
Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 1/29

aDORe: a modular, standards-based Digital Object Repository

Herbert Van de Sompel, Jeroen Bekaert, Xiaoming Liu, Luda Balakireva, Thorsten Schwander
Los Alamos National Laboratory, Research Library
{herbertv, jbekaert, liu_x, ludab, schwander}@lanl.gov

Abstract

This paper describes the aDORe repository architecture, designed and implemented for ingesting,
storing, and accessing a vast collection of Digital Objects at the Research Library of the Los
Alamos National Laboratory. The aDORe architecture is highly modular and standards-based. In
the architecture, the MPEG-21 Digital Item Declaration Language is used as the XML-based format
to represent Digital Objects that can consist of multiple datastreams as Open Archival Information
System Archival Information Packages (OAIS AIPs). Through an ingestion process, these OAIS
AIPs are stored in a multitude of autonomous repositories. A Repository Index keeps track of the
creation and location of all the autonomous repositories, whereas an Identifier Locator registers in
which autonomous repository a given Digital Object or OAIS AIP resides. A front-end to the
complete environment – the OAI-PMH Federator – is introduced for requesting OAIS
Dissemination Information Packages (OAIS DIPs). These OAIS DIPs can be the stored OAIS AIPs
themselves, or transformations thereof. This front-end allows OAI-PMH harvesters to recurrently
and selectively collect batches of OAIS DIPs from aDORe, and hence to create multiple, parallel
services using the collected objects. Another front-end – the OpenURL Resolver – is introduced for
requesting OAIS Result Sets. An OAIS Result Set is a dissemination of an individual Digital
Object or of its constituent datastreams. Both front-ends make use of an MPEG-21 Digital Item
Processing Engine to apply services to OAIS AIPs, Digital Objects, or constituent datastreams that
were specified in a dissemination request.

1. Introduction

When compared to most academic and research libraries, the Research Library of the Los Alamos
National Laboratory (LANL) follows a rather unique strategy with respect to providing access to
digital scholarly information. The general trend in digital library services is to have users access
externally hosted materials through third party services, federated through a locally hosted Web
Portal. In order to be self-supporting with respect to mission-critical scholarly information, the
LANL library acquires or licenses a vast collection of digital scholarly assets, hosts those assets
locally, and makes them accessible through locally developed user services. The locally hosted
assets include secondary data feeds from BIOSIS, Inspec, Thomson Scientific, and primary
information feeds from major scholarly publishers such as The American Physical Society, The
Institute of Physics Publishing, Elsevier, and Wiley.

At the time of writing the collection amounts to approximately 80,000,000 locally hosted assets. In
many cases these assets are complex in the sense that they consist of multiple individual datastreams
that jointly form a single logical unit. That logical unit can, for example, be a scholarly publication
that consists of:
• A research paper in both PDF and ASCII format,
• Metadata describing the paper and references made in the paper expressed in XML,
• Auxiliary datastreams such as images and videos in various formats, such as TIFF, JPEG and

MPEG.
For reasons of clarity, this paper will refer to an asset as a Digital Object, and to the individual
datastreams of which the asset consists as constituent datastreams.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 2/29

Hosting, archiving and making accessible such a vast and heterogeneous collection of Digital
Objects in a consistent and sustainable manner is a challenge that touches on many areas of digital
library practice and research, including the identification of Digital Objects and constituent
datastreams, the expression of relationships between Digital Objects, the representation of Digital
Objects by means of object models, and methods to ingest, store, and access Digital Objects.

Over the last 2 years, the Digital Library Research and Prototyping Team of the LANL Research
Library has worked on the design of the aDORe repository architecture aimed at ingesting, storing,
and making accessible to downstream applications an ever growing heterogeneous digital
collection. A first version of the design has been implemented and been brought into production,
while work is currently ongoing to implement a more robust second version.

While the aDORe design was inspired by requirements imposed by the LANL Research Library,
the authors feel that the architecture has properties that should be attractive for other repository
projects:
• Standards-based design: Throughout the architecture, standards or defacto standards are used.

These include W3C XML, W3C XML Schema, the MPEG-21 Digital Item Declaration
(MPEG-21 DID), the MPEG-21 Digital Item Identification (MPEG-21 DII), the MPEG-21
Digital Item Processing (MPEG-21 DIP), the Open Archives Protocol for Metadata Harvesting
(OAI-PMH), the NISO OpenURL Framework for Context-Sensitive Services, and the Internet
Archive ARC file format.

• Natively component-based, distributed design: The architecture operates on the basis of various
autonomous components; interaction with those components is protocol-based.

• The dynamic binding of dissemination methods to stored Digital Objects and constituent
datastreams.

Figure 1 introduces the major components of the aDORe architecture. All components are
explained in detail in the remainder of this paper; a summary is provided here:
The ingestion process is represented at the extreme right hand side, while downstream applications
that interact with the repository are situated at the extreme left hand side.
• At the right hand side, Figure 1 shows a multitude of Autonomous OAI-PMH Repositories [21].

Each of these autonomous repositories stores a collection of Open Archival Information System
[15] Archival Information Packages (OAIS AIPs) each of which represents a Digital Object
according to the MPEG-21 DID specification [17,43]. Section 2 is dedicated to detailing
aspects related to these Autonomous OAI-PMH Repositories.

• The Repository Index is shown below the Autonomous OAI-PMH Repositories. It is a registry
that keeps track of the creation and location of Autonomous OAI-PMH Repositories in the
aDORe environment. This component, which is also accessible through the OAI-PMH [21], is
detailed in Section 3.

• At the left center of Figure 1 is the Identifier Locator. For each OAIS AIP stored in aDORe,
this component contains the identifiers associated with the OAIS AIP itself and with the Digital
Object it represents. It also contains the location of the Autonomous OAI-PMH Repository in
which the OAIS AIP and hence the Digital Object reside. When multiple versions of the same
Digital Object exist, the Identifier Locator keeps track of all locations. The Identifier Locator
can be populated through batch loading or OAI-PMH harvesting. It can be queried in a variety
of ways, including the Handle protocol [36]. This component is described in Section 4.

• To the right of the Identifier Locator, Figure 1 shows the server-side MPEG-21 DIP Engine and
its associated components (DIBO/DIXO registry, DIM Inserter, DIP Table). These components
are introduced to facilitate the disseminations of stored OAIS AIPs, Digital Objects, and their
constituent datastreams. Section 5 provides insights in their operation.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 3/29

• At the top left, Figure 1 shows the OAI-PMH Federator. This components turns the complete
aDORe environment into a single OAI-PMH repository, thereby hiding all architectural details
and complexities from downstream harvesters. The OAI-PMH Federator becomes the single
point of access for off-the-shelf OAI-PMH harvesters that aim to collect batches of OAIS AIPs
from the aDORe environment. The OAI-PMH Federator interacts with other components of the
environment mainly using the OAI-PMH. It calls upon the MPEG-21 DIP Engine when
transformations of stored OAIS AIPs are requested, rather than the stored OAIS AIPs
themselves. Details are provided in Section 6.

• Finally, at the bottom left, Figure 1 shows the OpenURL Resolver. This component provides a
front-end to the aDORe environment from which various disseminations of an individual
Digital Object or its constituent datastreams can be obtained using requests that are compliant
with the NISO OpenURL standard [30]. The OpenURL Resolver interacts with other
components of the environment mainly using the OAI-PMH. It calls upon the MPEG-21 DIP
Engine to deliver the requested disseminations. The OpenURL Resolver is also described in
Section 6.

DIDs

OAI-PMH request

OAI-PMH request

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

LANL

A&I Publisher

publisher

Repository
Index

TechReport

A&I

A&I

baseU
R

L(3)
baseU

R
L(2)

baseU
R

L(1)

baseU
R

L(1)
baseU

R
L(2)

baseU
R

L(3)
baseU

R
L(x)

Identifier
Locator

DID

DID

DID

DID

DID

DID

FTXT

baseU
R

L(x)

Ingest

DID-id

baseURL(n) & DID-id A&I Publisher

O
p
e
n
U
R
L

R
esolver

O
A

I-P
M

H
 Federator

INDEX

Autonomous OAI-PMH repositories

OAI-PMH request

DID
&

DIM

DIBO/DIXO

MPEG-21
DIP

Engine

DIP table

DIM
inserter

OAI-PMH request

OAI-PMH
request

DID, IMS-CP,
XFDU, ...

OpenURL

transformed
content

Figure 1. The aDORe Architecture

2. Ingesting assets into the aDORe environment

2.1. Representing Digital Objects

The complex nature of the assets to be ingested into aDORe led to an investigation regarding
existing approaches to wrap constituent datastreams into a single wrapper structure that could
function as an Open Archival Information System [15] Archival Information Package (OAIS AIP).
This quickly led to an interest in representing assets by means of XML wrappers, which itself
resulted in the selection of the MPEG-21 Digital Item Declaration (MPEG-21 DID) [17,43] as the
sole way to represent assets as Digital Objects in aDORe. Several reasons motivated the choice of

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 4/29

MPEG-21 DID over competing specifications. As opposed to some other specifications, MPEG-21
DID defines a data model, which can be instantiated using various technologies. Currently, both a
binary instantiation, and an instantiation based on XML Schema exists, but one could imagine the
definition of, for example, an RDF-based instantiation in the future. This approach allows for
implementing solutions across various and evolving technical environments while maintaining
basic architectural concepts. Also, MPEG-21 DID takes an approach that enforces cross-
community interoperability, while allowing the flexibility for the emergence of compliant,
community-specific profiles. The XML Schema instantiation is surprisingly elegant and simple,
making the development of tools quite straightforward. Furthermore, the combination of MPEG-21
DID with the MPEG-21 Digital Item Identification (MPEG-21 DII) results in an unambiguous way
to handle identifiers, a core feature that is remarkably absent in other specifications. And,
importantly, MPEG-21 DID is an ISO standard developed by major players in the content and
technology industry, which provides some guarantees regarding its adoption, and the emergence of
compliant tools.

