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Verifiable symmetric searchable encryption is a keyword search technology that
supports verification of search results. Many schemes improve search performance
by dividing each keyword label into segments and storing them in a Trie-tree
at the expense of high storage. And the index will degenerate into a linear
linked list when all keyword labels have the same prefix except for the last
segment. But it will greatly affects the search efficiency. In this paper, we
propose a verifiable symmetric searchable encryption scheme based on the AVL
Tree (abbreviated as VSSE-AVL), which uses complete keyword labels to build the
index. Compared with the Trie-tree index, VSSE-AVL not only balances storage
and search performance, but also avoids degradation. To verify the correctness
and completeness of empty search results, we store path information in each leaf
node and node with only one child node. Considering the substitution attack,
we bind the file identifier and the file so that the client will find out once the
server returns inconsistent search results. Rigorous security analysis shows VSSE-
AVL satisfies privacy and verifiability. Compared with the verifiable SSE-2 with
the same security, the experimental evaluation shows that our proposed scheme

performs better on storage, search and verification.
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1. INTRODUCTION

Cloud storage [1, 2] has massive storage space, pay-
on-demand and flexible scalability, so more and more
clients are attracted to outsource data to cloud servers.
However, the client’s data may be compromised due
to server failures or malicious attacks. Research shows
that data breach attacks have increased 93 percent in
2020 [3].

To maintain data privacy without losing data
availability, Song et al. [4] introduced the primitive of
symmetric searchable encryption, or SSE for short. SSE
is a keyword search technology, which allows the client
to search on the ciphertext without decryption. So far,
plenty of works [5–9] have been done on SSE. But they
only focused on honest-but-curious servers who follow
the protocol specification honestly but attempt to learn
the underlying information from the index, ciphertext
set and trapdoor. In more realistic scenarios, the server

may also deviate from the protocol specification. To
reduce computation or communication overhead, he
may return partial search results or false search results.
For example, in the railway passenger information
database, when tracing close contacts of Covid-19, more
lives are at risk if no exhaustive search conducts. In the
hospital information system, doctors search for patients
who need treatment, but the system randomly returns
a list of patients without searching. It will cause some
patients to delay treatment or unnecessary treatment.

In order to solve the above problems, Chai et al.
[10] firstly proposed verifiable symmetric searchable
encryption (VSSE), which ensures the searchability and
verifiability of data. Verifiability is the ability to verify
the correctness and completeness of search results.
Correctness means that each ciphertext in the search
results matches the search keyword, and completeness
means that the search results contain all ciphertexts
that match the search keyword. Then Kurosawa et
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al. [11] introduced privacy and reliability to define
the security of VSSE and proved that this security is
equivalent to universally composable (UC) security. Hu
et al. [12] proposed a verification mechanisms suitable
for different schemes based on smart contracts. Search
performance is one of the important indicators for
evaluating a scheme. Many schemes [13–15] built the
index based on various trees to speed up searches, but it
greatly increases the storage space and does not prevent
the server from searching with linear complexity when
all keyword labels has the same prefix except for the
last segment (a character or vector).

To reduce computation and communication overhead,
a malicious server return partial search results or false
search results. However, most schemes [10, 11, 13, 16]
do not consider the case of empty search results.
Furthermore, the schemes in [10, 13] could verify the
correctness and completeness of file identifiers but did
not consider the corresponding relationship between
the file and its identifier. Under the semi-honest
model, this problem does not need to be considered
because the server honestly follows the protocol. But
the malicious server may deviate from the protocol to
perform substitution attacks (the returned ciphertexts
do not match the returned identifiers) [16]. These
schemes [16–19] solved the problem by computing the
hash function value of the file content and its identifier.
But they require too much calculation.

In this paper, our main goal is to design a
VSSE scheme that performs well on storage, search
and verification. Since the server is malicious, the
scheme must also be able to verify the correctness
and completeness of search results even if they are
empty. For security reasons, the scheme should resist
substitution attacks.

