
Multi-Keyword Ranked Searchable
Encryption with the Wildcard Keyword
for Data Sharing in Cloud Computing

Jinlu Liu1, Bo Zhao1, Jing Qin1,2, Xi Zhang1 and Jixin Ma3

1School of Mathematics, Shandong University, Jinan, 250100 Shandong, China
2State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
3School of Computing and Mathematical Sciences University of Greenwich, London,UK

∗Corresponding author: qinjing@sdu.edu.cn

Multi-keyword ranked searchable encryption (MRSE) supports multi-keyword contained in one
query and returns the top-k search results related to the query keyword set. It realized effective
search on encrypted data. Most previous works about MRSE can only make the complete keyword
search and rank on the server-side. However, with more practice, users may not be able to express
some keywords completely when searching. Server-side ranking increases the possibilities of the
server inferring some keywords queried, leading to the leakage of the user’s sensitive information.
In this paper, we propose a new MRSE system named ‘multi-keyword ranked searchable encryption
with the wildcard keyword (MRSW)’. It allows the query keyword set to contain a wildcard keyword
by using Bloom filter (BF). Using hierarchical clustering algorithm, a clustering Bloom filter tree
(CBF-Tree) is constructed, which improves the efficiency of wildcard search. By constructing a
modified inverted index (MII) table on the basis of the term frequency-inverse document frequency
(TF-IDF) rule, the ranking function of MRSW is performed by the user. MRSW is proved secure
under adaptive chosen-keyword attack (CKA2) model, and experiments on a real data set from the

web of science indicate that MRSW is efficient and practical.

Keywords: searchable encryption; bloom filter; hierarchical clustering; TF-IDF; multi-keyword ranked;
wildcard keyword

1. INTRODUCTION

Symmetric searchable encryption (SSE) is a cryptographic
primitive that addresses the search over encrypted data. It
allows a data owner to encrypt documents using a special
encryption algorithm and outsource them to an external server
so that other authorized users (including the data owner) can
generate the trapdoor corresponding to the query keyword.
Given a trapdoor, the server searches for encrypted documents
and returns the search results to the user.

SSE was first introduced by Song et al. [1] in 2000. Their
scheme adopts a method similar to stream ciphers for encryp-
tion and needs to compare the ciphertext word by word to
find the searched keywords. Goh [2] presented an index-based
scheme to improve search efficiency. Subsequently, a series of
SSE schemes have been proposed [3, 4]. All these schemes

can search for documents containing a specific single keyword
securely and efficiently.

To enhance the searching experience of users, Wang et al. [5]
firstly defined and solved the problem of multi-keyword ranked
search over encrypted data (MRSE). In query phase, users
can generate the trapdoor corresponding to multi-keyword,
which improves the search accuracy. In search phase, the
search results are to be ranked, and the server returns the top-
k documents that are most relevant to query keywords. This
makes users find the most relevant one without decrypting all
the documents and decreases the unnecessary communication
traffic.

While providing efficient multi-keyword ranked search,
almost all of existing MRSE schemes [5–13] can only search
the complete keyword. It is common that users are unable

2 J. Liu et al.

to accurately and completely express one of the keywords
when performing a multi-keyword ranked search. For example,
in the cloud medical system, hospitals build medical record
indexes by extracting the specific date of the patient’s medical
record creation (such as 5 April 2021), the basic information
of patients, the disease name and other keywords, and stores
indexes and encrypted medical records in the cloud server. In
order to conduct collaborative diagnosis and treatment, hospital
A needs to share the medical record resources of diabetic
patients generated in May 2021 with hospital B. We can
extract the keywords ‘diabetic’ and ‘May 2021’. Nevertheless,
the ‘May 2021’ cannot be expressed in the form of a pre-
set keyword. Using the existing MRSE system, hospital B
needs to enumerate all possible keywords such as ‘2021/05/01’,
‘2021/05/02’,..., ‘2021/05/31’, and then perform searches for
all cases. This is not an efficient way.

For the ranking operation, in most previous MRSE systems,
it is executed by the server. However, for the cloud server with
a large amount of background knowledge (for example, the
correlation between given trapdoors, relevant data set statistics
information, etc.), it can combine this knowledge with the
ranking results to perform statistical attacks to infer some key-
words queried. These keywords usually involve some sensitive
information about the user. For instance, in cloud medical
system, keywords are often related to the patient’s illness. To
protect data privacy, users will prefer to rank locally to reduce
the possibilities of statistical attacks of the server.

1.1. Contribution

In this paper, we propose a multi-keyword ranked searchable
encryption with the wildcard keyword (MRSW) that enables
users to rank the candidate documents and then request the
server to return the top-k most relevant documents in search
phase. With MRSW, hospital B can generate trapdoor of key-
words ‘2021/05/??’ and ‘diabetic’ for searching. Specifically,
there are three main techniques in designing our scheme. (1)
Clustering the keywords in the keyword dictionary by using
a hierarchical clustering algorithm. The keyword similarity is
measured by the Hamming distance between the Bloom filters
(BF) corresponding to keywords and the high similar keywords
are in one cluster. Based on the clustering result, the document
clustering bit vector (DCB-vector) and query clustering bit
vector (QCB-vector) are generated. By calculating the inner
product of these two vectors, we can filter out the documents
that are entirely impossible to match with the query keywords
and obtain the candidate document identifier (CID) set. (2)
Based on the keyword clustering, a clustering Bloom filter
tree (CBF-Tree) can be generated. Each leaf node represents
a cluster of keywords, which allows us to quickly filter out the
tree branches that do not match with the wildcard keyword and
find the matching keywords. (3) To make the ranking function
performed by the user, a modified inverted index table (MII)
is constructed based on the TF-IDF rule and pseudo-random

function (PRF). Using the MII, the cloud server calculates the
encrypted relevance scores of the documents in the CID and
sends these encrypted relevance scores and their corresponding
identifiers to the user. The user obtains the plaintext scores and
ranking results by decrypting the ciphertext scores.