MPEG-21 DID introduces a set of abstract concepts that, together, form a well-defined Abstract
Model for declaring Digital Objects. Based on those abstract concepts, MPEG-21 DID defines the
Digital Item Declaration Language (MPEG-21 DIDL), an XML representation of the MPEG-21
DID Abstract Model that provides broad flexibility and extensibility for the XML-based
representation of Digital Objects. A Digital Object represented according to the MPEG-21 DIDL
XML syntax is called a DIDL document. Interested readers are referred to [4] for more information
on MPEG-21 DID. A simplified explanation of the MPEG-21 DID Abstract Model is given below;
it is also illustrated in Figure 2. The model recognizes several MPEG-21 DID entities (written in
italic font style), each of which has a corresponding XML element in the DIDL XML Schema [43].
The courier font is used to refer to XML elements.
• A container is a grouping of containers and/or items.
• An item is the declarative representation of a Digital Object. It is a grouping of items and/or

components.
• A component is a grouping of resources. Multiple resources in the same component are

considered bit-equivalent and consequently it is left to an agent to select which one to use.
• A resource is an individual datastream.
• Secondary information pertaining to a container, an item, or a component can be conveyed by

means of a descriptor/statement construct.

container

item

item

component

resourceresource

component

resource

descriptor/statement

descriptor/statement

descriptor/statement

descriptor/statement

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 5/29

Figure 2. Example of a document structure conformant with the MPEG-21 DID specification

At LANL, Digital Objects to be stored in aDORe can, in principle, be obtained in a variety of ways
including FTP, OAI-PMH resource harvesting [42], Web crawling and delivery on physical media.
An ingestion process has been developed that represents each Digital Object according to the
MPEG-21 DID specification. Hereby, a DIDL XML document is created that functions as the
OAIS AIP that represents the Digital Object. This OAIS AIP is generated as follows:
• Each Digital Object is mapped to a top-level DIDL Item element. Constituent datastreams are

provided in child elements of this top-level Item. An identifier of the Digital Object is expected
at this level.

• A constituent datastream of a Digital Object is provided in a Component/Resource construct.
Such constructs are themselves embedded in a sub-Item of the top-level Item, or in the top-
level Item itself, depending on whether or not they have identifiers in their own right.

• For pragmatic reasons, explained in Section 6, related to dissemination of OAIS AIPs, the top-
level Item is embedded in a Container element.

• The top-level Item and its parent Container element are then embedded in the DIDL root
element to obtain a DIDL XML document that is the OAIS AIP that represents the Digital
Object.

An important, OAIS-inspired, characteristic of the aDORe environment is that whenever a new
version of a previously ingested Digital Object needs to be ingested, a new DIDL document is
created for it. Existing DIDL documents are never updated or edited. A new version of a Digital
Object may, for example, become available because an information provider delivers an updated
copy, or because a digital preservation strategy requires the migration of a file format used in the
Digital Object. As will be shown, the Identifier Locator keeps track of all versions of a Digital
Object.

A DIDL document can physically contain or reference the constituent datastreams of the Digital
Object that it represents. The DIDL document also contains identifiers, as well as information such
as collection membership, XML Signature constructs, media format information pertaining to
constituent datastreams, and provenance information. The actual use of the MPEG-21 DIDL in the
LANL Repository, and the LANL DIDL profile is described in some detail in the slightly outdated
[1] and the more recent [4].

Annex A shows the DIDL document that represents the sample Digital Object – a scholarly paper –
as shown in Table 1.

 Type MIME identifier
Digital Object scholarly paper N/A DOI

Constituent Datastream 1 metadata record application/xml PMID
Constituent Datastream 2 fulltext file application/pdf –

Table 1. Building blocks of the sample Digital Object

2.2. Identifying DIDL documents, Digital Objects and constituent datastreams

A good understanding of the meaning and use of identifiers in the aDORe environment is crucial to
understand its very design. aDORe uses two parallel identification mechanisms that are described
below. Figure 3 illustrates the identifier approach by means of our sample Digital Object:

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 6/29

• Content Identifiers. Content Identifiers corresponds to what the OAIS [15] categorizes as
Content Information Identifiers. Content Identifiers are directly related to identifiers that are
natively attached to Digital Objects before their ingestion into aDORe. In many cases such
Digital Objects, or their constituent datastreams, have identifiers that were associated with them
when they were created or published. Content Identifiers in aDORe are expressed as URIs. For
the above sample Digital Object, the following Content Identifiers exist:

• The Digital Object has a Digital Object Identifier [21]. This is expressed as a URI using
the proposed info URI scheme [40] to obtain the Content Identifier
‘info:doi/10.123/44455’.

• The metadata record that describes the paper has a PubMed identifier. This is expressed
as a URI using the proposed info URI scheme to obtain the Content Identifier
‘info:pmid/2225887’.

• The paper in PDF format itself does not have a Content Identifier.

During the ingestion process, a Descriptor/Statement construct attached to the top-level
Item is used to convey the Content Identifier of the Digital Object, using the Identifier
element of the MPEG-21 DII XML Namespace [3,18]. This can be seen in the sample Digital
Object of Annex A, where the top-level Item has Content Identifier ‘info:doi/10.123/44455’.
As previously mentioned, the ingestion process will create sub-Items for all constituent
datastreams of a Digital Object that have Content Identifiers. This can be seen in the sample
Digital Object of Annex A, where a sub-Item contains the metadata that describes the
scholarly paper; the Content Identifier of the metadata – ‘info:pmid/2225887’ – is again
conveyed using the Identifier element of the MPEG-21 DII XML Namespace. Because the
PDF file does not have a Content Identifier, the ingestion process maps it to a Component
element for which no Identifier element is provided. That Component element is a child of
the top-level Item.

• Package Identifiers. A DIDL document that represents a Digital Object functions as an OAIS

AIP in aDORe. During the ingestion process, this DIDL document itself is accorded a globally
unique identifier, which the OAIS categorizes as an Archival Information Package Identifier.
This Package Identifier is conveyed by means of the DIDid attribute from the LANL DIEXT
Namespace, attached to the DIDL root element. Values are constructed using the UUID
algorithm [22]; they are expressed as URIs in a reserved sub-namespaces of the ‘info:lanl-repo/’
namespace, which the LANL Research Library has registered under the info URI Scheme [40].
Also, during the ingestion process, Container, Item and Component elements receive globally
unique XML IDs, again created using the UUID algorithm. As a result, these XML elements
become globally addressable using a combination of the Package Identifier of the DIDL
document in which they are contained, and their own XML ID. In our sample Digital Object,
this addressing mechanism is as follows (for readability, UUID values have been shortened):

• The Package Identifier of the DIDL document which represents the Digital Object:
info:lanl-repo/i/58f202ac

• The Item that represent the Digital Object has XML ID ‘uuid-00005e90’. As a result, it
can be addressed as ‘info:lanl-repo/i/58f202ac#uuid-00005e90’. As was shown, using
Content Identifiers, it can also be addressed as ‘info:doi/10.123/44455’.

• The sub-Item for the constituent metadata datastream of the Digital Object has XML ID
‘uuid-8881b35e’. As a result, it can be addressed as ‘info:lanl-repo/i/58f202ac#uuid-
8881b35e’ [11]. As was shown, using Content Identifiers, it can also be addressed as
‘info:pmid/2225887’.

• The Component that contains the paper in PDF format has XML ID ‘uuid-00004a42’.
Hence, it can be addressed as ‘info:lanl-repo/i/58f202ac# uuid-00004a42’. It can not be
addressed using a Content Identifier.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 7/29

OAIS CONTENT PERSPECTIVE

ID="uuid-0000a01c"

OAIS PACKAGE PERSPECTIVE

DIDid="info:lanl-repo/i/58f202ac"

ID="uuid-00005e90"

<Item>

ID="uuid-888b135e"

ID="uuid-00004a42"

item

<Item>

<Component>

<Component>

<DIDL>

item

component

component

info:doi/10.123/44455

info:pmid/2225887

PACKAGE IDENTIFIER CONTENT IDENTIFIER

Figure 3. Content Identifiers and Package Identifiers provide parallel identification mechanisms

2.3. Storing Digital Objects in Autonomous OAI-PMH Repositories and ARC files

The ingestion process turns each delivered Digital Object into a DIDL document. Typically, these
DIDL documents physically contain constituent XML-based metadata datastreams of the Digital
Object inline. To keep the size of the DIDL documents small, and hence to make them easier to
process, other constituent datastreams of the Digital Object are provided by reference and are
physically stored in Internet Archive ARC files [5]. Each DIDL document itself is stored in one of
many Autonomous OAI-PMH Repositories that exist in the aDORe environment.

The Open Archives Protocol for Metadata Harvesting (OAI-PMH) is a low-barrier, HTTP-based
protocol. It has been specified to allow incremental harvesting of XML metadata. An OAI-PMH
repository is a network accessible server that can process the 6 OAI-PMH protocol requests, and
respond to them as specified by the protocol document. A harvester is an application that issues
OAI-PMH protocol requests, in order to harvest XML metadata. The OAI-PMH is based on a data
model that helps specifying the semantics of the 6 protocol requests. That data model is depicted in
Figure 4, for cases where the resource about which an OAI-PMH repository exposes metadata, is
digital content. In what follows, OAI-PMH entities are written in italic, while OAI-PMH protocol
requests are written in courier:
• At the very top is a digital resource (a PDF file, for example) about which an OAI-PMH

repository exposes metadata. Note that the digital resource can also be compound, i.e. consist
of multiple datastreams. By definition, resources themselves are outside of the scope of the
OAI-PMH.

• Listed below the resource is the item. The item is the highest-level entity within the scope of
the OAI-PMH. In essence, the item is the entry point to all available metadata pertaining to a
resource. In the protocol, the item is uniquely identified by an OAI-PMH identifier.

• Below the item, several records are shown. Records contain metadata (and secondary
information about that metadata). A specific record in the OAI-PMH is unambiguously
identified by means of the combination of the OAI-PMH identifier (of the item), the

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 8/29

metadataPrefix that specifies the metadata format used for the dissemination of the metadata,
and the OAI-PMH datestamp of the metadata. The datestamp is the date and time of creation
or modification of metadata. Note that the datestamp is a property of the metadata record, not
of the item as used to be the case in previous protocol versions [21]. This reflects the fact that
metadata of various metadata formats may be made available and may be modified
independently, thus having different datestamps.

• The OAI-PMH also defines a set – not depicted in Figure 4 – as an optional construct for
grouping items for the purpose of selective harvesting. Repositories may organize items into
sets. set organization may be flat, i.e. a simple list, or hierarchical. Multiple, parallel, set
structures may exist.

OAI-PMH identifier =
entry point to all records pertaining to the OAI-PMH resource

MARCXML
metadata

Dublin Core
metatada

MPEG-21 DIDL
document

OAI-PMH
item

highly
expressive

more
expressiveminimalist

OAI-PMH
records

resource

Figure 4. The OAI-PMH data model

The OAI-PMH defines 3 supporting protocol requests that are aimed at helping a harvester
understand the nature of an OAI-PMH Repository:
• Identify: this verb is used to retrieve information about a repository; an important information

element returned in the response to the Identify request is the granularity of the datestamp
supported by the repository (day-level or seconds-level).