1.1. Our contributions

We propose an efficient verifiable symmetric search-
able encryption scheme based on the AVL tree, abbre-
viated as VSSE-AVL. It solves the following three chal-
lenges in VSSE.
1. How to balance storage and search performance. In
our scheme, the index (named MAVL) is an AVL tree
generated from complete keyword labels, where each
node represents a keyword. Compared with the schemes
in [10,13–15,20] where each path represents a keyword,
the number of nodes in MAVL is just the sum of their
leaf nodes. Their search time is related to the number
of segments of the keyword label. When the number is
greater than logm (m denotes the number of keywords),
our scheme is superior to them in terms of storage and
search. When the number is less than logm, we have
an advantage in storage, but the search speed is not as
fast as them.
2. How to verify the correctness and completeness of
search results even if they are empty. In our scheme, the
correctness and completeness of empty search results

are the correctness of the path searched by the server.
Since P 1 of the last node on the search path needs to
be returned, the client can compare the trapdoor with
each label in P 1 to verify whether P 1 is the search path
for the search keyword. And P 2 is the pseudo-random
value of P 1, so the client can verify the correctness of
P 1 through P 2 to verify the correctness and complete-
ness of empty search results. The main calculation is to
verify the search path, so the verification time is small
and it grows slowly with the increase of records.
3. How to resist substitution attacks. In our scheme,
the encryption key for each file is generated by pseudo-
random function acting on the auxiliary key and its
identifier. So the file can be decrypted correctly only
if the correct auxiliary key and the file identifier corre-
sponding to the file are held. Once the server returns
an inconsistent file identifier and ciphertext, the client
can find out.

1.2. Related Works

In the public key setting, a lot of searchable en-
cryption schemes [21–23] have been proposed. They
leveraged public keys to build indexes so that clients do
not need to negotiate keys in advance. So this method
is applicable for multi-user scenarios. For efficiency, we
mainly study symmetric searchable encryption.

Symmetric Searchable Encryption. The first SSE
scheme was proposed in [4], its main idea is to encrypt
each keyword separately, and embed the stream cipher
and its pseudo-random function value into the cipher-
text to build the index. When searching for a specified
keyword, the server needs to traverse all ciphertexts
and verify whether the value after XOR has a special
format. Inevitably, the search complexity depends
linearly on the size of the file.

In 2003, Goh [5] defined a security model for SSE re-
ferred to as semantic security against adaptive chosen
keyword attack, and proposed an efficient SSE scheme
using bloom filter under this model. However, the
security model only considers the security of indexes.
To make the adversary can’t deduce any useful infor-
mation from the index and trapdoor, Curtmola et al.
defined adaptive semantic security based on simulation
in [7].

Verifiable Symmetric Searchable Encryption. Chai et
al. [10] proposed the first VSSE scheme which ensures
the searchability and verifiability of data. The scheme
built index by dividing each keyword into characters,
storing them in PPTrie and encrypting the nodes.
Since each node contains the character information of
the parent node, clients can verify the correctness and
completeness of the search results. However, there are
no binding file identifiers and files, so the scheme is not
resistant to substitution attacks.

In 2013, Wang et al. [13] proposed a verifiable search-
able encryption scheme that supports fuzzy keyword
search. The client generates fuzzy keyword sets, seg-
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ments the hash value of each fuzzy keyword by n bits
and stores them in the symbol tree. But the scheme is
also not resistant to substitution attacks. In [14], the
verification is achieved by generating the hash value of
the root node, but this requires returning the minimum
sub-tree and partial node values. Also based on the
idea of segmentation, Zhu et al. [15] proposed generic
verifiable SSE based on merkle patricia tree to support
updates and improve search performance at the cost of
computation and storage overhead.

Kurosawa et al. [11] introduced privacy and relia-
bility to define security, and proved that this security
is equivalent to UC security. This security ensures
that no adversary can obtain any useful information
from the index, ciphertext set and trapdoor, and no
adversary can forge search results to pass verification.
Under the above security model, they proposed verifi-
able SSE-2 based on SSE-2 in [7]. For data flexibility,
they proposed dynamic VSSE [16] based on the RSA
accumulator. In [24], the client generated authenti-
cation tags for indexes based on homomorphic MAC
technique in [25] to realize the verification of top-k
multi-keyword search results.