The primary contributions are summarized below:

1. We design a novel MRSW scheme. It supports a more
flexible search function, namely, multi-keyword ranked
search where the search keyword set contains a wildcard
keyword.

2. According to the clustering of keywords, a CBF-Tree
is constructed, which improves the efficiency of the
wildcard search.

3. In contrast to the previous MRSE ranked on the server-
side, our scheme realizes ranking on the user-side
through simple addition and subtraction. It reduces the
chance of statistical attacks effectively.

1.2. Related Works

1.2.1. Multi-Keyword Ranked Searchable Encryption
The first study of MRSE was put forward by Cao et al. in 2011
[5]. They used a novel index structure. Concretely, the docu-
ments and query keywords are expressed as 0/1 bit-vectors with
a dimension equal to the number of keywords. Using secure k-
nearest neighbor (KNN) encryption and ‘coordinate matching’,
documents can be ranked by the number of keywords they
contain. The frequency of keywords reflects the importance
of keyword to the document to a certain extent, but [5] did
not consider this. Therefore, in 2013, Cao et al. [6] optimized
the representation method of document vectors. Aimed at the
importance of keyword frequency to documents, the TF-IDF
rule and vector space model (VSM) were introduced to improve
search accuracy.

The indexes of [5] and [6] are linear. To achieve better
search efficiency than linear ones, follow-up researchers have
proposed many novel tree index structures. For example, in
2015, Chen et al. [8] proposed the hierarchical clustering index
tree; in 2015, Xia et al. [9] introduced the keyword balanced
binary index tree; in 2019, Guo et al. [10] constructed an index
tree by utilizing BF.

In the schemes mentioned above, the ranking functions are
all performed by the cloud server, but server-side ranking
inevitably leads to statistical information leakage. Therefore,
Yu et al. [7] introduced a two-round interactive MRSE by
utilizing VSM and homomorphic encryption (HE), in which
the ranking function is performed by the user.

Apart from the exact search, many fuzzy MRSE schemes
also have been proposed. Wang et al. [11] proposed a secure
fuzzy MRSE under known ciphertext model by extracting the
bigram characters of keywords and using local sensitive hash-
ing (LSH) technology. Furthermore, Fu et al. [12] extracted
uni-gram characters of keywords to improve search accuracy.

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 3

TABLE 1. Functionality Comparise.

Scheme Key Search Functionality

single wildcard multi-keyword rank one wildcard keyword contained in query keyword set rank performer

[14] Symmetric � × ⊥ ⊥
[15] Asymmetric � × ⊥ ⊥
[6] Symmetric × � × Server
[7] Asymmetric × � × User
Ours Symmetric � � � User

In 2019, Cao et al. [13] pointed out that [12] could not recognize
the anagrams. To solve this problem, a novel method for
converting keywords into ‘order-preserved uni-gram (OPU)’
vectors was proposed in [13].

1.2.2. Wildcard Searchable Encryption
Generally, there are mainly two types of wildcard: ‘?’ and
‘*’. ‘?’ can represent one character, which is called a single-
character wildcard, and ‘*’ can represent any number of charac-
ters, which is called a multi-character wildcard. In 2010, Sedghi
et al. [16] presented a method to convert hidden vector encryp-
tion (HVE) into public key searchable encryption (PKSE) that
supports wildcard search and proposed a specific HVE scheme.
Their scheme is not efficient because many modular exponen-
tial operations are needed in encryption, trapdoor generation
and search algorithms and several bilinear pairing operations
are required in search algorithm.

Bösch et al. [17] presented a wildcard SSE in 2011. It is more
efficient than [16] and each wildcard can represent multiple
characters. However, it just enumerates all the wildcardified
variants of the keyword and inserts these keywords into a
BF, which leads to high preprocessing costs and large storage
capacity.

In 2012, Suga et al. [18] presented an SSE scheme that
supports multiple types of searches. Specifically, a BF is con-
structed for each keyword by extracting the keyword’s charac-
teristics. That is to say, the index is an inverted index. Although
this scheme does not need to enumerate the wildcardified
variants of keyword, due to the limitation of the characteristic
extraction method, a wildcard can only represent one character,
which is not practical. For this limitation, in 2016, Hu et al.
[14] presented a new keyword characteristic extraction method
so that each wildcard can represent any number of characters.
In 2016, Zhao et al. [19] introduced an SSE scheme that can
support both single-character wildcard ‘?’ and multi-character
wildcard ‘*’ by improving the keyword characteristic extrac-
tion method in Suga’s scheme.

An obvious drawback of BF-based searchable encryption
schemes [14, 17–19] is the inevitability of false positive. There-
fore, to eliminate the drawback caused by BF, Yang et al. [15]
constructed a flexible wildcard searchable encryption scheme

using HE. The query keyword can contain zero to two wild-
cards. Wildcards can appear anywhere in the keyword and a
wildcard can replace any number of characters. However, when
there are multiple wildcards in the query keyword, it will result
in multi-level loop nesting. So this scheme is not applicable to
the search for query keyword with three or more wildcards.

In Table 1, we give the functionality comparisons for our
MRSW scheme with existing works [14], [15], [6], [7].

As we have seen, many researchers have focused on multi-
keyword ranked and wildcard searchable encryption. However,
almost all systems do not support the situation where a single
query contains multiple keywords and one of the keywords
is the wildcard keyword. Besides, the ranking functions are
performed on the server-side in most studies about MRSE.
Therefore, it is necessary to propose the MRSW.

1.3. Organization

The rest of this paper is organized as follows: Section 2 gives
some notations and preliminaries. Section 3 presents the sys-
tem and security model of MRSW. Section 4 describes the con-
crete algorithms of MRSW. Security and performance analysis
of MRSW are showed in Section 5 and Section 6, respectively.
Finally, the conclusion of this paper is in Section 7.

2. NOTATIONS AND PRELIMINARIES

2.1. Notations

The notations used in this paper are listed in Table 2.