• ListMetadataFormats: this verb is used to retrieve the metadata formats available from a
repository.

• ListSets: This verb is used to retrieve the set structure of a repository. This information is
useful for selective harvesting.

The OAI-PMH defines 3 further protocol requests that are aimed at the actual harvesting of XML
metadata:
• ListRecords: this verb is used to harvest records from a repository. Optional arguments permit

selective harvesting of records based on set membership and/or datestamp.
• GetRecord: This verb is used to retrieve an individual record from a repository. Required

arguments specify the identifier of the item from which the record is requested and the metadata
format of the metadata that should be included in the record.

• ListIdentifiers: This verb is an abbreviated form of ListRecords, retrieving only
identifiers, datestamps and set information.

Due to its origins in the realm of resource discovery, the OAI-PMH mandates the support of the
Dublin Core [30] metadata format, but strongly encourages supporting more expressive formats.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 9/29

As a result, any metadata format can be used as long as it is defined by means of an XML Schema
[10]. In typical use cases, the exposed metadata is descriptive, and is expressed by means of
metadata formats of varying complexity, such as simple Dublin Core, or MARCXML [24]. The
Autonomous OAI-PMH Repositories in aDORe, however, support metadata that are highly
expressive and accurate in their representation of Digital Objects by using MPEG-21 DIDL as a
metadata format, and hence by exposing DIDL documents as metadata to harvesters.

Each such Autonomous OAI-PMH Repository has the following characteristics:
• It has a unique, persistent baseURL, the http address BaseURL(n).
• Contained records are DIDL documents only.
• The identifier used by the OAI-PMH is the Package Identifier.
• The datestamp used by the OAI-PMH is the creation DateTime of the DIDL document.
• The only supported metadata format is DIDL, with metadataPrefix DIDL, defined by the

MPEG-21 DIDL XML Schema.
• The supported OAI-PMH harvesting granularity is seconds-level.
• Set structures may be supported, but to reduce complexity this aspect will not be discussed in

this paper.

As a result, harvesters operated by downstream service providers – such as indexing engines – can
use the selective harvesting capabilities of the OAI-PMH (datestamp and set) to recurrently
collect OAIS AIPs from the Autonomous OAI-PMH Repositories. Because OAIS AIPs are never
updated, incremental harvesting will yield newly added OAIS AIPs only.

At LANL, information providers typically deliver sizable batches of additions or updates on a
periodic basis. In those cases, an Autonomous OAI-PMH Repository is created per delivered batch,
and a special-purpose storage mechanism – the XMLtape - is used. An XMLtape is a valid and
well-formed XML file that concatenates a large batch of DIDL documents. Special-purpose
software has been created that turns an XMLtape into an OAI-PMH repository [44]. The usage of
the combination of XMLtapes and Internet Archive ARC files as a means to store ingested Digital
Objects is described in [37].

3. A registry of Autonomous OAI-PMH Repositories: The Repository Index

As has been shown, updates can be harvested from the Autonomous OAI-PMH Repositories.
However, the question remains unanswered as to how harvesters learn about the existence, addition
of, and location of these Autonomous OAI-PMH Repositories. In order to provide this crucial
intelligence, the Repository Index is introduced.

The Repository Index contains an entry for each Autonomous OAI-PMH Repository in the aDORe
environment, containing the following information:
• The repository baseURL: The baseURL of an Autonomous OAI-PMH Repository, which is a

unique and persistent URI.
• The repository creation DateTime: The time when the Autonomous OAI-PMH Repository

became harvestable, by its very appearance in the Repository Index. This time is expressed as
an ISO 8601 [14] DateTime with seconds granularity.

• Metadata pertaining to the creation of the Autonomous OAI-PMH Repository, the nature of its
content, etc.

It cannot be overlooked that the first two information elements of the Repository Index map directly
to the notions of the identifier and the datestamp of the OAI-PMH, respectively. And, indeed,

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 10/29

in aDORe, the Repository Index is exposed as an OAI-PMH repository in its own right, with the
following properties:
• It has a unique, persistent baseURL, the http address BaseURL(Repo-Index).
• Contained records comply with a locally defined XML-based metadata format, identified by

metadataPrefix INDEX, which facilitates the expression of the necessary metadata about
Autonomous OAI-PMH Repositories.

• The identifier used by the OAI-PMH is the repository-baseURL BaseURL(n).
• The datestamp used by the OAI-PMH is the repository creation DateTime. There are no

updates to metadata contained in the Repository Index, and hence this datestamp will never
change and always remain equal to the time the Autonomous OAI-PMH Repository became
available for harvesting in the aDORe environment.

• The supported OAI-PMH harvesting granularity is seconds-level.
• set structures may be supported, but to reduce complexity, this aspect will not be discussed in

this paper. Typically, set structures would be used in the Repository Index to broadly
categorize the nature or content of Autonomous OAI-PMH Repositories.

4. Locating DIDL documents, Digital Objects, and constituent datastreams: The
Identifier Locator

Harvesters working on behalf of service providers collect DIDL documents from the aDORe
environment, and build services with the contained Digital Objects. As a result, identifiers
contained in the harvested DIDL documents become available in applications such as search
engines. As explained in Section 2.2, these identifiers can either be Package Identifiers identifying
DIDL documents or contained DIDL XML elements, or Content Identifiers identifying Digital
Objects or constituent datastreams. It is essential that, when such identifiers show up in downstream
applications, the identified resource can be retrieved from the aDORe environment. For this purpose
the Identifier Locator is introduced. The Identifier Locator collects the following identifier-related
information from the aDORe environment:
• For OAIS AIPs: The Package Identifier of each OAIS AIP in the aDORe environment, and for

each Package Identifier the baseURL of the Autonomous OAI-PMH Repository in which the
OAIS AIP with the given Package Identifier resides. In Table 2, ‘info:lanl-repo/i/58f202ac’ and
‘info:lanl-repo/i/002035b2’ are Package Identifiers of DIDL documents located in the OAI-
PMH repository with baseURL ‘BaseURL(3)’ and ‘BaseURL(6)’, respectively. The first entry
of Table 2 is obtained from our sample DIDL document.

• For Digital Objects and their constituent datastreams: The Content Identifier of each Digital
Object and constituent datastream stored in the aDORe environment. For each such Content
Identifier, the Package Identifiers (including XML ID) of all OAIS AIPs that contain a Digital
Object or constituent datastream with the given Content Identifier. In Table 3, Content
Identifiers ‘info:doi/10.123/44455’ and ‘info:lanl-repo/biosis/abcdef’ identify resources
contained in the DIDL documents with Package Identifier ‘info:lanl-repo/i/58f202ac’ and
‘info:lanl-repo/i/002035b2’, respectively. Within these DIDL documents, the XML elements
that contain resources with the aforementioned Content Identifiers have XML IDs ‘uuid-
00005e90’, and ‘uuid-00007y55’, respectively. Table 3 also shows that the resource with
Content Identifier ‘info:pmid/2225887’ is represented by two OAIS AIPs with Package
Identifiers ‘info:lanl-repo/i/58f202ac’ and ‘info:lanl-repo/i/12e303be’, respectively, indicating
the existence of different versions. As can be seen, the first two entries in Table 3 are obtained
from our sample DIDL document.

Package Identifier OAI-PMH repository

info:lanl-repo/i/58f202ac BaseURL(3)

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 11/29

info:lanl-repo/i/002035b2 BaseURL(6)

Table 2. Package Identifier module of the Identifier Locator

Content Identifier Package Identifier XML ID
info:doi/10.123/44455 info:lanl-repo/i/58f202ac uuid-00005e90

info:pmid/2225887 info:lanl-repo/i/58f202ac uuid-8881b35e
info:lanl-repo/biosis/abcdef info:lanl-repo/i/002035b2 uuid-00007y55

info:pmid/2225887 info:lanl-repo/i/12e303be uuid-875646ae

Table 3. Content Identifier module of the Identifier Locator

By default, the Identifier Locator is populated through recurrent OAI-PMH harvesting from the
Autonomous OAI-PMH Repositories, but for cases that involve massive ingestion of Digital
Objects, a faster batch loading mechanism has been implemented. The Identifier Locator is
accessible to downstream applications via the Handle protocol [36]; an SRW [27] SOAP-based [12]
interface will be implemented later. Through consultation of the Identifier Locator, an application
can obtain the information necessary to use the OAI-PMH to retrieve the DIDL document with a
specified Package Identifier, or the DIDL document in which a resource with a specified Content
Identifier resides. This works as follows:
• If the resource with identifier ‘info:lanl-repo/i/58f202ac’ is requested, a look-up in the Identifier

Locator will learn that it is a DIDL document with Package Identifier ‘info:lanl-
repo/i/58f202ac’ that is located at ‘BaseURL(3)’. This DIDL document can be obtained by
issuing the OAI-PMH request [BaseURL(3)?verb=GetRecord&identifier=info:lanl-
repo/i/58f202ac&metadataPrefix=DIDL]

• If the resource with identifier ‘info:lanl-repo/i/58f202ac#uuid-00005e90’ is requested, a look-up
in the Identifier Locator will learn that the identified resource is an XML element contained in
the DIDL document with Package Identifier ‘info:lanl-repo/i/58f202ac’. Furthermore, the
lookup will learn that this DIDL document is located at ‘BaseURL(3)’. Again, that DIDL
document can be obtained by issuing the OAI-PMH request
[BaseURL(3)?verb=GetRecord&identifier=info:lanl-repo/i/58f202ac
&metadataPrefix=DIDL], and from the resulting DIDL document, the XML element with
XML ID ‘uuid-00005e90’ can be extracted.

• If the resource with identifier ‘info:lanl-repo/biosis/abcdef’ is requested, a look-up in the
Identifier Locator will learn that it is available from a DIDL document with Package Identifier
‘info:lanl-repo/i/002035b2’, and that – in this DIDL document – it has the XML ID ‘uuid-
00007y55’. A look-up of this Package Identifier learns that the corresponding DIDL document
is located at ‘BaseURL(6)’. This DIDL document can be obtained by issuing the OAI-PMH
request [BaseURL(6)?verb=GetRecord&identifier=info:lanl-
repo/i/002035b2&metadataPrefix=DIDL] , and from the resulting DIDL document, the XML
element with XML ID ‘uuid-00007y55’ can be extracted. This approach allows for a mapping
of Content Identifiers to Package Identifiers.