Malicious servers may return empty search results,
but clients cannot verify the results in the above
scheme. In 2015, Taketani et al. [17] proposed ame-
liorate scheme based on verifiable SSE-2 in [11] which
can verify the correctness and completeness of the
search results even if they are empty. The client sorts
the arrays in ascending order of labels, and stores
the information of the previous array in each array.
In this way, once the server returns the proof, the
client can distinguish whether the search keyword
exists in the ciphertext set. In [26, 27], the client
stores the data in the Bloom filter tree or the Invert
Bloom filter, and uploads it to a trusted party. With
the help of the trusted party, the client can verify
whether the search keyword exists in the ciphertext set.

1.3. Organization

The rest of the paper is organized as follows. In
Section 2, we show the system and security model
for our scheme. Following in Section 3, we briefly
introduce the AVL tree, provide the specific algorithm
of VSSE-AVL, prove its security under the security
model mentioned in Section 2, and show an instance
of VSSE-AVL. In Section 4, we provide performance
evaluation of VSSE-AVL. Finally, the conclusions are
given in Section 5.

2. PROBLEM FORMULATION

We introduce the system model of VSSE and define
the security of VSSE under this model. In addition, we
review the design goals for our scheme again.

2.1. System Model

In this paper, we consider a frequently-used scenario
in VSSE. As illustrated in Fig.1, it involves three roles:
a server who provides data storage and search service,
a data owner who outsources file sets to the server,
and a data user who searches files containing search
keywords. In our system model, the server is regarded
as a malicious role and the data owner and the data user
are considered to be trusted. We assume that the data
owner has authorized search capabilities to the data
user. That is, the data owner sends the keys to the
data user through a secure channel in advance. And
sometimes the data owner and the data user are the
same agent, who can be called the client.

To support keyword search on the ciphertext set,

FIGURE 1. System model of MAVL

the data owner builds the index based on the keyword
set extracted from the file set, and uploads the index
and ciphertext set (encrypted file set) to the cloud
server. Once an authorized data user wants to search
files that contain a specified keyword, he generates
the trapdoor and submits it to the server. Upon
receiving the search request, the server searches the
index and returns the matching ciphertext set to the
user. Since a malicious server may return partial search
results or false search results to reduce computation or
communication overhead, the data user needs to verify
the correctness and completeness of the search results.

2.2. Security Definition

In our system model, we consider the server to be
malicious. He may try to learn any useful information
about files and keywords from indexes, ciphertext sets
and trapdoors. Besides, he can deviate from the pro-
tocol to return partial search results or false search
results. We introduce privacy and verifiability to define
security for VSSE according to the adversary’s ability.
To formally define privacy, we first introduce the con-
cept of the leakage function L.
Definition 1 (Leakage function L). Let L = (L1,L2).
L1 is a leakage function that describes the information
that is allowed to be learned from indexes and cipher-
text sets. It consists of the number of keywords |W |,
the size of the file (|d1|, |d2|, . . . , |dn|) and the relation-
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ship D(W ) = {d(w)|w is the search keyword} where
d(w) = {di containing w}i∈[1,n]. L2 is another leakage
function that describes the information that is allowed
to be learned from trapdoors. It is a symmetric binary
matrix σ(QW ), where the value in the ith row and jth

column is 1 only if with = wjth (with denotes the ith

search keyword).
Definition 2 (L − privacy). Suppose V SSE1 be a
verifiable symmetric searchable encryption scheme, λ
is the security parameter, the following Gamereal is a
real game and played by a challenger C and an adver-
sary A, and Gamesim is a simulation game and played
by a challenger C, an adversary A and a simulator S.
We say that V SSE1 is L − privacy if there exists a
probabilistic polynomial-time simulator S such that
|Pr(A outputs b = 1 in Gamereal)−Pr(A outputs b =
1 in Gamesim)| ≤ negl(s) for any probabilistic
polynomial-time adversary A. L − privacy means that
the adversary cannot obtain any useful information
from the index, ciphertext set, and trapdoor except for
leakage functions.