2.2. Preliminaries

2.2.1. Bloom Filter
Bloom filter (BF) [20] is an effective data structure for judging
whether an element belongs to a collection. It uses an array to
represent a collection. Initially, each position of the array is set
to 0. For a set S, calculate l hash values of each element in S
and set the position corresponding to these values to 1. When
judging whether an element q is in the set S, calculate l hash
values of q and check the bits at these l positions, as long as
there is bit 0, then q must not be in S; otherwise, q ∈ S or yields

4 J. Liu et al.

TABLE 2. Notations.

Notation Meaning

D plaintext document set, D = {d1, d2, ..., dm}
ID identifier set of document set D, ID = {id1, id2, ..., idm}
C encrypted document set, C = {c1, c2, ..., cm}
W keyword dictionary, W = {w1, w2, .., wn}
CL keyword clustering result list, CL = {C1, C2, ..., Cτ }
VCdi τ -dimensional DCB-vector of di

Dwi document set that containing wi

Q multi-keyword query, Q = {Qe, qw}, where
Qe = {q1, q2, .., ql} is the exact keyword set and qw is the
wildcard keyword

VCQe τ -dimensional QCB-vector of Qe

CID the set of candidate document identifiers for query Qe

a false positive, this is because each position may have been set
to 1 by some other elements other than q.

2.2.2. Hamming Distance
Hamming distance is defined as the number of different char-
acters in the corresponding positions between two strings of
equal length. In other words, the number of characters needed
to be changed from one string to another, such as the hamming
distance between 1011 100 and 1001 000 is 2. Therefore,
hamming distance can measure the similarity between two
strings of equal length.

2.2.3. AGglomerative NESting
Hierarchical clustering attempts to divide the data at different
levels to form a tree-shaped cluster structure. The data collec-
tion can be divided by either a ‘bottom-up’ aggregation strategy
or a ‘top-down’ split strategy.

In this paper, we use a ‘bottom-up’ aggregation strategy
hierarchical clustering algorithm ‘AGglomerative NESting’
(AGNES). AGNES regards each sample in the data collection
as an initial cluster, and then finds the closest two clusters
and merges them in each step of the algorithm. This process
is repeated until the preset number of clusters is reached.
Generally, we can use three methods to calculate the distance
between clusters. For example, given the clusters Ci and
Cj, the following formulas can be used to calculate the
distance:

Minimum Distance : dmin(Ci, Cj) = min
x∈Ci,z∈Cj

dist(x, z) (1)

Maximal Distance : dmax(Ci, Cj) = max
x∈Ci,z∈Cj

dist(x, z) (2)

Average Distance : davg(Ci, Cj) = 1

|Ci||Cj|
∑
x∈Ci

∑
z∈Cj

dist(x, z)

(3)

.

The AGNES algorithm is described in Algorithm 1. In lines
1 to 9, the algorithm first initializes the initial cluster containing
only one sample and the corresponding distance matrix; then in
the 11th to 23rd lines, AGNES continuously merges the closest
clusters and updates the distances of the merged clusters. The
above process is repeated until the preset number of clusters is
reached.

2.2.4. TF-IDF
Some multi-keyword SSE schemes only support boolean
queries, that is, whether a document matches a query. In order
to improve search accuracy and reduce bandwidth cost, it
is necessary to rank the search results in the order of their
relevance to query keywords.

A natural method to measure relevance is to calculate
scores. We adopt the universally accepted TF-IDF rule for
measurement. TF-IDF includes two attributes-term frequency
and inverse document frequency. Term frequency (tft,f) refers
to the number of times the term t appears in document f .
Document frequency (dft) refers to the number of documents
containing term t and the inverse document frequency (idft)
is defined as idft = log N

dft
, where N is the number of all

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 5

FIGURE 1. System Framework.

documents. A low-frequency term tends to have a higher idft,
while a high-frequency term has a lower idft. The formula for
calculating the relevance score is as follows: tf -idf = tft,f ×idft.

3. MRSW SYSTEM

3.1. System Framework

In MRSW, as shown in Fig. 1, there are three entities: Data
Owner (DO), Data User (DU) and Cloud Server (CS). Both
the DO and DU are trusted. The CS is considered as ‘honest
and curious’. In other words, the CS will strictly implement the
protocol, and try to use its resources to obtain as much secret
information as possible.

DO is responsible for processing the original data, generat-
ing secure index and encrypted document set; CS receives and
stores the data from the DO, and performs the search operation
according to the DU’s request; DU is the user authorized by
DO and can search the data of DO stored in the CS.

Definition 3.1. (MRSW System). The MRSW system consists
of the following five algorithms.

• KeyGen(1n) → SK. This is a probabilistic key genera-
tion algorithm run by the DO. It takes as input a security
parameter n and outputs key SK.

• BuildIndex(D, SK) → (I, C). On input the key SK and
document set D, the DO runs the algorithm to generate
index I and encrypted document set C, and outsources
them to the CS.

• Trapdoor(Q, SK) → T . DU can use a multi-keyword
query Q (which may contain a wildcard keyword) to
retrieve documents of interest. For this purpose, the DU
generates a search trapdoor T and submits it to the CS.

• Query(T , I, C) → 〈id, Escore〉 . This is a determinis-
tic algorithm run by the CS. After receiving a trap-
door T , the CS performs the search on the index I and
finally returns the identifier-encrypted relevance score
pair 〈id, Escore〉 of each candidate document.

• Recovery(〈id, Escore〉 , SK) → 〈id, Score〉 . DU runs
this algorithm to decrypt Escore and get the identifier-
relevance score pair 〈id, Score〉 of each candidate docu-
ment. Furthermore, the CS can get the identifier of the
top-k documents by ranking according to the relevance
score.

3.2. Security Model

We extend the widely accepted simulated-based framework
captured by real-world versus ideal-world formalization [4, 21]
to the case of multi-keyword ranked search and then prove the
security of MRSW. Formally, the security says that only by
giving the output of the leakage function, the adversary’s view
can be simulated.