5. Applying services to DIDL documents, Digital Objects and constituent
datastreams: The MPEG-21 Digital Item Processing Engine

In order to facilitate delivery of various disseminations of stored DIDL documents, Digital Objects,
and constituent datastreams, a separate component is introduced in the aDORe environment. This
component – the Digital Item Processing Engine - operates according to the current version of the
MPEG-21 Digital Item Processing (MPEG-21 DIP) specification [8], which remains to be
standardized. By MPEG-21 definition, an MPEG-21 DIP Engine is capable of applying services to

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 12/29

a Digital Object, or to its constituent datastreams. At the time of writing, the MEPG-21 DIP
specification does not detail how to apply services to a complete DIDL document. Because the
aDORe environment requires this capability, a pragmatic solution – described in Section 5.2. – has
been introduced, awaiting a standardized solution from a future version or amendment on the
MPEG-21 DIP specification.

5.1 Conveying processing information: MPEG-21 Digital Item Methods

MPEG-21 Digital Item Processing (MPEG-21 DIP) specifies an architecture pertaining to the
dissemination of the container, item, and component entities of the MPEG-21 DID Abstract Model.
To that end, this tenth MPEG-21 Part introduces the concept of a Digital Item Method (DIM),
which is conceptually closely related to Fedora’s ‘behavior’ concept [34,35]. A DIM is physically
contained in the same DIDL document as the entity of the MPEG-21 DID Abstract Model with
which it is associated. In the current, pre-standard, practice a DIM is typically accommodated in a
Component element which must contain at least 2 other child constructs:
• A Resource element that contains or references the actual method. In MPEG-21 DIP, the DIM

code is expressed using a language that is largely based on the ECMAScript Language [16]. As
will be explained in the section on the MPEG-21 DIP Engine, this ECMAScript does not
contain all the actual code required to implement the service. Rather, the ECMAScript is used to
bootstrap and coordinate the implementation of the service. It contains calls to operations that
do the real work.

• A Descriptor/Statement construct that contains a sequence of Argument elements from the
MPEG-21 DIP XML Namespace, one per argument of the DIM. The value of an Argument
element always identifies an XML element of a DIDL document.

A DIM is associated with an XML element of a DIDL document using the objectType/Argument
technique, also explained in the slightly dated [1]:
• Using a special-purpose Descriptor/Statement construct, an MPEG-21 DID entity

(Container, Item, Component) can be accorded an ObjectType element from the MPEG-21
DIP XML Namespace.

• Using another special-purpose Descriptor/Statement construct, a DIM can be accorded an
Argument element, also from the MPEG-21 DIP XML Namespace.

• When, in a DIDL document, the value of an ObjectType element of an MPEG-21 DID entity
(Container, Item, Component), and the value of the Argument of a DIM are equal, then the
DIM can be applied to that MPEG-21 DID entity.

This approach is highlighted in the DIDL document shown in Annex B, in which a service is
associated with a Component through the value ‘urn:uuid:8f64eabf’. That value is used as the
content of both the ObjectType element of the Component, and the Argument element of the DIM.
The MPEG-21 DIP specification allows entities to have more than one ObjectType. Also, a DIM
can bind to more than one entity by using multiple Argument elements, each of which connects via
the ObjectType to the entities.

5.2 Dynamically associating services with DIDL documents, Digital Objects and
constituent datastreams: Placeholders and DIP Table

As can be understood from the above, the MPEG-21 DIP Engine introduces the capability to deliver
various disseminations of a stored Digital Object and of its constituent datastreams in the aDORe
environment. Unfortunately, at the time of writing, the MPEG-21 DIP Engine specification does
not pertain to services applied to a DIDL document itself. Such services are important in the
aDORe environment to allow the dissemination of transformations of stored DIDL documents.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 13/29

Transformations of practical use include the mapping of DIDL to other complex object formats
such as METS [25] and IMS-CP [13], and the transformation of stored DIDL documents to XML
documents that contain identifier-related information only, which can readily be used to populate
the Identifier Locator. Awaiting the inclusion in the MPEG-21 DIP specification of capabilities to
apply services to complete DIDL documents, a pragmatic solution has been introduced in aDORe
that consists of conveying all such services at the level of a container element that is artificially
included in all DIDL documents during ingestion.

In aDORe, DIMs are not embedded in the DIDL documents that are stored in the Autonomous
OAI-PMH Repositories. Embedding DIMs would yield a need to frequently update the stored
DIDL documents to add new or to edit existing DIMs as new processing methods emerge, or as
existing ones are updated. Given the anticipated size of aDORe, the administrative overhead in
doing so would be extensive if not forbidding. Also, the need to regularly ‘touch’ stored DIDL
documents is a poor fit with the rather static nature of the content currently stored in aDORe, and
with the previously described strategy to create new DIDL documents – instead of updating existing
ones – when some form of editing has been performed. Therefore, aDORe handles the inclusion of
DIMs dynamically, based on the content of DIDL documents. In the current implementation of this
approach, ‘placeholders’ for DIMs, instead of actual DIMs, are embedded in stored DIDL
documents during the ingestion process. When the dissemination of a stored DIDL document is
requested, the DIM Inserter module dynamically adds DIMs to that DIDL document in a process
that is based on the values of the placeholders contained in the DIDL document. The result is a so-
called Completed DIDL document (see Annex B), which contains all resources that are present in
the stored DIDL document, as well as all associated methods. It is worthwhile noting that the DIM
Inserter to some extent resembles the ‘context broker’ mechanism described in [9].

Placeholder values are conveyed in DIDL documents via a format element from the Dublin Core
Element Set [29]. Placeholders can be attached at the container, item, and component level of a
DIDL document:
• As described earlier, at the container level, the placeholder is provided to allow the association

of methods aimed at transforming complete DIDL documents. The placeholder value is the
same for all stored DIDL documents. Again, it should be noted that passing on information
pertaining to the DIDL document via descriptor/statement constructs at the container level is
not compliant with the MPEG-21 DID model. As such, this application-specific container-
based solution will be deprecated as soon as MPEG-21 DIP standardizes a mechanism to
associate services with complete DIDL documents.

• At the item level, the placeholder conveys to which ‘family’ the DIDL document belongs.
‘Family’ information is closely related to the ingestion process. For example, the placeholder
value ‘info:lanl-repo/pro/ai’ shown in Table 3 is used to convey that the Digital Object
represented by a DIDL document is a descriptive metadata record.

• At the component level, the placeholder specifies a globally unique identifier for the digital
format of the contained datastream. Currently, local identifiers are used that closely relate to
MIME content types, but, once established, identifiers from the Global Format Registry [1]
could be used. An example is shown in the second entry of Table 4.

The actual insertion of DIMs in a DIDL document is achieved through a look-up in a special-
purpose registry – the DIP Table. The DIP Table lists all services that can be associated with DIDL
documents, Digital Objects and contained datastreams stored in aDORe. In the DIP Table, each
service has a Service Identifier. Also, for each service, the DIP Table contains a placeholder value –
as used in the DIDL documents – with which the service is associated. For example, the first 2
entries of Table 4 shows that the service with Service Identifier ‘info:lanl-
repo/service/table_of_contents’ is associated with all MPEG-21 DID entities that have ‘info:lanl-

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 14/29

repo/pro/ai’ or ‘info:lanl-repo/pro/paper’ as a placeholder value. For each service, the DIP Table
also lists a pointer to the DIM code that actually implements it.

Service Identifier info:lanl-repo/service/table_of_contents
placeholder value info:lanl-repo/pro/ai
Pointer to DIM code http://purl.lanl.gov/dip/methods/toc.js

Description
Service that displays a Table of Contents of a Digital Object
as an XHTML page, listing all constituent datastreams as
well as the services that are available for them.

Service Identifier info:lanl-repo/service/table_of_contents
placeholder value info:lanl-repo/pro/paper
Pointer to DIM code http://purl.lanl.gov/dip/methods/toc.js

Description
Service that displays a Table of Contents of a Digital Object
as an XHTML page, listing all constituent datastreams as
well as the services that are available for them.

Service Identifier info:lanl-repo/service/marc_2_mods
placeholder value info:lanl-repo/fmt/3
Pointer to DIM code http://purl.lanl.gov/dip/methods/marctomods.js

Description Service that disseminates a stored MARCXML datastream as
a MODS datastream

Table 4. Three entries of the DIP Table

The dynamic insertion of DIMs in a DIDL document, as performed by the DIM Inserter module is
explained by means of the examples provided in Annex A and B. Consider the retrieval of the
DIDL document that represents our sample Digital Object from aDORe (see Annex A), and focus
on the MARCXML [18] metadata datastream. This datastream has a placeholder with a value of
‘info:lanl-repo/fmt/3’. A look-up of this placeholder value in the sample DIP Table (Table 4)
reveals that this placeholder value is associated with a service with Service Identifier ‘info:lanl-
repo/service/marc_2_mods’, and that DIM code is available at
‘http://purl.lanl.gov/dip/methods/marctomods.js’. Hence, this service must be added to the DIDL
document. This requires:
• Inserting the actual DIM code as a Component/Resource construct in the DIDL document.

Hereby, the Service Identifier ‘info:lanl-repo/service/marc_2_mods’ is also inserted as the
identifier of the Item that contains the Component/Resource.

• Associating the inserted DIM with the Component which had ‘info:lanl-repo/fmt/3’ as the
placeholder value. This is achieved by inserting an objectType element from the MPEG-21
DIP XML Namespace, and associating it with the DIM using the ObjectType/Argument
technique of MPEG-21 DIP described above. As can be seen in Annex B, the association has
been achieved through the value ‘urn:uuid:8f64eabf’.

The result of applying the dynamic DIM Insertion process to the MARCXML metadata datastream
of our sample Digital Object is shown in Annex B; all entities involved in the process are
highlighted.

In order to embed all relevant DIMs into a DIDL document upon dissemination, the process
explained above is repeated for every placeholder entry found in the DIDL document. The left part
of Figure 5 provides a conceptual illustration of the process.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 15/29

DIM

DIM

DIM

DIM

COMPLETED DID

ASSET

STORED DID

ASSET

ASSET ASSET

ASSET

ASSET

ASSET

ASSET

ASSET

RESULT
SET

DIM
INSERTER

AGENT

MPEG-21
DIP

ENGINE

OPERATIONSDIP TABLE

COMPLETED DID

Figure 5. Dynamic dissemination of stored DIDL documents

5.3 Processing dissemination requests using the MPEG-21 DIP Engine

The MPEG-21 DIP Engine is capable of processing a Digital Object upon request of an agent. An
MPEG-21 DIP Engine is able to respond to processing requests in which the following information
is conveyed:
• An actual DIDL document
• An identification of the XML element of the DIDL document for which the service is requested
• An identification of the method – DIM – contained in the DIDL document that implements the

requested service.