Gamereal :

• C runs KeyGen(1s) to generate a key set K.
• A chooses a document set D, extracts the

keyword set W from D and sends them to C.
• C runs BuildIndex to generate the ciphertext

set C and builds the index MAVL with
(K,D,W ).

• for 2 ≤ i ≤ q + 1,
1. A chooses a keyword wi based on{

(C,MAV L, Trw1
, . . . , T rwi−1

}
and sends it

to C,
2. C computes the trapdoor Trwi by calling
algorithm Trapdoor(K,wi), and sends it to A.

• A outputs a bit b.

Gamesim :
• A chooses (K,D,W ) and sends them to C.
• C sends the leakage functions L1 to S.
• S computes the ciphertext set C and the index

MAVL with L1.
• for 2 ≤ i ≤ q + 1,

1. A chooses a keyword wi based on{
(C,MAV L, Trw1), . . . , T rwi−1

}
and sends it

to C;
2. Given leakage functions L1 and L2, S
computes the trapdoor Trwi

and sends it to
A.

• A outputs a bit b.

Definition 3 (V erifiability). Suppose V SSE1 be a
verifiable symmetric searchable encryption scheme.
The following Game is played by a challenger C and
an adversary A. We say that V SSE1 is V erifiability

if the probability of any probabilistic polynomial-time
adversary A winning the game is negligible for any
(D,W ) and any search keyword w. V erifiability
means that the adversary cannot forge the search re-
sults to pass the verification algorithm.

Game :

• C chooses (K,D,W ), runs BuildIndex and
sends {C,MAV L} to A.

• for 1 ≤ i ≤ q,
1. C chooses a keyword wi adaptively, and com-
pute trapdoor Trwi

by Trapdoor(K,wi) for A.
2. A searches on MAVL, and returns
the matching ciphertext set and proof set
(CSet∗, PSet∗) to C.

• C runs V erification(K,CSet∗, PSet∗) and
outputs accept or reject.
We say that A wins if CSet∗ 6= CSet but
V erification(K,CSet∗, PSet∗) = accept.

2.3. Design Goals

To safely and efficiently outsource data to the cloud
server, our scheme should achieve the following goals:
1) The scheme should be feasible for both storage and
search.
2) The data user can verify the correctness and
completeness of the search results even if they are
empty.
3) The scheme should be able to resist substitution
attacks.

3. VSSE-AVL

To make it easier to understand the scheme, we
first review the concept of AVL tree, and then present
concrete construction and security analysis of our
scheme. For the sake of clarity, an example of our
scheme is shown in Fig.2.

3.1. AVL Tree

The AVL tree is proposed by Adelse-Velskil et al.
in [28], which is a rooted binary search tree. Each node
stores a label and has a left subtree and a right subtree.
The label in each node must be greater than all labels
stored in the left subtree, and not greater than any label
in the right subtree. Therefore, we can obtain ordered
sequence of labels by inorder traversal of the AVL tree.
Furthermore, the AVL tree is a highly self-balancing
binary tree, in which the difference between the height
of two subtrees of each node is at most 1. So it will
not degenerate into a linear linked list. An instance of
AVL tree is shown in Fig.2 (Only consider the label and
ignore other attributes of nodes).
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To build an AVL tree from label set, we first insert
the first label as the root node. If the subsequent label
is less than the label of the root node, the new node
is recursively inserted into the left subtree; if the label
is greater than the root, it is inserted into the right
subtree. After each insert operation, rebalance need to
be done to keep balance of the AVL tree. To search a
given label in the AVL tree, one begins with the root
node and sets the current node as root node. If the
current node is null, the AVL tree is empty. If the label
equals that of the current node, the search is successful.
If the label is larger than that of the current node,
search from its right subtree and set current node as
the root node of right subtree, otherwise search from
its left subtree. The process has been repeated until
the label is matched or a path has been traversed.