Definition 3.2. (Multi-keyword rank CKA2-Security). Let
� = (KeyGen, BuildIndex, Trapdoor, Query, Recovery) be
an MRSE scheme supporting a wildcard keyword contained
in a query as in definition 1.1, and consider the following
probabilistic experiments where A is an adversary, S is a
simulator, and L1 and L2 are (stateful) leakage functions:

Real�A(n) : the challenger begins by running KeyGen(1n)

to generate key SK. A outputs D and receives BuildIndex(D,
SK) → (I, C) from the challenger. A makes a polynomial
number of adaptive multi-keyword ranked queries and, for each
query Q, receives a trapdoor Trapdoor(Q, SK) → T from
the challenger. Finally, A returns a bit b that is output by the
experiment.

Ideal�A,S(n) : A outputs D. Given L1(D), S generates and
sends a pair (I, C) to A. A makes a polynomial number of
adaptive multi-keyword ranked queries and for each query Q,
S is given L(D, Q) and returns a trapdoor T . Finally, A returns
a bit b that is output by the experiment.

The � is (L1,L2)-secure against adaptive chosen-keyword
attacks (CKA2) if for all probability polynomial time (PPT)
adversaries A, there exists a PPT simulator S such that

|Pr[Real�A(n) = 1] − Pr[Ideal�A,S(n) = 1| ≤ negl(n),

where negl(n) is a negligible function in n.

4. MRSW SCHEME

4.1. KeyGen → SK

The algorithm includes the following two sub algorithms.

• KeyGen1(1n) → SK1. Given security parameter n, DO
randomly chooses the following uniformly from the
corresponding domains:

6 J. Liu et al.

1. an n-bit string sk as a symmetric key for a pseudo-
randomness against chosen plaintext attacks (PCPA)-
security symmetric key encryption (SKE) scheme;
2. a pseudo random function f : {0, 1}∗ × {0, 1}n →
{0, 1}n and r + 2 random keys with n-bits: K =
{k1, k2, ..., kr}, kw and ks.

The output of this algorithm is SK1 = {sk, K =
{k1, k2, ..., kr} , kw, ks}.

• KeyGen2(τ) → SK2. When the clustering number τ of
keywords is determined, DO randomly generates key set
SK2, including:

1. a τ -dimensional bit-vector S;
2. two τ × τ invertible matrices M1, M2.
Namely, SK2 = {S, M1, M2}.

Therefore, SK = (SK1, SK2).

4.2. BuildIndex → (I, C)

The algorithm can be run in the following steps.
Before constructing index, the DO firstly clusters key-

words.

• GenBF(W, K) → BF. First, the keyword set W =
{wi}1≤i≤n is extracted from document set D =
{di}1≤i≤m, and then construct the corresponding BF for
each wi ∈ W by extracting characteristics (We adopt the
same keyword characteristic extraction method as [14]).
The specific steps are as follows:

1. Initialize a BF for wi;
2. Assume that keyword wi includes h characters:
wi [1],...,wi [h], we can obtain a collection: Sindex ={
wi [1] ||1, ..., wi [h] ||h, wi [1] ||(−h), .., wi [h] ||(−1),

wi [1] ||0, ..., wi [h] ||0}
, i.e. it contains the positive order,

reverse order and existence of every character;
3. For each element s in Sindex, calculate its correspond-
ing PRF values {F(s, ki)}1≤i≤r and add the r values to
the BF, namely the positions of the r values are set to 1.

• GenClustering(W, τ) → CL. Firstly, regarding each
BF of each keyword as a binary bit string and using
the hamming distance between bit strings to measure
the similarity between keywords. Then, we can adopt
the AGNES algorithm to cluster keywords, where davg
is used as the cluster measurement function and the
number of clusters τ can be set according to our needs.
Finally, we can obtain the clustering result list CL =
{C1, C2, ..., Cτ }.
We give a concrete example to describe the above algo-
rithm, and we will still use this example when we need
to describe other algorithms later.

Example1 : Fig. 2 illustrates an example of clustering
keywords using the AGNES algorithm. We assume that
D contains six documents, W concludes 10 keywords
and the clusters number τ is set to 4.
Then, the DO generates index I and encrypted document
set C.

• GenDCBVector(D, CL, SK2) → I1. According to CL,
DO firstly generates a τ -dimensional Document Clus-
tering Bit vector (DCB-vector) VCdi for each di ∈ D.
Specifically, each component of the vector represents a
cluster of keywords. If the document contains one or
more keywords in the cluster, the corresponding com-
ponent is 1; otherwise it is 0. The set of generated DCB-
vectors is denoted as VCD = {

VCd1 , VCd2 , ..., VCdm

}
.

Then DO uses secure KNN to encrypt every DCB-vector
VCdi . Specifically, the encryption method is as follows:
DO first generates two random vectors

{
VCdi,1, VCdi,2

}
according to S. In detail, if S [j] = 0, VCdi,1 [j] =
VCdi,2 [j] = VCdi [j]; if S [j] = 1, randomly gen-
erate VCdi,1 [j] and VCdi,2 [j] so that the sum of the
two is VCdi [j]. Lastly, DO uses M1 and M2 to encrypt
VCdi,1 and VCdi,2, respectively, to generate index I1 ={
MT

1 VCdi,1, MT
2 VCdi,2

}
1≤i≤m.

• GenCBFTree(BF, F, kw) → I2. According to the key-
word clustering result, generate a Cluster Bloom Fil-
ter Tree (CBF-Tree). For simplicity of explanation, we
assume that τ is a power of 2. Specifically, DO first uses
the key kw to calculate the PRF value F(w, kw) of each
keyword in Q and uses this value as the unique identifier
of the keyword. Then as shown in Fig. 3:

1. According to the clustering process, divide the τ key-
word clusters into pairs of keyword clusters. Each leaf
node represents a cluster of keyword clusters and stores
the bitwise OR of BFs corresponding to all keywords in
this cluster.
2. Each leaf node is directly associated with the identifier
and BF of all keywords in this cluster.
3. Compute the bitwise OR of each pair of keyword
cluster (BF) and assign the result (BF) to the parent node
of the pair in the CBF-Tree.
4. Repeat step 3 for higher levels of the tree until the
root node is reached. Note that the BF of the root node
of CBF-Tree contains the BF corresponding to the entire
keyword set.