The actual functioning of the LANL MPEG-21 DIP Engine is illustrated in the right part of Figure
5. Upon receipt of a service request, the MPEG-21 DIP Engine extracts the identified XML
element of the DIDL document, as well as the identified DIM. As was mentioned, DIMs are
expressed using a language that normatively includes ECMAScript. This ECMAScript does not
actually contain all the code required for the implementation of the service request. Rather, the
ECMAScript is used by the MPEG-21 DIP Engine to bootstrap the process of implementing the
service request and to actually coordinate it. To that end, the ECMAScript contains calls to so-
called Digital Item Operations. Two types of Digital Item Operations are distinguished in MPEG-21
DIP:
• Digital Item Base Operations – DIBOs: DIBOs are Digital Item Operations that must be

supported by every compliant MPEG-21 DIP Engine. Currently defined DIBOs include
operations to manipulate DIDL documents at the XML level – these operations use the W3C
DOM Core API [23] – and operations that have general application across a wide range of
domains, applications and media types; some of which may require rights checking – e.g. Play,
Print, and Adapt.

• Digital Item extension Operations – DIXOs: DIXOs are Digital Item Operations that are not
defined by MPEG-21 DIP, but are rather defined at the level of specific communities, and
applications. DIXOs are the extensibility mechanism built into the MPEG-21 DIP Engine.

An MPEG-21 DIP Engine is typically thought of as a client-side software component that operates
on a user terminal. In aDORe, a server-side prototype implementation of an MPEG-21 DIP Engine
has been developed. It currently supports only a few of the DIBOs defined by MPEG-21. But
various DIXOs have been coded that implement services that are relevant for and specific to the
nature of the collection stored in aDORe. As a matter of fact, all services listed in Table 3 are

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 16/29

implemented using DIXOs. Also, Java-based templates have been developed to facilitate the
straightforward creation of more DIXOs. For example, one template can be used as the basis for all
DIXOs that use XSL transforms, another template for DIXOs that need to call external applications,
and yet another one for the interaction with Web Services. aDORe is expected to be fully
compatible with MPEG-21 Reference Software [7], and once the reference implementation of the
MPEG-21 DIP Engine becomes available, it will be integrated in the aDORe environment to
replace the current prototype implementation.

6. Accessing the aDORe environment: The OAI-PMH Federator and the
OpenURL Resolver

In order to facilitate the retrieval of stored materials, two front-ends to aDORe are introduced. The
front-ends hide the complexity of the aDORe environment to client-applications, and fulfill specific
functions as summarized in Table 5:
• The OAI-PMH Federator provides an interface through which disseminations of stored DIDL

documents can be requested. This interface is typically used by machines, and responses are
expressed as XML. In OAIS terms, this interface facilitates the request of Dissemination
Information Packages (OAIS DIPs). Available OAIS DIPs include the stored DIDL documents
themselves as well as transformations thereof, such as the representation of a stored DIDL
document using another complex object format than MPEG-21 DID, and the previously
mentioned Completed DIDL document. The OAI-PMH Federator exposes the aDORe
environment as a single OAI-PMH repository, in which the Package Identifiers (without XML
ID fragment) of stored DIDL documents act as the OAI-PMH identifier. The OAI-PMH
access provided by the Federator allows for batch retrieval (using the OAI-PMH ListRecords
verb), as well as for access to an individual DIDL document (using the OAI-PMH GetRecord
verb).

• The OpenURL Resolver provides an interface through which disseminations of Digital Objects
and their constituent datastreams can be requested. This interface is provided for immediate
presentation of the disseminations to end-users, and methods from which the disseminations
result include ‘show PDF’ and ‘play video’. In OAIS terms, this interface facilitates the request
of OAIS Result Sets. The OpenURL Gateway provides an interface to aDORe that is compliant
with the NISO OpenURL Standard, and in which both Content Identifiers and Package
Identifiers (including the XML ID fragment) can be used to identify the requested resource.

aDORe

front-end
interface
standard identifier OAIS

access type
items in
response

OAI-PMH
Federator OAI-PMH Package Identifier OAIS DIP 1 or more

OpenURL
Resolver NISO OpenURL Content Identifier, Package

Identifier (with XML ID fragment)
OAIS

Result Set 1

Table 5. Characteristic of the aDORe front-ends

6.1 An OAIS DIP interface to aDORe: The OAI-PMH Federator

The OAI-PMH Federator is introduced in the environment for the following reasons:
• As was described earlier, harvesters need to be aware of the structure of the aDORe

environment in order to be able to collect DIDL documents. Required knowledge includes the
existence of the Repository Index and the Identifier Locator, as well as the protocol to interface
with them. This need for this prior know-how hinders the use of off-the-shelf OAI-PMH
harvesting tools and requires the use of special-purpose clients.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 17/29

• In addition to being able to disseminate stored DIDL documents from aDORe, there is a need
for disseminations of various transformations thereof. For example, for reasons of
interoperability, the dissemination of stored DIDL documents rendered according to complex
object formats such as METS [25], IMS-CP [13], XFDU [6] is desirable. It is also attractive to
be able to feed the Identifier Locator with the bare essentials of a stored DIDL document (the
contained identifiers) rather than with the full-blown DIDL document itself. Also, there is a
need to be able to request a Completed DIDL document with embedded Digital Item Methods.
Supporting such transforms at the level of each Autonomous OAI-PMH Repository would
significantly increase the complexity of the tools required for their implementation. Again, no
off-the-shelf OAI-PMH repository tools could be used.

The OAI-PMH Federator addresses both problems:
• It exposes the whole aDORe environment as a single OAI-PMH repository, by translating

incoming OAI-PMH requests into appropriate requests targeted at the Repository Index,
Identifier Locator and Autonomous OAI-PMH Repositories. Since many of these components
are themselves OAI-PMH repositories, the OAI-PMH Federator operates its private OAI-PMH
harvester. Logic built into the OAI-PMH Federator ensures that the responses received from the
various components are interpreted correctly, and, whenever appropriate, handed over to
downstream harvesters as valid OAI-PMH responses.

• It allows for requesting transforms of stored DIDL documents by handing off transformation
requests to the previously described MPEG-21 DIP Engine.

The OAI-PMH Federator is an OAI-PMH repository with the following characteristics:
• It has a unique, persistent baseURL, the http address BaseURL(Federator).
• The identifier used by the OAI-PMH is the Package Identifier.
• The datestamp used by the OAI-PMH is the creation DateTime of the DIDL document.
• DIDL is the natively supported metadata format, but, through dynamic processing of DIDL

documents by the MPEG-21 DIP Engine, potentially many other metadata formats can be
supported. The term metadata format must be interpreted broadly, as the metadataPrefix
argument in harvesting requests issued against the OAI-PMH Federator can be used to express
several types of transformations that can be applied to stored DIDL documents:

• Transformations that map DIDL to another complex object model such as IMS-CP. In
this case, the value for the metadataPrefix argument in harvesting requests could be
IMS-CP, and the IMS-CP XML Schema would define the metadata format.

• Manipulations of stored DIDL documents, the result of which remains a DIDL
document. An example is the request of Completed DIDL documents. In this case, the
metadata format will remain DIDL, but the nature of the harvesting request will need to
be further clarified through the metadataPrefix , i.e. DIDL:completed.

• The supported granularity is seconds-level.
• In order to support harvesting from selected Autonomous OAI-PMH Repositories, if this would

be required, the OAI-PMH Federator can expose an OAI-PMH set structure according to their
baseURLs. Other set structures implemented by all Autonomous OAI-PMH Repositories can
also be exposed by the OAI-PMH Federator. In the current aDORe implementation a
collection-oriented and format-oriented set structure is available.

6.2 The OAI-PMH Federator: A step-by-step example

The interaction of an off-the-shelf OAI-PMH harvester with the aDORe environment via the OAI-
PMH Federator is illustrated by means of the following GetRecord requests:

[BaseURL(Federator)?

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 18/29

 verb=GetRecord&identifier=info:lanl-repo/i/58f202ac&
 metadataPrefix=DIDL
and
[BaseURL(Federator)?
 verb=GetRecord&identifier=info:lanl-repo/i/58f202ac&
 metadataPrefix=IMS-CP]

These are the steps involved in generating the appropriate response:
• Through interaction with the Identifier Locator, the OAI-PMH Federator finds out about the

location of the DIDL document with Package Identifier ‘info:lanl-repo/i/58f202ac’, namely
BaseURL(3). If no entry for ‘info:lanl-repo/i/58f202ac’ exists in the Identifier Locator, the OAI-
PMH Federator generates an idDoesNotExist error response.

• The OAI-PMH Federator obtains the stored DIDL document by issuing a GetRecord request
[BaseURL(3)?

verb=GetRecord&identifier=info:lanl-repo/i/58f202ac&
metadataPrefix=DIDL].

• If the metadataPrefix requested in the original GetRecord request was DIDL, no special
actions need to be undertaken.

• If the metadataPrefix requested in the original GetRecord request was IMS-CP, via the
DIP Table, the OAI-PMH Federator can determine whether the requested metadataPrefix
(i.e. IMS-CP) is supported. If yes, the OAI-PMH Federator passes the DIDL document on to
the DIM Inserter, which dynamically adds the transform that – in the DIP Table –
corresponds to IMS-CP and associates it with the container entity of the DIDL document.
Then, the OAI-PMH Federator calls the MPEG-21 DIP Engine to have it apply the
transform. If the requested metadataPrefix is not supported, a
cannotDisseminateFormat error response is generated.

• The OAI-PMH Federator embeds the record that results from the previous step in a correct
OAI-PMH response. This may include inserting set membership information in the headers
of the responses.

6.3 An OAIS Result Set interface to aDORe: The OpenURL Resolver

Through OAI-PMH harvesting, downstream applications obtain DIDL documents and use the
represented Digital Objects and contained datastreams in the creation of their services. For example,
a search engine might extract all textual information from harvested DIDL documents and make it
available for searching by end-users. In this case, brief search results will point back to the
corresponding resource stored in aDORe. Obviously, in such pointers the identification of the
resource will play a crucial role, and both Package Identifiers (including the associated XML ID
fragments), and Content Identifiers can be involved. Also, as was described, the aDORe
environment allows delivery of various disseminations of stored resources through the application
of services to those resources. Hence, requests to retrieve a resource should not only identify the
requested resource but also the service that needs to be applied to it. The latter is equivalent to
conveying the Service Identifier, as shown in Table 4, in the dissemination request.