Similar to the AVL tree, the Red–black tree [29] is
self-balancing binary search tree. But searching on AVL
trees is much faster than Red–black tree because they
are more strictly balanced. Compared with the Trie
tree, the number of nodes in AVL tree is just the sum
of their leaf nodes.

3.2. Concrete construction

Suppose that Σ = (Gen(·), Encsk(·), Decsk(·)) is a se-
cure symmetric encryption scheme with indistinguisha-
bility against chosen-plaintext attacks (IND-CPA), fk :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a pseudo-random func-
tion, D = {d1, d2, . . . , dn} and W = {w1, w2, . . . , wm}
are the file set and keyword set. Let i denotes file iden-
tifier of di.
• KeyGen(1s) : a probabilistic algorithm run by the
data owner, he chooses a pseudo-random function
f(·, ·) : {0, 1}? × {0, 1}s → {0, 1}s. And he generates a

key set K =
{
k
′
, k
′′
, k
′′′
, k
}

from {0, 1}s, where k is an

auxiliary key. For convenient, we use fk′ (·) instead of

f(·, k′), and the same is true for others.
• BuildIndex(D,W,K) : a probabilistic algorithm run
by the data owner to build the index. It takes D,W,K
as inputs.

1) To bind a file and its identifier, the data owner
computes key ki = fk(i), i ∈ [1, n] for di, then invokes
encryption algorithm Σ to generate ciphertext ci =
Σ.Enc(ki, (di)), i ∈ [1, n].

2) For w ∈ W , the data owner calculates the label
Lw = fk′ (w) and creates the array Aw to store all
file identifiers in d(w) = {i1, . . . , is}. For the sake
of completeness verification, the corresponding proof
Pw = fk′′ (w ‖ i1 ‖ · · · ‖ is) need to be stored.

3) Based on the label set L = {Lw1
, Lw2

, . . . , Lwm
},

the data owner builds an AVL tree named MAVL,
where each node contains three attributes Lw, Aw, Pw.
To verify empty search results, apart from the above-
mentioned attributes, each leaf node and node with
only one child node needs to contain two additional
attributes P 1

w and P 2
w. P 1

w represents the value and

the pseudo-random function value of all the node
labels from the root node to the leaf node in an
orderly concatenation and P 2

w = fk′′′ (P
1
w). There is

a description of the additional attributes of the nodes
in the instance in Section 3.4.

4) The index MAVL, ciphertext set C =
{(1, c1), (2, c2), . . . , (n, cn)} are uploaded to the server.
• Trapdoor(k′ , w) : a deterministic algorithm run by
the data user, and it takes the search keyword w and
key k

′
as inputs. The trapdoor Trw = fk′ (w) is com-

puted and submitted to the server.
• SearchIndex(MAV L, Trw) : is a deterministic algo-
rithm run by the server to search matching ciphertexts.
It takes Trw, MAVL and C as inputs.

Upon receiving Trw, the server searches over MAVL
using Algorithm 1 and returns matching ciphertext
and proof set. Specifically, the server begins with the
root node and sets the current node as root node. If
the current node is null, the search keyword does not
exist in the ciphertext set. If the trapdoor Trw equals
the label of the current node, the server returns the
matching ciphertext set Cset = {(j1, cj1), . . . , (jk, cjk)}
and the proof set PSet = {0, cn.P} (P is the proof
mentioned above for completeness verification) and
terminates the search. If the trapdoor is less than
the label of the current node, the server searches
the left subtree. Otherwise, the server searches
the right subtree. The process has been repeated
until the server returns search results or a path has
been traversed. If MAVL is traversed but no label
equal to the trapdoor, let CSet = ∅ and PSet ={

1, lastnode.P 1, lastnode.P 2
}

(lastnode denotes the
last node on the search path, and P 1, P 2 are the two
additional attributes mentioned above) and return them
to the data user.