We denote the CBF-Tree as index I2.

• GenMII(D, W, F, ks) → I3. In order to realize the rank-
ing function of search result, as illustrated in Fig. 4,
DO builds a table similar to the inverted index, which
we call MII table, to record the encrypted relevance
score between the document and the keyword. Con-
cretely, the encrypted relevance scores are calculated as

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 7

FIGURE 2. Example of GenClustering.

follows:

1. Calculate the plaintext relevance score scorei,j(1 ≤
i ≤ n, 1 ≤ j ≤ m) between each keyword wi and each
document dj according to TF-IDF rule;
2. Use PRF F to encrypt each scorei,j into Escorei,j:

Escorei,j = scorei,j + F(i||idj, ks). (4)

We denote the MII as index I3.
• Enc(D, sk) → C. For 1 ≤ i ≤ m, let ci ←

SKE.Enc(sk, di) and C = {c1, c2, .., cm}.
Finally, DO uploads I = {I1, I2, I3} and C to the CS.

4.3. Trapdoor → T

The algorithm includes the following three sub algorithms.

• GenQCBVector(Qe, CL, SK2) → T1. According to
CL, DU firstly generates a τ -dimensional Query
Clustering Bit vector (QCB-vector) VCQe for exact
keyword set Qe. Specifically, each component of the
vector represents a cluster of keywords. If Qe contains

FIGURE 3. CBF-Tree.

FIGURE 4. MII.

one or more keywords in the cluster, the corresponding
component is 1, otherwise it is 0. Then use secure KNN
to encrypt plaintext QCB-vector VCQe . Similar to the
encryption of DCB-vector, the QCB-vector is split into
two random vector

{
VCQe,1, VCQe,2

}
. The difference is

that if S [j] = 1, VCQe,1 [j] = VCQe,2 [j] = VCQe [j];
otherwise, set VCQe,1 [j] and VCQe,2 [j] to two random
values that add up to VCQe [j]. Lastly, the trapdoor

T1 =
{

M−1
1 VCQe,1, M−1

2 VCQe,2

}
.

• GenBFqw(qw, K) → T2. For the wildcard keyword qw

in Q, DU generates the corresponding BF trapdoor as
follows:

1. For the query wildcard keyword qw, it can be repre-
sented as qw = qw [1] , qw [2] , ..., qw [i] , , qw [i + 2] , ...,
qw [j] , , qw

[j + 2] , .., qw [h];
2. Initialize Bloom filter BFqw for qw;
3. Generate a collection Strapdoor = {

qw [1] ||1, qw [2] ||2,
..., qw [i] ||i, qw [j + 2] ||(−(h − j − 1)), ..., qw [h] ||(−1),
qw [1] |0, qw [2] ||0, ..., qw [i] ||0, qw [i + 2] ||0, ..., qw [j]
||0, qw [j + 2] ||0, ..., qw [h] ||0}

. In other words, the set
S contains the positive order of the characters before
the first wildcard, the reverse order of the characters
after the last wildcard and the existence of all characters
except the wildcard.

8 J. Liu et al.

FIGURE 5. DCB-vectors and QCB-vector.

4. For each element s in Strapdoor, calculate its corre-
sponding PRF values {F(s, ki)}1≤i≤r and add the r values
of each element in Strapdoor to the BFqw , namely the
positions of the r values are set to 1.

We denote the BFqw as trapdoor T2.

• GenPRFValue(Qe, kw) → T3. For each q ∈ Qe, cal-
culate corresponding PRF value F(q, kw). The trapdoor
T3 = {

(F(q1, kw), F(q2, kw), ..., F(ql, kw))
}
. Finally, DU

sends T = {T1, T2, T3} to the CS.

4.4. Query → 〈id, Escore〉
Corresponding to the three-part Indexs and three-part Trap-
doors, we can divide the search process into three stages:
First, calculate the inner product of each DCB-vector and
the QCB-vector according to the index I1 and trapdoor T1 to
filter out the documents that are entirely impossible to match,
i.e. the identifiers set CID of the candidate documents can
be obtained. Second, use CBF-Tree and BFqw to search for
the PRF Values of the keywords that match with qw. Finally,
calculate the encrypted relevance score of each document in
the CID according to I3, T3 and the search result for step 2 and
send these scores to the user. DU decrypts these scores to obtain
the plaintext relevance scores and the ranking result.

The algorithm includes the following three sub algorithms.

• Filtering(I1, T1) → CID. Initialize a set CID = ∅.
With the trapdoor T1 and the index I1, CS computes the
inner product of each VCdi and VCQe as described in
the Equation 5. We can see that calculating the inner
product of encrypted vectors is equivalent to calcu-
lating the inner product of unencrypted vectors. For
each VCdi ∈ VCD, if VCdi · VCQe �= {0}τ , then idi
is added in the identifier set CID. Namely, CID ={
idi|VCdi · VCQe �= {0}τ ∧

idi ∈ ID
}
.

I1 · T1 = (MT
1 VCdi1) · (M−1

1 VCQe1) + (MT
2 VCdi2)

· (M−1
2 VCQe2)

= (MT
1 VCdi1)

T(M−1
1 VCQe1) + (MT

2 VCdi2)
T(M−1

2 VCQe2)

= VCT
di1M1M−1

1 VFQe1 + VFT
di2M2M−1

2 VFQe2

= VCdi1 · VCQe1 + VFdi2 · VFQe2

= VCdi · VCQe (5)

We explain this algorithm by Example1. We assume
Qe = {w1, w8, w10}. In Fig. 5, we present the
specific DCB-vectors and QCB-vector according to
GenDCBVector and GenQCBVector. Therefore, by
calculating the inner product of each VCdi and VCQe , we
can get CID = {id1, id2, id5, id6}.