The NISO OpenURL Standard [30] provides a perfect framework to convey such dissemination
requests. The initial OpenURL specification [41] was specifically introduced for the purpose of
reference linking, and was targeted at facilitating the provision of context-sensitive service links for
popular types of scholarly works such as journal articles and books [39]. Hereby, identifiers and
metadata describing the work are conveyed using a controlled-vocabulary HTTP GET request to a
user-specific linking server, which uses a rules-based approach to provide a user with appropriate
services pertaining to the work. A generalization of the essential components of the initial
OpenURL solution [38] inspired the nature of the NISO OpenURL Standard [30], which provides a

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 19/29

generic framework for the delivery of context-sensitive services pertaining to whichever type of
resource referenced in a networked environment. To that end, the OpenURL Standard introduces
the notion of a ContextObject, which is an information construct that contains descriptions of
various entities involved in the process of providing context-sensitive services. The entities are
shown in Table 6.

Entity Definition

Referent The entity about which the ContextObject was
created – the referenced resource

ReferringEntity The entity that references the Referent

Requester The entity that requests services pertaining to the
Referent

ServiceType The entity that defines the type of service requested
Resolver The entity at which a request for services is targeted
Referrer The entity that generated the ContextObject

Table 6. The NISO OpenURL ContextObject

Each entity of the ContextObject can be described by means of identifiers, by means of metadata,
and/or by means of private data. A ContextObject can be represented in many ways, and currently,
a Key/Encoded-Value (KEV) representation and an XML representation have been defined and are
registered in the OpenURL Registry (see: http://www.openurl.info/registry/) . A representation of a
ContextObject can be transported to a networked system named a Resolver, in order to request
services pertaining to the Referent described in it. To decide upon the nature of such services, the
Resolver may take entities other than the Referent into account. The transport of a ContextObject
can occur using various network protocols, and currently transport over HTTP and HTTPS have
been defined.

From the above, two mappings follow easily:
• The resource stored in aDORe for which a dissemination is requested corresponds to the

Referent of the OpenURL ContextObject.
• The service that needs to be applied to obtain the requested dissemination of the resource

corresponds to the ServiceType of the OpenURL ContextObject.

An OpenURL Resolver is introduced in aDORe at BaseURL(OpenURL Resolver)to which all
requests for the dissemination of stored Digital Objects or contained datastreams are targeted. Using
examples provided earlier in this paper (Tables 1-3), the HTTP transport of the OpenURL Standard,
and its KEV representation of the ContextObject, the following are valid OpenURLs to convey
dissemination requests to this OpenURL Resolver:

• Display a Table of Contents for our sample Digital Object with Content Identifier

‘info:doi/10.123/44455’:
[BaseURL(OpenURL Resolver)?

url_ver=Z39.88-2004 &
rft_id=info:doi/10.123/44455 &
svc_id=info:lanl-repo/service/table_of_contents]

Using Package Identifiers, this request can also be formulated as:
[BaseURL(OpenURL Resolver)?

url_ver=Z39.88-2004 &
rft_id=info:lanl-repo/i/58f202ac#uuid-00005e90 &
svc_id=info:lanl-repo/service/table_of_contents]

• Display the MARCXML metadata record with Content Identifier ‘info:pmid/2225887’ that is a
constituent datastream of our sample Digital Object as a MODS [26] metadata record:

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 20/29

[BaseURL(OpenURL Resolver)?
url_ver=Z39.88-2004 &
rft_id=info:pmid/2225887 &
svc_id=info:lanl-repo/service/marc_2_mods]

Again, this request could be formulated in terms of Package Identifiers.
• Display the PDF article that is a constituent datastream of our sample Digital Object. As no

Content Identifier exists for this datastream, the request must be formulated using Package
Identifiers. Also, as display of the PDF “as is” is requested, no ServiceType is being conveyed
in the request:

[BaseURL(OpenURL Resolver)?
url_ver=Z39.88-2004 &
rft_id=info:lanl-repo/i/58f202ac#uuid-00004a42

Currently, the Referent and ServiceType are the only entities of the ContextObject that are used in
aDORe OpenURL requests. But, NISO OpenURL allows expressing other entities that can be taken
into account to deliver context-sensitive dissemination requests. For example, conveying Requester
information may be of particular interest, as this would allow adapting the actual dissemination to
the agent requesting it. Requester information could convey identity, and this would allow
responding differently to the same service request depending on whether the requesting agent is
human or machine. Or different humans could receive different disseminations based on recorded
preferences or access rights. But the NISO OpenURL specification is purposely very generic and
extensible, and would also support to convey the characteristics of a user’s terminal, and/or the
user’s location via the Requester entity. Such information could be passed on to the MPEG-21 DIP
Engine, and be taken into account in the delivery of an actual dissemination. As a matter of fact, the
expressiveness of NISO OpenURL seems to resonate nicely with the nature of the MPEG-21
Digital Item Adaptation (DIA) [19] effort that focuses on the description of usage environment
characteristics such as terminal capabilities, network conditions and other contextual information.

6.4 The OpenURL Resolver: a step-by-step example

This section provides a walkthrough of the processes involved in responding to the previously
described OpenURL request:

[BaseURL(OpenURL Resolver)?
url_ver=Z39.88-2004 &
rft_id=info:pmid/2225887 &
svc_id=info:lanl-repo/service/marc_2_mods]

• Through interaction with the Identifier Locator, the OpenURL Resolver learns that the Referent

with Content Identifier ‘info:pmid/2225887’ has the corresponding Package Identifier
‘info:lanl-repo/i/58f202ac#uuid-8881b35e’. This identifies a DIDL element contained in the
DIDL document with Package Identifier ‘info:lanl-repo/i/58f202ac’, which is located in the
OAI-PMH repository with baseURL ‘BaseURL(3)’.

• The OpenURL Resolver retrieves this DIDL document from its OAI-PMH repository by issuing
the OAI-PMH GetRecord request
[BaseURL(3)?

verb=GetRecord&
identifier=info:lanl-repo/i/58f202ac&
metadataPrefix=DIDL].

• The OpenURL Resolver passes the retrieved DIDL document on to the DIM Inserter, which
dynamically adds DIMs to the document based on contained ‘placeholder’ values and look-ups
in the DIP Table.

• The DIM Inserter returns the Completed DIDL document (see Annex B) to the OpenURL
Resolver.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 21/29

• The OpenURL Resolver passes the Completed DIDL document, the Package Identifier of the
Referent, and the identifier of the ServiceType to the MPEG-21 DIP Engine.

• Through inspection of the DIDL document, the MPEG-21 DIP Engine determines whether the
requested service with identifier ‘info:lanl-repo/service/marc_2_mods’ can at all be applied to
the element with XML ID ‘uuid-8881b35e’. This is achieved by checking the
ObjectType/Argument correspondence.

• Assuming that the service can indeed be applied, the appropriate DIM is extracted from the
DIDL document, and executed by the MPEG-21 DIP Engine. This DIM calls a DIXO that
transforms the content of the element with XML ID ‘uuid-8881b35e’ from MARCXML to
MODS.

• The MPEG-21 DIP Engine returns the MODS record to the OpenURL Resolver, which delivers
it to the requesting agent.

7. Conclusion

This paper has described the aDORe Digital Object Repository architecture as it has been defined
over the past 2 years by the Digital Library Research & Prototyping Team of the Research Library
of the Los Alamos National Laboratory. Some core design choices in the aDORe environment give
it the following attractive characteristics:
• The modular nature of the design, especially the ability to store DIDL documents in multiple

Autonomous OAI-PMH Repositories provides reassurances regarding the scalability of the
solution.

• Handling the binding of dissemination methods to stored Digital Objects in a dynamic manner
avoids what would likely become a significant workload in editing stored DIDL documents to
update embedded methods.

• Avoiding editing of stored DIDL documents is further realized by the creation of a new DIDL
document whenever a new version of a previously ingested Digital Object needs to be ingested.
As all such versions share the same Content Identifier, the parallel identification mechanism
(Content Identifier, Package Identifier) ensures that the different versions remain
distinguishable. And, through the Identifier Locator, all versions can be located. The parallel
identification approach also allows addressing resources that have no Content Identifier.

• The standards-based nature of the design allows the use of off-the-shelf, open source tools in all
areas of the aDORe environment. This has resulted in significant time savings for the
development, but also allows for inspection, improvement, modification of code if required.
For example, various free and open-source OAI-PMH tools are used, including OAICat [32],
OAIHarvester [33], and OAI Viewer [31]. Also, it is expected that reference implementations
of an OpenURL parser, an MPEG-21 DIDL parser and the MPEG-21 DIP Engine will become
available for integration into the environment.

• The modular and protocol-based nature of the design suggests the possibility of an
implementation of the aDORe architecture in a distributed Web environment, even though it
was conceived and implemented for a local environment. A particular area of interest is a
federation of Institutional Repositories [20]. Furthermore, the protocol-based design provides
the flexibility to choose from or migrate between different software implementations for aDORe
components, without the overall design and functionality being affected. Such migration is
already underway in the context of the creation of a more robust implementation.

• The design introduces a novel use of the NISO OpenURL Standard which begs reflection on its
use as an interoperable interface to request disseminations of resources stored in heterogeneous
repositories. The fact that OpenURL allows to convey information that is relevant for the
delivery of a context-sensitive response to a dissemination request makes the idea all the more
appealing.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 22/29

• As far as can be verified, at the time of writing, aDORe is the first environment in which
various MPEG-21 technologies are used at a significant scale. If nothing else, aDORe strongly
suggests the significance of the MPEG-21 standardization effort to the Digital Library,
Archiving, and Learning Object communities. Furthermore, aDORe has illustrated the
feasibility of an MPEG-21 DIP Engine as a server-side component, thereby adjusting the
traditional MPEG-21 perspective of it being a software component operating on a user terminal
such as a PDA. Obviously, when such terminal-based tools become available, aDORe will be
able to directly communicate with them.