Algorithm 1 Search algorithm on the MAVL

Input: The index MAVL and The trapdoor Trw
Output: The ciphertext set CSet and the proof set

PSet
1: Set current-node (cn) as root node of MAVL
2: if cn is not empty then
3: if Trw == cn.Label then
4: Find cn’s identifiers is based on cn.A;
5: Find cn’s ciphertexts based on is;
6: Append (i, ciphertext)s to CSet;
7: Append 0, cn.P to PSet;
8: break;
9: else if Trw <= cn.Label then

10: Search algorithm on the cn’s left subtree
11: else if Trw >= cn.Label then
12: Search algorithm on the cn’s right subtree
13: else
14: Append 1, lastnode.P 1, lastnode.P 2 to

PSet;
15: end if
16: end if
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• V erification(K,CSet, PSet) : a deterministic
algorithm run by the data user to verify the correctness
and completeness of the search results. It takesK, CSet
and PSet as inputs . It is divided into the following two
cases according to whether the PSet contains 0 or 1:

The PSet contains 0 that means there are some
files contain the search keyword. The data user
need to verify the correctness and completeness of
Cset = {(j1, cj1), . . . , (jk, cjk)} to prevent the server
from returning partial or false search results. The
details of verification are as follows:
Step1 : The step is to check the correctness and

completeness of file identifiers, the data user computes
the fk′′ (w ‖ j1 ‖ · · · ‖ jk) and compares it with P . If the
equality holds, all identifiers of file containing w have
been returned, next go to Step2. Otherwise, terminate
the process of verification and output reject.
Step2 : The step is to check the correspondence

between the file identifier and the ciphertext. The data
user computes the key kj = fk(j), j ∈ Cset for cj . If all
ciphertexts in CSet are validly decrypted, the data user
convinces of the server is honest and outputs accept.

If PSet contains 1, no matching label is found
after travelling MAVL. The data user also verifies the
correctness and completeness of empty set. The details
are as follows:
Step1 : The data user first verifies the correctness

of search path, that is, the correctness of lastnode.P 1.
Assume that lastnode.P 1 = a1 ‖ · · · ‖ ak, if (Trw −
ai)(ai+1 − ai) ≥ 0, i ∈ [1, k − 1] holds, go to Step2.
Otherwise, output reject.
Step2 : The data user also computes the pseudo-

random function value of lastnode.P 1 and compares it
with lastnode.P 2. If it is equal, no files in the database
contain the search keyword w, the data owner outputs
accept.

3.3. SECURITY ANALYSIS

Theorem 3.1. The above scheme is L − privacy if
Σ is an IND-CPA secure symmetric encryption scheme
and f is a pseudo-random function.

Proof. To prove the server cannot learn any useful
information about files and keywords from the index,
ciphertext set and trapdoor, we will show that there
exists a probabilistic polynomial-time simulator S, such
that Gamereal and Gamesim are computationally
indistinguishable for any probabilistic polynomial-time
adversary A. First, we construct a simulator as below.

Given L1 = {(|d1|, |d2|, . . . , |dn|), |W | = m,D(W )},
S runs KeyGen(1s) to obtain the key set K ={
k, k

′
, k
′′
, k
′′′
}

and chooses m random strings as

keywords ws,i, i ∈ [1,m]. Meanwhile, S simulates each
ciphertext by computing cs,i = Σ.Enc(fk(i), 0|di|), i =
1, . . . , n. For ws,i, i ∈ [1,m], S computes the
label and creates an array. If d(wi) ∈ D(W ),
ws,i’s array is used to store file identifiers in d(wi).

Otherwise, the array is filled with some random file
identifiers. And MAV L

′
is built based on the label

set L =
{
Lws,1 , Lws,2 , . . . , Lws,m

}
where each non-leaf

node contains three attributes (L,A, P ), and each leaf
node and node with only one child node contains two
additional attributes P 1, P 2.

Given L2 = σ(QW ), S simulates the trapdoor for the
search keyword. During the jth search, the adversary
searches files containing the keyword wjth . If there
exists with , i < j such that wjth = with , S sets Trws,j

=
Trws,i

. Otherwise, S chooses ws,j but not used before,
computes its pseudo-random function value and sets it
as the trapdoor.

