimization levels and can be easily integrated into the
daily development cycle of the compiler.

By applying the technique to benchmarks from the LLVM test-suite, we
established the existence of significant optimization opportunities within the
standard optimization levels, firstly, on more complex architectures (the x86-64
based i5-6300U and the Armv8-A based Cortex-A53) than the deeply embedded
ones used in [GBXdSE18], and secondly, across multiple versions of the LLVM
compiler, namely the LLVM v3.8 and v5.0 examined in [GBXdSE18] and also
the v6.0.1 examined in this paper. Moreover, the short time required for porting
the technique to new architecture and compiler’s versions, within less than an
hour, ensures the required portability property.

Significant performance gains were observed for more than half of the 42
benchmarks tested, with an average of 11.5% and 5.1% execution time improve-
ment for the i5-6300U and the Cortex-A53 processors, respectively. These results
were collected, classified and exploited by the proposed nightly testing system
to expose a series of potential architecture-depended and cross-architecture op-
timization patterns and rank them according to their potential impact; fulfilling
the versatility required property. Furthermore, the small number of optimization
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configurations that needs to be exploited, defined in Section 2, ensures minimal
overhead on the nightly testing system, fulfilling the agility property.

This is of significant value for compiler engineers who can focus their ef-
forts on exploiting the hidden gains and removing the shortcomings of the key
performance-affecting optimizations. The resulting insights may lead to cross-
architecture optimizer improvements that benefit all users of the compiler, to
architecture-specific tuning relevant for suppliers and users of industrial compil-
ers, and to new ways of handling innovative hardware mechanisms at compiler
level. To the best of our knowledge, this is the first work on automated tuning of
compilers that enables the discovery and the analysis of new optimization poten-
tial to this extent. In a case study of optimization refinement, we leveraged the
insightfulness of our approach to identify and remove a significant shortcoming
of the CFG simplification pass of the LLVM v6.0.1 compiler, allowing the com-
piler’s optimizer to achieve the observed performance gains over the optimization
level -O3 for the majority of the affected benchmarks.

We expect that our technique can be applied to any compiler framework
which supports command-line activation/deactivation of individual compiler passes.
We intend to apply it to the target-independent optimization passes of GCC in
order to evaluate the latent performance potential of GCC and the ability of the
technique to support the improvement of more mature, yet harder-to-maintain
compilers. This will also further validate our intra-compiler portability claim wrt.
different versions of GCC. Beyond that, we expect to gain deeper understanding
of the cross-compiler applicability and portability of our technique.

In the future, we plan to extend our nightly testing system with the collection
of hardware performance counter data to further support compiler engineers
in identifying and exploiting potential optimization opportunities that are not
statically analyzable and may be linked to micro-architectural features of the
target processors.

Another research direction we are currently exploring is to extend the prefixes
that perform better than the standard optimization levels by attaching to them
beneficial optimization passes selected by either machine learning or iterative
compilation. Such an approach will allow us to potentially discover even better
optimization sequences than we currently do, but with lower exploitation over-
heads than the ones of machine learning and iterative compilation techniques
that start their exploitation from scratch.

Future work can also focus on tuning the compiler’s standard optimization
level in regard to other resources such as energy consumption and code size. As
shown in Figure 2 and in [GBXdSE18], our approach can offer improvements over
the code size offered by the standard optimization levels. This can be exploited
in a more relevant context; for example, the tuning of the -Oz optimization flag
for small embedded processors, such as the Arm Cortex-M series.

Finally, our technique of tuning the performance of the standard optimization
levels should become standard practice for compiler development. Thus, we plan
to enhance the existing LLVM test suite framework with our technique through
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an LLVM plug-in. This will have an immediate practical benefit to compiler
engineers.
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