An initial aDORe implementation has been brought in production that currently stores about
30,000,000 DIDL documents, a figure that is expected to at least double in the next year. The
current aDORe implementation is developed in Java and Perl and has been tested in Linux and
Solaris environments. Off-the-shelf software packages have been used throughout the
implementation; these include utilities to write Internet Archive ARC files from the Danish
netarchive project, standard XML tools to write XMLTapes, and Berkeley DB to index them to
enable OAI-PMH access. Both the OAI-PMH Federator and the Repository Index are based on
OCLC’s OAICat, while OAI-PMH harvesters used by downstream applications are based on
OCLC’s OAIHarvester. The modular and protocol-based nature of the design makes it possible to
distribute aDORe components across multiple machines; as a matter of fact, the Autonomous OAI-
PMH Repositories, the OAI-PMH Federator, the OpenURL Resolver, the Repository Index, and the
Identifier Locator can all be running on separate machines.

The performance and scalability of the Identifier Locator is critical to the aDORe environment. The
current implementation is based on a single MySQL database which has the critical information
loaded into RAM. This implementation has worked successfully with the current amount of stored
Digital Objects. However it is expected that optimizations will be required as the number of stored
Digital objects further increases, and as the environment is more intensely accessed. Anticipated
optimizations include distributing the data handled by the Identifier Locator across multiple
MySQL servers running on a blade environment.

Various downstream applications harvest on a recurrent basis from aDORe. Two harvesters work
on behalf of search engines (Verity, Lucene) that support discovery of ingested materials, and
another on behalf of an application aimed at dynamically de-duplicating bibliographic information
which is built on top of the Netrics fuzzy search engine. In addition to the ongoing ingestion of
scholarly assets obtained from primary and secondary publishers, work is under way aimed at
ingesting materials as diverse as technical reports authored by LANL employees, datasets,
videotaped presentations, and materials gathered through focused Web crawling. Also, the
implementation of more robust versions for several of the described components is underway, and
consideration is being given to share the aDORe code-base with interested parties.

Acknowledgments

The authors would like to thank their previous team members Patrick Hochstenbach (now at Ghent
University) and Henry Jerez (now at CNRI) for their contributions to the reported work. Many
thanks also to Rick Luce, the director of the LANL Research Library, for his ongoing support for
the reported work; and to Miriam Blake, Mariella Di Giacomo and Beth Goldsmith (LANL
Research Library Development Team) for their efforts in deploying the aDORe environment.
Thanks to Michael L. Nelson for proofreading a draft of this paper.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 23/29

Jeroen Bekaert also wishes to thank the Fund for Scientific Research (Flanders, Belgium) for his
Ph.D. scholarship. The reported research is partly funded by a grant from the Library of Congress’s
National Digital Information Infrastructure and Preservation Program.

References

1. Abrams, S. L., & Seaman, D. (2003, August). Towards a global digital format registry. Paper

presented at World Library and Information Congress: 69th IFLA General Conference and
Council, Berlin, Germany. Retrieved from http://www.ifla.org/IV/ifla69/papers/128e-
Abrams_Seaman.pdf

2. Bekaert, J., Hochstenbach, P., & Van de Sompel, H. (2003, November). Using MPEG-21

DIDL to represent complex Digital Objects in the Los Alamos National Laboratory Digital
Library. D-Lib Magazine, 9(11). Retrieved from http://dx.doi.org/10.1045/november2003-
bekaert

3. Bekaert, J., & Rump, N. (Eds.). (2005, January). ISO/IEC 21000-3 PDAM/1 MPEG-21 DII

(Output Document of the 71th MPEG Meeting, Hong Kong, China, ISO/IEC
JTC1/SC29/WG11/N6928). Retrieved from the NIST MPEG Document Register.

4. Bekaert, J., Van de Walle R., & Van de Sompel, H. (in press). Representing Digital Objects

using MPEG-21 Digital Item Declaration. International Journal on Digital Libraries.

5. Burner, M., & Kahle, B. (1996, September 15). Arc File format. Retrieved from

http://www.archive.org/web/researcher/ArcFileFormat.php

6. Consultative Committee for Space Data Systems (CCSDS) Panel 2. (2003, August). XML

structure and construction rules (CCSDS Tech. Rep. No. 727/0831XFDUv09). Retrieved from
http://www.ccsds.org/docu/dscgi/ds.py/Get/File-727/0831XFDUv09.pdf

7. De Keukelaere, F., Timmerer, C., Drury, G., & Wang, X. (Eds.). (2005, January). ISO/IEC

21000-8 FCD Reference Software (Output Document of the 71th MPEG Meeting, Hong Kong,
China, ISO/IEC JTC1/SC29/WG11/N6940). Retrieved from the NIST MPEG Document
Register.

8. Drury, G., Van de Walle, R., Burnett, I., Kim, M., & Swaminathan, V.. (Eds.). (2004,

October). ISO/IEC FCD 21000-10 Digital Item Processing (Output Document of the 70th
MPEG Meeting, Palma De Mallorca, Spain, No. ISO/IEC JTC1/SC29/WG11/N6780).
Retrieved from the NIST MPEG Document Register.

9. Dushay, N. (2002). Localizing experience of digital content via structural metadata. In

Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, JCDL '02,
Portland, OR (pp. 244-252). New York, NY: ACM Press.

10. Fallside, D. C. (Ed.). (2002, May 2). XML Schema Part 0: Primer (W3C Recommendation).

Retrieved May 1, 2005, from http://www.w3.org/TR/xmlschema-0/

11. Grosso, P. (Ed.). (2003, September 12). Proposal for XML Fragment Identifier syntax 0.9

(W3C Note). Retrieved from http://www.w3.org/TR/xml-fragid/

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 24/29

12. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., & Nielsen, H. F. (Eds.). (2003, June
24). SOAP version 1.2 part 1: messaging framework (W3C Recommendation). Retrieved from
http://www.w3.org/TR/soap12/

13. IMS Global Learning Consortium. (2003, June). IMS content packaging XML binding

specification version 1.1.3. Retrieved from http://www.imsglobal.org/content/packaging/

14. International Organization for Standardization. (2004). ISO 8601:2004. Data elements and

interchange formats -- Information interchange -- Representation of dates and times (3th ed.)
Geneva, Switzerland: Author.

15. International Organization for Standardization. (2003). ISO 14721:2003. Space data and

information transfer systems -- Open archival information system -- Reference model (1st ed.)
Geneva, Switzerland: Author.

16. International Organization for Standardization. (2002). ISO/IEC 16262:2002: Information

technology - ECMAScript language specification (2nd ed.) Geneva, Switzerland: Author.

17. International Organization for Standardization. (2003). ISO/IEC 21000-2:2003. Information

technology -- Multimedia framework (MPEG-21) -- Part 2: Digital Item Declaration (1st ed.)
Geneva, Switzerland: Author.

18. International Organization for Standardization. (2003). ISO/IEC 21000-3:2003: Information

technology -- Multimedia framework (MPEG-21) -- Part 3: Digital Item Identification (1st ed.)
Geneva, Switzerland: Author.

19. International Organization for Standardization. (2004). ISO/IEC 21000-7:2004: Information

technology -- Multimedia framework (MPEG-21) -- Part 7: Digital Item Adaptation (1st ed.)
Geneva, Switzerland: Author.

20. Jerez, H. N., Liu, X., Hochstenbach, P., & Van de Sompel, H. (2004). The multi-faceted use of

the OAI-PMH in the LANL repository. In Proceedings of the 4th ACM/IEEE Joint Conference
on Digital Libraries: Vol. . Proceedings of the 2004 joint ACM/IEEE conference on Digital
libraries, JCDL '04, Tuscon, AZ (pp. 11-20). New York, NY: ACM Press.

21. Lagoze, C., Van de Sompel, H., Nelson, M. L., & Warner, S. (Eds.). (2002, June). The Open

Archives Initiative protocol for metadata harvesting (2nd ed.). Retrieved from
http://www.openarchives.org/OAI/openarchivesprotocol.htm

22. Leach, P., Mealling, M., & Salz, R. (2004, January). A UUID URN Namespace (3th ed.) (IETF

Internet-Draft, expired on July 1, 2004).

23. Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., & Byrne, S. (Eds.).

(2004, April 7). Document Object Model (DOM) Level 3 Core Specification (W3C
Recommendation). Retrieved from http://www.w3.org/TR/DOM-Level-3-Core/

24. The Library of Congress: The Network Development and MARC Standards Office. (2004,

June). MARC 21 XML Schema (MARCXML). Retrieved from
http://www.loc.gov/standards/marcxml/

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 25/29

25. The Library of Congress: The Network Development and MARC Standards Office. (2004,
November). Metadata Encoding and Transmission Standard (METS). Retrieved from
http://www.loc.gov/standards/mets/

26. The Library of Congress: The Network Development and MARC Standards Office. (2004,

November). Metadata Object Description Schema (MODS). Retrieved from
http://www.loc.gov/standards/mods/

27. The Library of Congress: The Network Development and MARC Standards Office. (2004,

February). Search/Retrieve Web Service (SRW). Z39.50 International: Next Generation.
Retrieved from http://www.loc.gov/z3950/agency/zing/srw/

28. National Information Standards Organization. (2000, May). ANSI/NISO Z39.84-2000: Syntax

for the Digital Object Identifier. Bethesda, MD: NISO Press.

29. National Information Standards Organization. (2001, September). ANSI/NISO Z39.85-2001:

The Dublin Core Metadata Element Set. Bethesda, MD: NISO Press.

30. National Information Standards Organization. (in press). ANSI/NISO Z39.88-2004: The

OpenURL Framework for Context-Sensitive Services. Bethesda, MD: NISO Press.

31. Online Computer Library Center. (2004, December). ERRoL Resolver. Retrieved from

http://www.oclc.org/research/software/oai/errol.htm

32. Online Computer Library Center. (2004, October). OAICat. Retrieved from

http://www.oclc.org/research/software/oai/cat.htm

33. Online Computer Library Center. (2003, October). OAIHarvester2. Retrieved from

http://www.oclc.org/research/software/oai/harvester2.htm

34. Payette, S., & Lagoze, C. (1998). Flexible and Extensible digital object and Repository

Architecture (FEDORA). In C. Nikolaou & C. Stephanidis (Vol. Eds.), Lecture Notes in
Computer Science: Vol. 1513 / 1998. Research and Advanced Technology for Digital
Libraries: Proceedings of the 2nd European Conference, ECDL'98, Heraklion, Crete, Greece
(pp. 41-60). Heidelberg, Germany: Springer-Verlag.