We use Game0 and Game2 to represent Gamereal

and Gamesim respectively. And let pi denotes the
probability that A outputs 1 in Gamei. Therefore, we
need prove that any probabilistic polynomial-time A
cannot distinguish between Game0 and Game2 with
non-negligible advantage.

We define a modified game, called Game1. Game1’s
structure and Game0 are the same but the ciphertext
set in the Game1 is simulated by S. Since Σ is
IND-CPA, |p0 − p1| < negl(s). Game2 is nearly
identical to Game1, the only difference is that the index
replaced byMAV L

′
. Since all probabilistic polynomial-

time adversaries cannot distinguish the output of the
pseudo-random function from the random number,
and the file identifiers stored in all arrays in the
MAV L

′
obtained according to the leakage function or

is generated randomly, |p1 − p2| < negl(s). Therefore,
we obtain |p0− p2| < negl(s). That is any probabilistic
polynomial-time A cannot distinguish between Game0

and Game2 with non-negligible advantage.

Theorem 3.2. The above scheme is V erifiability if
f is a pseudo-random function.

Proof. We will prove any probabilistic polynomial-time
A wins Game with negligible probability. In other
words, for any search keyword w, the probability that
A returns CSet∗w 6= CSetw and C outputs accept is
negligible.

Suppose that there exists a probabilistic polynomial-
time A who breaks the V erifiability of above scheme
with a non-negligible probability. Namely, there
is at least one w that makes the A to forge
CSet∗w = {(1, c∗1), (2, c∗2), . . . , (s, c∗s)} which is not
equal to CSetw = {(1, c1), (2, c2), . . . , (s, cs}, but it
is accepted by the C with non-negligible probability.
This requires A to be able to calculate the pseudo-
random function value of file identifiers or search paths.
But it goes against the collision resistance property of
pseudo-random function. Therefore, any probabilistic
polynomial-time A can not break the V erifiability of
the scheme with non-negligible probability.
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FIGURE 2. MAVL

3.4. AN INSTANCE OF VSSE-AVL

To understand the scheme more easily, we provide
an instance of VSSE-AVL. Its index is shown in Fig.2.
There are 9 keywords: w1, w2 . . . , w9, and their labels
correspond to 46, . . . , 54 respectively. Based on these
labels, an AVL tree is built, where each node contains
three attributes: label,Aw, Pw. To verify empty search
results, each leaf node and node with only one child
node needs to contain two additional attributes P 1

and P 2. For example, the node corresponding to w2

has only one child node, so P 1 and P 2 of this node
need to be calculated. The path from the root node
to the node corresponding to w2 is 35 ‖ 20 ‖ 15, so
P 1
2 = 35 ‖ 20 ‖ 15 and P 2

2 = fk′′′ (P
1
2 ).

When a data user wants to search files containing
w7, he should calculate the trapdoor and send it to the
server. In this example, the trapdoor for w7 is 18. The
black arrows indicate the path for searching 18. The
server will return the file identifiers in A7 and the proof
P7. When the data user wants to search files containing
a specified keyword and the trapdoor of the keyword is
43, the red arrows indicate the path for searching for 43.
Since the server did not find the node in MAVL and the
node corresponding to w1 is the last node on the search
path, he will return P 1

1 and P 2
1 . If the server honestly

returns the search results, it can pass the verification.
Otherwise, it will be found by the data user.

4. PERFORMANCE EVALUATION

To evaluate the performance of VSSE-AVL, we
implement the VSSE-AVL in Windows 10 operation
system using JavaScript language. And we measure the
time and space overhead of the scheme and compare
it with verifiable SSE-2 [11] of the same security. A
series of experiments are conducted on simulation doc-
uments: the Railway Passenger Information Database.
HMAC-MD5 is used to implement hash function. For
each experiment, we perform it 10 times on a desktop
equipped with an Intel(R) Core(TM) i5-9400F CPU
(2.9GHz) and 16GB RAM, and take the average value
as the result.