• Search(I2, T2) → F(wη, kw). We follow the following
steps to search for keywords that match with the key-
word qw:

1. Starting from the root node, breadth first traversal
is performed on CBF-Tree. On each node i traversed,
check whether the BF of the node i in which all bits are
set to 1 in BFqw are 1;
2. If not, ignore all nodes in the subtree whose root node
is i in the following search, since there are no keywords
matching qw in this subtree.
3. Otherwise, go on to search from node i until all leaf
nodes whose corresponding BF in which all bits are set
to 1 in BFqw are 1 are searched.

Here, we assume that qw matches only one keyword in
the keyword dictionary. For the case of matching more
than one keyword, we use the same method to calculate
and finally take the maximum score value in all possible
cases. We mark the identifier of the matched keyword as
wη. That is, CS will search for the keyword PRF Value
Fw

(
wη, kw .

• EscoreCalculate(I3, T3, F(wη, kw)) → 〈id, Escore〉 .
For every idi ∈ CID, CS calculates the encrypted
relevance score of the corresponding document di as

Escorei =
∑

{k|F(wk ,kw)∈T3}
Escorek,i + Escoreη,i (6)

Therefore, CS can get the ID-Escore pairs list

〈id, Escore〉 = {〈idi, Escorei〉}idi∈CID

Finally, CS sends the 〈id, Escore〉 and F(wη, kw) to DU.

4.5. Recovery → 〈id, Score〉
The details of the algorithm are as follows.

• Recovery(Escore, Qe, F(wη, kw), kw, ks) → 〈id, Score〉 .
When DU receives F(wη, kw), he or she firstly uses
the key kw to decrypt F(wη, kw) to obtain the keyword
wη that matches qw. Then, use the key ks to decrypt
the encrypted relevance score to obtain the plaintext

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 9

relevance score

Scorei = Escorei −
∑

{j|qj∈Qe}
F(j||idi, ks) − F(η||idi, ks)

(7)

Therefore, DU can get the ID-Score pairs list

〈id, Score〉 = {〈idi, Scorei〉}idi∈CID

Then, DU can rank the documents according to the
relevance score and choose parameter k to request the
CS to return the top-k encrypted documents. Finally,
DU decrypts these documents with sk to obtain the
corresponding plain documents.

5. SECURITY ANALYSIS

We first describe the leakage profile of MRSW, and then give
the security theorem to show that this is all of the information
leaked by the scheme.
· (Leakage function L1) Given the set of documents D,

L1(D) = {
#D, [idi]

#D
i=1, |ci|#D

i=1, #W, |BF|, #BF[1], τ , [#Cj]
#CL
j=1

}

where #D represents the number of documents, idi denotes the
identifier of document di, |ci| denotes the size of encrypted
document ci, #W represents the number of keywords contained
in keyword dictionary, |BF| denotes the size of BF, #BF[1] is
the number of occurrences of bit 1 in the BF, τ represents the
number of keyword clusters and #Cj represents the number of
keywords in each cluster.
· (Leakage function L2) For the document set D and query Q,

L2(D, Q) = {
τ , #BFqw[1], Sp(Q), Ap(D, Q)

}

where τ denotes the number of keyword clusters, #BFqw[1]
denotes the number of occurrences of bit 1 in the BFqw , Sp(Q)

and Ap(D, Q) denote the search pattern and access pattern,
respectively.

We introduce the definitions of search pattern and access
pattern as follows:

Definition 5.1. (Search Pattern, Sp). Let Qi = {q1
i , q2

i ,, ql
i,

ql+1
i } be the i-th query keyword set,

{
(q1

1, q2
1,, ql

1, ql+1
1), (q1

2, q2
2,

...., ql
2, ql+1

2), ..., (q1
δ , q2

δ ,, ql
δ , ql+1

δ)
}

be the keyword set for δ

consecutive queries and i [j] represents the j-th keyword of i-th
query. Then, Sp [i [j] , p [r]] = 1 if qj

i = qr
p and Sp [i [j] , p [r]] =

0 otherwise for 1 ≤ i, p ≤ δ and 1 ≤ j, r ≤ l + 1.

Definition 5.2. (Access Pattern, Ap). For query Q, the access
pattern is definied as E(Q) = { 〈d1, Escore1〉 , 〈d2, Escore2〉 , ...,

〈ds, Escores〉
}
, which is the identifier set of candidate

document and its encrypted relevance score pair corresponding
to the search query.

Theorem 5.1. If SKE is PCPA-secure and F is a secure PRF,
then MRSW satisfies Multi-keyword rank CKA2-security.

Proof We prove the CKA2-security by showing the existing
of a PPT simulator S such that for each PPT adversary A, the
outputs of Real�A(n) and Ideal�A,S(n) are indistinguishable.

[Setup] Given L1(D) = {
#D, [idi]#D

i=1, |ci|#D
i=1, #W, |BF|,

#BF[1], τ , [#Cj]#CL
j=1

}
, S simulates the encrypted document set

and index as below. For encrypted documents, since SKE
is PCPA-secure, S only needs to choose m random values{
c∗

1, c∗
2, ..., c∗

m

}
such that |c∗

1| = |c1|, |c∗
2| = |c2|, ..., |c∗

m| = |cm|.
For index I1, since secure KNN is known plaintext attack (KPA)
secure, the index I1 is secure under the known ciphertext model.
For each document di, S generates two random τ -dimensional
vectors VCdi,1, VCdi,2 and let I1 = {

VCdi,1, VCdi,2
}m

i=1 . For
index I2, since the function F that generates the keyword
identifier is pseudo-random, S chooses n random numbers{
R1, R2, .., Rn

}
of n-bits as the identifier of the keywords. In

addition, S initializes a BF for each keyword. Since F is a PRF,
for each BF, S randomly chooses #BF[1] positions and sets
the bit of these positions to 1. Then cluster the keywords and
generate the corresponding CBF-Tree as index I2. For index I3,
since the identifiers of the documents can be obtained from the
L1(D), S can simply copy the list of identifier. The identifiers
of keywords have been obtained during the generation of I2.
Since the function F that generates the encrypted relevance
score is a PRF, S generates a n-bit random number Ri,j(1 ≤
i ≤ n, 1 ≤ j ≤ m) between each keyword and each document.
Therefore, the index I3 has been constructed.