35. Staples, T., Wayland, R., & Payette, S. (2003, April). The Fedora project: An open-source

digital object repository system. D-Lib Magazine, 9(4). Retrieved from
http://dx.doi.org/10.1045/april2003-staples

36. Sun, S., Lannom, L., & Boesch, B. (2003, November). Handle System overview (IETF RFC

3650). Retrieved from http://www.ietf.org/rfc/rfc3650.txt

37. Liu, X., Balakireva, L., & Van de Sompel, H. (submitted paper). Using XMLtapes and Internet

Archive ARC files to store Digital Objects and constituent datastreams in aDORe. To be
published in: Proceedings of the 5th ACM/IEEE Joint Conference on Digital Libraries: Vol.
Proceedings of the 2005 joint ACM/IEEE conference on Digital libraries, JCDL '05, Denver,
CO. New York, NY: ACM Press.

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 26/29

38. Van de Sompel, H., & Beir-Arie, O. (2001, July/August). Generalizing the OpenURL
framework beyond references to scholarly works: The Bison-Futé model. D-Lib Magazine,
7(7/8). Retrieved from http://dx.doi.org/10.1045/july2001-vandesompel

39. Van de Sompel, H., & Beit-Arie, O. (2001, March). Open linking in the scholarly information

environment using the OpenURL framework. D-Lib Magazine, 7(3). Retrieved from
http://dx.doi.org/10.1045/march2001-vandesompel

40. Van de Sompel, H., Hammond, T., Neylon, E., & Weibel, S. (2004, July 9). The "info" URI

scheme for information assets with identifiers in public namespaces (2nd ed.). (IETF Internet-
Draft, expired on January 7, 2005) Retrieved from http://info-uri.info/registry/docs/drafts/draft-
vandesompel-info-uri-02.txt

41. Van de Sompel, H., Hochstenbach, P., & Beit-Arie, O. (2000, May). OpenURL syntax

description, version OpenURL/1.0f - 2000-05-16. Retrieved from
http://alcme.oclc.org/openurl/docs/pdf/openurl-01.pdf

42. Van de Sompel, H., Nelson, M. L., Lagoze, C., & Warner, S. (2004, December). Resource

Harvesting within the OAI-PMH Framework. D-Lib Magazine, 10(12). Retrieved from
http://dx.doi.org/10.1045/ doi:10.1045/december2004-vandesompel

43. Van de Walle, R., Burnett, I., & Drury, G. (Eds.). (2004, October). ISO/IEC 21000-2 Digital

Item Declaration (Output Document of the 70th MPEG Meeting, Palma De Mallorca, Spain,
No. ISO/IEC JTC1/SC29/WG11/N6770). Retrieved from the NIST MPEG Document Register.

44. YAR 1.2 – Yet Another (OAI-PMH) Repository. (2004, September 5). Retrieved from

http://yar.sourceforge.net

Annex A: A DIDL document representing the sample Digital Object

<?xml version="1.0" encoding="UTF-8"?>
<!-- DIDL document is Archival Information Package -->
<!-- Package Identifier provided as value of DIDid attribute -->
<didl:DIDL diext:DIDid="info:lanl-repo/i/58f202ac"
 diext:DIDcreated="2004-06-22T18:07:18Z" xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:diext="http://library.lanl.gov/2004-04/STB-RL/DIEXT"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- Container element representing a container entity -->
 <didl:Container id="uuid-73d2247e">
 <!-- Container-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">info:lanl-repo/pro/DIDL</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Top-level Item representing the Digital Object -->
 <didl:Item id="uuid-00005e90">
 <!-- Content Identifier of the Digital Object -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 info:doi/10.123/44455</dii:Identifier>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Item-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">info:lanl-repo/pro/paper</dc:format>
 </diadm:Admin>

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 27/29

 </didl:Statement>
 </didl:Descriptor>
 <!— Sub-Item containing a MARCXML metadata record -->
 <didl:Item id="uuid-8881b35e">
 <!-- Content Identifier of the MARCXML metadata record -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 info:pmid/2225887</dii:Identifier>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Sub-Item-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/pro/metadata</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Component containing the MARCXML datastream -->
 <didl:Component id="uuid-0000a01c">
 <!-- Component-level Placeholder / Format -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/fmt/3</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- The actual MARCXML datastream -->
 <didl:Resource mimeType="text/xml; charset=UTF-8">
 <record xmlns="http://www.loc.gov/MARC21/slim">
 <leader>01748cam 220036101 45Y0</leader>
 <controlfield tag="001">LANLb10012252</controlfield>
 <controlfield tag="003">LANL</controlfield>
 <controlfield tag="005">20030527112640.0</controlfield>
 <controlfield tag="008">840202s1983 nmua tb 00010 eng d</controlfield>
 <datafield tag="035" ind1=" " ind2=" ">
 <subfield code="a">GLIS00012252</subfield>
 </datafield>
 ...
 </record>
 </didl:Resource>
 </didl:Component>
 </didl:Item>
 <!-- Component containing the PDF paper -->
 <didl:Component id="uuid-00004a42">
 </didl:Descriptor>
 <!-- Component-level Placeholder / Format -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/fmt/5</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- The actual PDF datastream -->
 <didl:Resource mimeType="application/pdf" encoding="base64">
 PSJjIj5jMTk5My48L3N1YmZpZWxkPg0KICAgIDw9uIHhtbG5zSJodHgKICAgIDxk
 dGFnPSIzMDAiIGluZDE9IiAiIGluZDI9IiOAIS AIPg0KICAgICAgPHN1YmZpZWxkIGNv
 cmVzdG9yZWQgdG8g…</didl:Resource>
 </didl:Component>
 </didl:Item>
 </didl:Container>
</didl:DIDL>

Annex B: The DIDL document from Annex A containing a DIM associated with
an MPEG-21 DID component

<?xml version="1.0" encoding="UTF-8"?>
<!-- DIDL document is Archival Information Package -->
<!-- Package Identifier provided as value of DIDid attribute -->
<didl:DIDL diext:DIDid="info:lanl-repo/i/58f202ac"
 diext:DIDcreated="2004-06-22T18:07:18Z" xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:diext="http://library.lanl.gov/2004-04/STB-RL/DIEXT"

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 28/29

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- Container element representing a container entity -->
 <didl:Container id="uuid-73d2247e">
 <!-- Container-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">info:lanl-repo/pro/DIDL</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Top-level Item representing the Digital Object -->
 <didl:Item id="uuid-00005e90">
 <!-- Content Identifier of the Digital Object -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 info:doi/10.123/44455</dii:Identifier>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Item-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">info:lanl-repo/pro/paper</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!— Sub-Item containing a MARCXML metadata record -->
 <didl:Item id="uuid-8881b35e">
 <!-- Content Identifier of the MARCXML metadata record -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 info:pmid/2225887</dii:Identifier>
 </didl:Statement>
 </didl:Descriptor>
 <!-- Sub-Item-level Placeholder -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/pro/metadata</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 ...
 <!-- Component containing the MARCXML datastream -->
 <didl:Component id="uuid-0000a01c">
 <!-- Component-level Placeholder / Format -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/fmt/3</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 <!-- ObjectType of the MARCXML datastream, added by DIM Inserter -->
 <!-- Corresponds with Argument of DIM (MARCXML to MODS) below -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dip:ObjectType xmlns:dip="urn:mpeg:mpeg21:2002:01-DIP-NS">
 urn:uuid:8f64eabf</dip:ObjectType>
 </didl:Statement>
 </didl:Descriptor>
 ...
 <!-- The actual MARCXML datastream -->
 <didl:Resource mimeType="text/xml; charset=UTF-8">
 <record xmlns="http://www.loc.gov/MARC21/slim">
 <leader>01748cam 220036101 45Y0</leader>
 <controlfield tag="001">LANLb10012252</controlfield>
 <controlfield tag="003">LANL</controlfield>
 <controlfield tag="005">20030527112640.0</controlfield>
 <controlfield tag="008">840202s1983 nmua tb 00010 eng d</controlfield>
 <datafield tag="035" ind1=" " ind2=" ">
 <subfield code="a">GLIS00012252</subfield>
 </datafield>
 ...
 </record>
 </didl:Resource>
 </didl:Component>
 </didl:Item>

Draft of Submission to Oxford University Press Computer Journal

 Draft of Submission to Oxford University Press Computer Journal 29/29

 <!-- Component containing the PDF paper -->
 <didl:Component id="uuid-00004a42">
 </didl:Descriptor>
 <!-- Component-level Placeholder / Format -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <diadm:Admin xmlns:diadm="http://library.lanl.gov/2004-01/STB-RL/DIADM">
 <dc:format xmlns:dc="http://purl.org/dc/elements/1.1/">
 info:lanl-repo/fmt/5</dc:format>
 </diadm:Admin>
 </didl:Statement>
 </didl:Descriptor>
 ...
 <!-- The actual PDF datastream -->
 <didl:Resource mimeType="application/pdf" encoding="base64">
 PSJjIj5jMTk5My48L3N1YmZpZWxkPg0KICAgIDw9uIHhtbG5zSJodHgKICAgIDxk
 dGFnPSIzMDAiIGluZDE9IiAiIGluZDI9IiOAIS AIPg0KICAgICAgPHN1YmZpZWxkIGNv
 cmVzdG9yZWQgdG8g…</didl:Resource>
 </didl:Component>
 </didl:Item>
 <!-- Item containing the DIM that implements the MARCXML to MODS service -->
 <!-- Inserted by the DIM Inserter after lookup of Placeholder/Format value info:lanl-repo/fmt/3 in
 the DIP Table -->
 <didl:Item id="uuid-6b479d14">
 <!-- Content Identifier of the DIM -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dii:Identifier xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 info:lanl-repo/service/marc_2_mods</dii:Identifier>
 </didl:Statement>
 </didl:Descriptor>
 <didl:Component id="uuid-3886920b">
 <!-- Argument of the DIM. Corresponds with ObjectType attached to MARCXML datastream -->
 <didl:Descriptor>
 <didl:Statement mimeType="text/xml; charset=UTF-8">
 <dip:MethodInfo xmlns:dip="urn:mpeg:mpeg21:2002:01-DIP-NS">
 <dip:Argument>urn:uuid:8f64eabf</dip:Argument>
 </dip:MethodInfo>
 </didl:Statement>
 </didl:Descriptor>
 <!-- DIM ECMAScript -->
 <didl:Resource mimeType="application/mp21-method"
 ref="http://purl.lanl.gov/dip/methods/marctomods.js"/>
 </didl:Component>
 </didl:Item>
 </didl:Container>
</didl:DIDL>