4.1. MAVL Construction

(a) The time cost of MAVL generation

(b) The size of MAVL

FIGURE 3. Index generation

Since MAVL is a modified AVL tree, the main
calculations for constructing MAVL include calculating
hash values, encrypting files, and building an AVL
tree. In Fig.3(a), we measure the running time of
MAVL generation phase. It can be seen that the index
generation time is almost quadratic with the number of
key-id pairs. Although the construction of MAVL is the
most time-consuming phase, it is only executed once.

As shown in Fig.3(b), the size of MAVL has a roughly
linear relationship with the number of keyword-id pairs.
When the file set is 22.5M and the number of extracted
keyword-id pairs is 243564, the MAVL’s size is around
1.44M (not including the cipher text set). Compared
with the file size, the index is almost less than one-
sixteenth of it.

4.2. Search and Verification

We assume that the data owner has authorized
search abilities for the data user, that is, the data
owner sends the keys to the data user through a
secure channel in advance. In this part, we do not
consider the transmission time of keys. We analyze
the experimental results based on the following two
cases: the specified keyword exists in the database and
the specified keyword does not exist in the database.
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(a) Search results are not empty

(b) Search results are empty

FIGURE 4. Time cost

Fig.4(a) and Fig.4(b) correspond to these two cases
respectively.

Once an authorized user wants to search files
containing a specified keyword, the trapdoor must be
generated first. The blue lines in Fig.4 illustrate the
running time of trapdoor generation phase. As you can
see, the trapdoor generation time is almost constant
regardless of the number of keyword-id pairs. Because
this phase only needs to calculate a hash function value.

Upon receiving the trapdoor, the server searches over
MAVL. The yellow lines in Fig.4 show the running
time of keyword seach phase. An AVL tree is also a
binary search tree, so MAVL should have sub-linear
search complexity. As shown in Fig.4, there is roughly
a logarithmic relationship between the keyword search
time and the number of keyword-id pairs.

Whether the search results are empty or not, data
users must verify their correctness and completeness.
The red lines in Fig.4 show the running time of
verification phase. As shown in Fig.4(a), the verification
time is almost linear to the number of keyword-pairs.
When the file set is 22.5M and the number of extracted
keyword-id pairs is 243564, the time to search a specified
keyword is about 0.25ms. When the search results are
empty, it can be seen from Fig.4(b) that the verification
time is about one-half of the keyword search time. And
it increases slowly with the number of keyword-pairs.

4.3. Comparison with verifiable SSE-2

Kurosawa et al. proposed verifiable SSE-2 based on
SSE-2 in [7], but did not evaluate its performance. To
be more equitable, we conduct experiments on the same
file sets and keyword sets. In Fig.5, we show the time
and space overhead of building index in verifiable SSE-
2 and VSSE-AVL. Due to the huge difference in time
and space overhead, the ordinate adopts a logarithmic
scale. Fig.5(a) illustrates that the running time of the
index generation phase of our scheme is about 3% of
the verifiable SSE-2. Fig.5(b) illustrates that the index
size of our scheme is about one thousandth of that of
Verifiable SSE-2.

In Fig.6, we show the running time of trapdoor
generation, keyword search, and verification phases of
the two schemes. Due to their huge difference in time
cost, we introduce the secondary axis (on the right)
as the ordinate axis of the verifiable SSE-2. When
the number of keyword-id pairs is 12569, the running
time of verifiable SSE-2 is about 3.7 million times
that of VSSE-AVL. Compared to verifiable SSE-2, the
running time of our scheme is very short. And these
experimental results show that our scheme is more
efficient than verifiable SSE-2 in storage, search or
verification.

(a) Index generation time

(b) Index size

FIGURE 5. Index generation
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FIGURE 6. Time cost

5. CONCLUSION

In this paper, we proposed a verifiable symmetric
search encryption scheme based on the AVL tree. The
main idea is that MAVL is generated according to
complete keyword labels. The number of nodes in the
MAVL is the number of keywords (m), and its search
complexity is O(logm). And VSSE-AVL could not only
verify the correctness and completeness of the results
even they are empty but also resist substitution attacks.
A series of experiment results showed VSSE-AVL has
the advantage of smaller storage capacity, shorter search
time and shorter verification time.
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