[Simulating Search] GivenL2(D, Q)={
τ , #BFqw[1], Sp(Q),

Ap(D, Q)
}
, S simulates search process as follows. According

to the Sp, S first checks whether the encrypted query
clustering bit vector has appeared in the previous query, and
if so, generates the same encrypted query clustering vector;
otherwise randomly generates two τ -dimensional vectors as
the encrypted query clustering vector. Then, S checks whether
the wildcard keyword qw has been queried previously, and if
so, S sets the corresponding BF trapdoor to be the same as
before; otherwise, S randomly chooses #BFqw[1] positions of
BFqw and sets the bit of these positions to 1. Finally, S checks
whether the exact keyword has been queried; if so, it sets
the keyword identifier to match random numbers previously
used; otherwise, S generates a n-bit random number R as the
identifier of the keyword.

In short, the indistinguishability between the Real�A(n) and
Ideal�A,S(n) is obtained by the PCPA-secure of SKE, KPA-
secure of secure KNN and the indistinguishability of PRF from
random functions.

10 J. Liu et al.

TABLE 3. Default values of parameters.

Parameters τ m n l + 1

Values 256 2000 4000 16

FIGURE 6. Time cost of building index.

6. PERFORMANCE ANALYSIS

We estimate the performance of MRSW and compare it with
the MRSE_I_TF presented in [6]. The whole experiment is
run on centos-release-7-8.2003.0.el7.centos.x86_64 operating
system and is implemented by 8.3.1 (Red Hat 8.3.1-3) (GCC)
compile on a Linux Server with Intel(R) Xeon(R) Gold 6132
CPU@ 2.60 GHZ and 20.0G memory. The data set is built from

FIGURE 7. Time cost of generating trapdoor.

the Web of Science, including about 2500 documents and 5000
keywords extracted from these documents.

In Table 3, we list the required default parameters, where
τ , m, n, l + 1, respectively, represent the number of clusters,
documents, keywords and query keywords. Next, we use the
control variable method to evaluate the influence of the above
parameters on the time cost of index building, generating trap-
door and query (We note that there is no clustering of keywords
in MRSE, so we only evaluate the influence of τ on MRSW).

6.1. Index Construction

Fig. 6 is used to describe the efficiency of building index
with different conditions, including keyword clusters (τ), the
number of documents (m) and the number of keywords in the

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 11

FIGURE 8. Time cost of query.

dictionary (n). We did not test the effect of the number of query
keywords (l + 1) on the building index time, because the index
building is not influenced by l + 1.

Fig. 6a displays as τ increases, the time of building index of
MRSW decreases. Since we adopt a ‘bottom-up’ aggregation
strategy hierarchical clustering algorithm, it is evident that the
more clusters, the less time it takes.

Fig. 6b indicates that when m is fixed, the time of building
index of MRSW is longer than that of MRSE. And the time
of MRSE is almost linear with m. However, the growth rate
of MRSW is much lower than that of MRSE. This is because
in MRSE, the time of building index of each document is
fixed, but the time of building index of MRSW mainly depends
on τ . Therefore, when the document increases to a certain
number, the time of building index of MRSE will exceed
MRSW.

Fig. 6c shows as n increases, the time of building index
of MRSE and MRSW both increases. This is because the
dimension of index vector of MRSE and the clustering time
of MRSW both increase.

6.2. Trapdoor Generation

Fig. 7 describes the influence of different parameters, includ-
ing keyword clusters (τ), the number of keywords in the

dictionary (n) and the number of query keywords (l + 1),
on the efficiency of generating trapdoor. Since in MRSE and
MRSW, trapdoors are generated only in accordance with the
keyword dictionary and query keywords, it has nothing to do
with m, so we did not test the trapdoor generation time under the
different m.

From Fig. 7a, we can see with the growth of τ , the trapdoor
generation time of MRSW increases. This is because the num-
ber of keyword clusters is the dimension of trapdoor vector
and as the dimension increases, the trapdoor generation time
naturally increases.

From Fig. 7b, we can see that the trapdoor generation time
of MRSE is greatly affected by n. However, the trapdoor
generation time of MRSW remains stable and is close to 0 as
the n increases. This is exactly consistent with the theoretical
analysis. When n increases, the query vector’s dimension of
MRSE also extends, but the query vector’s size of MRSW is
equal to τ , which is unchanged.

From Fig. 7c, we can observe the change of n almost no effect
on the time cost of trapdoor generation of both MRSE and
MRSW. This is because the difference in the cost of generating
trapdoors in the two schemes is primarily affected by the
difference in the dimensionality of query vector. However, the
cost of MRSE to generate trapdoors is about 800 times that of
MRSW, which is significant of MRSW.

12 J. Liu et al.

6.3. Query

Fig. 8 describes the change of the query time when the keyword
clusters (τ), the number of documents (m), the number of key-
words in the dictionary (n) and the number of query keywords
(l + 1) change, respectively.

Fig. 8a shows the query time of MRSW increases as τ

increases. The reason is that the dimension of the index vector
and the number of layers of CBF-Tree both increase.

Fig. 8b presents as m goes up, the query time cost of both
MRSE and MRSW increase. However, the query time cost
and the cost growth rate of MRSW are significantly smaller
than those of MRSE. Because in MRSE, the relevance scores
of all documents need to be calculated, while in MRSW only
documents in the candidate document set are required.

Fig. 8c displays parameter n has little impact on the time cost
of query in MRSW. But n has a significant impact on MRSE.
The reason is the same as Fig. 7b.

Fig. 8d shows similar trapdoor generation as in Fig. 7c,
l + 1 also almost has no impact on the time of query of these
two schemes and the query efficiency of MRSW has a great
advantage over MRSE. The reason is also the same as in Fig.
7c.

7. CONCLUSION

We proposed an MRSE system MRSW. The query keyword set
may contain a wildcard keyword, which is more in line with the
user’s actual search needs. To reduce the possibilities of statis-
tical attack of the server, an MII table is generated to enable
the ranking to be performed on the user-side. Through rigorous
theoretical analysis, the security of MRSW under adaptive
chosen-keyword attacks model is proved. Experiments on a real
data set show the high efficiency of our MRSW.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable
request to the corresponding author.

CONFLICT OF INTEREST

Authors have no conflict of interest to declare.

FUNDING

This work is supported by the National Natural Science Foun-
dation of China (No.62072276, No.61772311).

REFERENCES

[1] Song, D.X., Wagner, D. and Perrig, A. (2000) Practical tech-
niques for searches on encrypted data. In Proceeding 2000 IEEE
Symposium on Security and Privacy. S&P 2000, pp. 44–55.
IEEE, Berkeley, CA, USA 14-17 May.

[2] Goh, E.-J.et al. (2003) Secure indexes. IACR Cryptol. ePrint
Arch., 2003, 216.

[3] Chang, Y.-C. and Mitzenmacher, M. (2005) Privacy preserving
keyword searches on remote encrypted data. In International
conference on applied cryptography and network security, pp.
442–455. Springer Berlin Heidelberg, New York, USA June.

[4] Curtmola, R., Garay, J., Kamara, S. and Ostrovsky, R. (2011)
Searchable symmetric encryption: improved definitions and
efficient constructions. Journal of Computer Security, 19,
895–934.

[5] Ning, C., Cong, W., Ming, L., Ren, K. and Lou, W. (2011)
Privacy-preserving multi-keyword ranked search over encrypted
cloud data. In INFOCOM 2011. 30th IEEE International Con-
ference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, pp. 829–837.
IEEE, Shanghai, China 10-15 April.

[6] Cao, N., Wang, C., Li, M., Ren, K. and Lou, W. (2013) Privacy-
preserving multi-keyword ranked search over encrypted cloud
data. IEEE Transactions on parallel and distributed systems, 25,
222–233.

[7] Yu, J., Lu, P., Zhu, Y., Xue, G. and Li, M. (2013) Toward
secure multikeyword top-k retrieval over encrypted cloud data.
IEEE transactions on dependable and secure computing, 10,
239–250.

[8] Chen, C., Zhu, X., Shen, P., Hu, J., Guo, S., Tari, Z. and Zomaya,
A.Y. (2015) An efficient privacy-preserving ranked keyword
search method. IEEE Transactions on Parallel and Distributed
Systems, 27, 951–963.

[9] Xia, Z., Wang, X., Sun, X. and Wang, Q. (2015) A secure and
dynamic multi-keyword ranked search scheme over encrypted
cloud data. IEEE transactions on parallel and distributed sys-
tems, 27, 340–352.

[10] Guo, C., Zhuang, R., Chang, C.-C. and Yuan, Q. (2019)
Dynamic multi-keyword ranked search based on bloom filter
over encrypted cloud data. IEEE Access, 7, 35826–35837.

[11] Wang, B., Yu, S., Lou, W. and Hou, Y.T. (2014) Privacy-
preserving multi-keyword fuzzy search over encrypted data in
the cloud. In IEEE INFOCOM 2014-IEEE Conference on Com-
puter Communications, pp. 2112–2120. IEEE, Toronto, ON,
Canada 27 April-2 May.

[12] Fu, Z., Wu, X., Guan, C., Sun, X. and Ren, K. (2016) Toward
efficient multi-keyword fuzzy search over encrypted outsourced
data with accuracy improvement. IEEE Transactions on Infor-
mation Forensics and Security, 11, 2706–2716.

[13] Cao, J., Zhu, J., Lin, L., Xue, Z., Ma, R. and Guan, H. (2019) A
novel fuzzy search approach over encrypted data with improved
accuracy and efficiency. arXiv preprint, arXiv:1904.12111.

[14] Hu, C. and Han, L. (2016) Efficient wildcard search over
encrypted data. International Journal of Information Security,
15, 539–547.

[15] Yang, Y., Liu, X., Deng, R.H. and Weng, J. (2017) Flexible
wildcard searchable encryption system. IEEE Transactions on
Services Computing, 13, 464–477.

[16] Sedghi, S., Van Liesdonk, P., Nikova, S., Hartel, P. and Jonker,
W. (2010) Searching keywords with wildcards on encrypted
data. In International Conference on Security and Cryptography
for Networks [S.l.], September, pp. 138–153. Springer Berlin,
Heidelberg.

Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword 13

[17] Bösch, C., Brinkman, R., Hartel, P. and Jonker, W. (2011)
Conjunctive wildcard search over encrypted data. In Workshop
on Secure Data Management [S.l.], September, pp. 114–127.
Springer Berlin, Heidelberg.

[18] Suga, T., Nishide, T. and Sakurai, K. (2012) Secure keyword
search using bloom filter with specified character positions. In
International Conference on Provable Security [S.l.], September,
pp. 235–252. Springer Berlin, Heidelberg.

[19] Zhao, F. and Nishide, T. (2016) Searchable symmetric encryp-
tion supporting queries with multiple-character wildcards. In

International Conference on Network and System Security
Cham, 28 September, pp. 266–282. Springer International
Publishing.

[20] Bloom, B.H. (1970) Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM, 13,
422–426.

[21] Chase, M. and Kamara, S. (2010) Structured encryption and con-
trolled disclosure. In International conference on the theory and
application of cryptology and information security Singapore,
5-9 December, pp. 577–594. Springer, Berlin, Heideberg.

	Multi-Keyword Ranked Searchable Encryption with the Wildcard Keyword for Data Sharing in Cloud Computing
	Introduction
	Notations and Preliminaries
	MRSW System
	MRSW Scheme
	Security Analysis
	Performance Analysis
	Conclusion

